Synthesis of Imidazo[2,1-a]isoindolones via Rearrangement and Tandem Cyclization of Amino-Acid-Based N-Phenacyl-2-cyano-4-nitrobenzensulfonamides
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40420460
PubMed Central
PMC12150327
DOI
10.1021/acs.joc.4c03113
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Esters of amino acids were reacted with 2-cyano-4-nitrobenzenesulfonyl chloride or 2-cyano-4-(trifluoromethyl)benzenesulfonyl chloride and alkylated with various α-haloketones. The corresponding sulfonamides were heated in a solution of ammonium acetate, which yielded imidazo[2,1-a]isoindolones in one step. The key reaction was based on intramolecular C-arylation followed by spontaneous cycloaddition and cyclocondensation. Two approaches have been developed: (i) solid-phase synthesis starting from amino acids immobilized on Wang resin, which allows the rapid preparation of target compounds using the cyclative cleavage strategy, and (ii) traditional solution-phase synthesis using amino acid methyl esters as the starting materials. The advantages and drawbacks of both alternatives are compared.
Zobrazit více v PubMed
Henderson A. R. P., Kosowan J. R., Wood T. E.. The Truce–Smiles Rearrangement and Related Reactions: A Review. Can. J. Chem. 2017;95(5):483–504. doi: 10.1139/cjc-2016-0594. DOI
Snape T. J.. A Truce on the Smiles Rearrangement: Revisiting an Old Reactionthe Truce–Smiles Rearrangement. Chem. Soc. Rev. 2008;37(11):2452–2458. doi: 10.1039/b808960d. PubMed DOI
Fülöpová V., Soural M.. Mining the Chemical Space: Application of 2/4-Nitrobenzenesulfonamides in Solid-Phase Synthesis. ACS Comb. Sci. 2015;17(10):570–591. doi: 10.1021/acscombsci.5b00089. PubMed DOI
Schütznerová, E. ; Krchňák, V. . Intramolecular Arylation of 2-Nitrobenzenesulfonamides: A Route to Diverse Nitrogenous Heterocycles. In Solid-Phase Synthesis of Nitrogenous Heterocycles; Krchňák, V. Ed.; Springer International Publishing: Cham, 2017; pp 139–165. 10.1007/7081_2016_5. DOI
Schütznerová E., Krchňák V.. Solid-Phase Synthesis of 2-Aryl-3-Alkylamino-1H-Indoles from 2-Nitro-N-(2-Oxo-2-Arylethyl)Benzenesulfonamides via Base-Mediated C-Arylation. ACS Comb. Sci. 2015;17(2):137–146. doi: 10.1021/co500167g. PubMed DOI
Tkadlecová M., Lemrová B., Soural M.. Synthesis of Polysubstituted Pyridines and Pyrazines via Truce–Smiles Rearrangement of Amino Acid-Based 4-Nitrobenzenesulfonamides. J. Org. Chem. 2023;88(5):3228–3237. doi: 10.1021/acs.joc.2c03025. PubMed DOI PMC
Žáková K., Králová P., Soural M.. Synthesis of 2-Amino-3-Arylindoles and Their Fused Analogues via Intramolecular C-Arylation. Adv. Synth. Catal. 2024;366(11):2519–2526. doi: 10.1002/adsc.202400143. DOI
Lemrová B., Maloň M., Soural M.. Efficient Synthesis of Pentasubstituted Pyrroles via Intramolecular C-Arylation. Org. Biomol. Chem. 2022;20(18):3811–3816. doi: 10.1039/D2OB00536K. PubMed DOI
Bouillon I., Zajíček J., Pudelová N., Krchňák V.. Remarkably Efficient Synthesis of 2H-Indazole 1-Oxides and 2H-Indazoles via Tandem Carbon–Carbon Followed by Nitrogen–Nitrogen Bond Formation. J. Org. Chem. 2008;73(22):9027–9032. doi: 10.1021/jo8018895. PubMed DOI PMC
Song F., Yang N., Khalil Z. G., Salim A. A., Han J., Bernhardt P. V., Lin R., Xu X., Capon R. J.. Bhimamycin J, a Rare Benzo[f]Isoindole-Dione Alkaloid from the Marine-Derived Actinomycete Streptomyces Sp. MS180069. Chem. Biodivers. 2021;18(11):e2100674. doi: 10.1002/cbdv.202100674. PubMed DOI
Xu K., Li R., Zhu R., Li X., Xu Y., He Q., Xie F., Qiao Y., Luan X., Lou H.. Xylarins A–D, Two Pairs of Diastereoisomeric Isoindoline Alkaloids from the Endolichenic Fungus Xylaria Sp. Org. Lett. 2021;23(20):7751–7754. doi: 10.1021/acs.orglett.1c02730. PubMed DOI
Hu Q.-F., Ma Y.-Y., Liu H.-Y., Dai J.-M., Yang F.-X., Zhang J.-D., Wang J., Li X.-M., Liu X., Li J., Li Y.-K., Wang W.-G., Zhou M., Yang G.-Y.. Antivirus Isoindolinone Alkaloids with Rare Oxocyclopenta[f]Isoindole Frameworks Isolated from the Stems of Flue Cured Tobacco. Chem. Biol. Technol. Agric. 2022;9(1):88. doi: 10.1186/s40538-022-00339-7. DOI
Morita H., Yamashita M., Shi S.-P., Wakimoto T., Kondo S., Kato R., Sugio S., Kohno T., Abe I.. Synthesis of Unnatural Alkaloid Scaffolds by Exploiting Plant Polyketide Synthase. Proc. Natl. Acad. Sci. U. S. A. 2011;108(33):13504–13509. doi: 10.1073/pnas.1107782108. PubMed DOI PMC
Heugebaert T. S. A., Roman B. I., Stevens C. V.. Synthesis of Isoindoles and Related Iso-Condensed Heteroaromatic Pyrroles. Chem. Soc. Rev. 2012;41(17):5626–5640. doi: 10.1039/c2cs35093a. PubMed DOI
McDonald S. M., Mellerup S. K., Barran C., Wang X., Wang S.. Binding Modes and Reactivity of Pyrido[2,1-a]Isoindole as a Neutral Carbon Donor with Main-Group and Transition-Metal Elements. Organometallics. 2017;36(20):4054–4060. doi: 10.1021/acs.organomet.7b00696. DOI
Zeng C., Yuan K., Wang N., Peng T., Wu G., Wang S.. The Opposite and Amplifying Effect of B ← N Coordination on Photophysical Properties of Regioisomers with an Unsymmetrical Backbone. Chem. Sci. 2019;10(6):1724–1734. doi: 10.1039/C8SC04210A. PubMed DOI PMC
Aeberli P., Houlihan W. J.. Lithium Aluminum Hydride Reduction Products from Heterocycles Containing an Isoindolone Nucleus. J. Org. Chem. 1969;34(6):1720–1726. doi: 10.1021/jo01258a042. DOI
Cillo C. M., Lash T. D.. Porphyrins with Exocyclic Rings. Part 20: Synthesis and Spectroscopic Characterization of Porphyrins with Fused 2,1,3-Benzoxadiazole and 2,1,3-Benzoselenadiazole Moieties. Tetrahedron. 2005;61(49):11615–11627. doi: 10.1016/j.tet.2005.09.090. DOI
Riesz, P. ; Krishna, C. M. . Phthalocyanines And Their Sulfonated Derivatives As Photosensitizers In Photodynamic Therapy. In New Directions in Photodynamic Therapy; SPIE, 1988; Vol. 0847, pp 15–28. 10.1117/12.942 DOI
Rennie C. C., Edkins R. M.. Targeted Cancer Phototherapy Using Phthalocyanine–Anticancer Drug Conjugates. Dalton Trans. 2022;51(35):13157–13175. doi: 10.1039/D2DT02040H. PubMed DOI
Rak J., Pouckova P., Benes J., Vetvicka D.. Drug Delivery Systems for Phthalocyanines for Photodynamic Therapy. Anticancer Res. 2019;39(7):3323–3339. doi: 10.21873/anticanres.13475. PubMed DOI
AbdelSamad A. L., El-Saadi M. T., Gouda A. M., AboulMagd A. M.. Pyrrolizine/Indolizine-Bearing (Un)Substituted Isoindole Moiety: Design, Synthesis, Antiproliferative and MDR Reversal Activities, and in Silico Studies. RSC Adv. 2023;13(44):30753–30770. doi: 10.1039/D3RA05310E. PubMed DOI PMC
Labbozzetta M., Barreca M., Spanò V., Raimondi M. V., Poma P., Notarbartolo M., Barraja P., Montalbano A.. Novel Insights on [1,2]Oxazolo[5,4-e]Isoindoles on Multidrug Resistant Acute Myeloid Leukemia Cell Line. Drug Dev. Res. 2022;83(6):1331–1341. doi: 10.1002/ddr.21962. PubMed DOI PMC
Berger D., Citarella R., Dutia M., Greenberger L., Hallett W., Paul R., Powell D.. Novel Multidrug Resistance Reversal Agents. J. Med. Chem. 1999;42(12):2145–2161. doi: 10.1021/jm9804477. PubMed DOI
Shakir R., Muhi-eldeen Z. A., Matalka K. Z., Qinna N. A.. Analgesic and Toxicity Studies of Aminoacetylenic Isoindoline-1,3-Dione Derivatives. Int. Scholarly Res. Not. 2012;2012(1):657472. doi: 10.5402/2012/657472. PubMed DOI PMC
Szkatuła D., Krzyżak E., Stanowska P., Duda M., Wiatrak B.. A New N-Substituted 1H-Isoindole-1,3(2H)-Dione DerivativeSynthesis, Structure and Affinity for Cyclooxygenase Based on In Vitro Studies and Molecular Docking. Int. J. Mol. Sci. 2021;22(14):7678. doi: 10.3390/ijms22147678. PubMed DOI PMC
Mancilla Percino T., Hernández Rodríguez M., Mera Jiménez E.. Synthesis of New Isoindolines Derived from L-Α-Amino Acids and Their Selectivity on Cancer Cell Lines. ChemistrySelect. 2024;9(4):e202304299. doi: 10.1002/slct.202304299. DOI
Mancilla Percino T., Guzmán Ramírez J. E., Mera Jiménez E., Trejo Muñoz C. R.. Synthesis, Characterization of Novel Isoindolinyl- and Bis-Isoindolinylphenylboronic Anhydrides. Antiproliferative Activity on Glioblastoma Cells and Microglial Cells Assays of Boron and Isoindolines Compounds. J. Organomet. Chem. 2019;891:35–43. doi: 10.1016/j.jorganchem.2019.04.011. DOI
Reddy M. S., Swamy T. N., Ravinder M., Nukala S. K.. Regioselective Synthesis of 5H-Benzo[4,5]Imidazo[2,1-a]Isoindole Linked 1,2,3-Traizole Hybrids and Their Anti-Proliferative Activity. Russ. J. Gen. Chem. 2021;91(6):1135–1139. doi: 10.1134/S1070363221060232. DOI
Csende F., Porkoláb A.. A Review on Antibacterial Activity of Some Isoindole Derivatives. Pharma Chem. 2018;10:43.
Thirukovela N. S., Kankala S., Kankala R. K., Paidakula S., Gangula M. R., Vasam C. S., Vadde R.. Regioselective Synthesis of Some New 1,4-Disubstituted Sulfonyl-1,2,3-Triazoles and Their Antibacterial Activity Studies. Med. Chem. Res. 2017;26(9):2190–2195. doi: 10.1007/s00044-017-1926-6. DOI
Jean-Gérard L., Vasseur W., Scherninski F., Andrioletti B.. Recent Advances in the Synthesis of [a]-Benzo-Fused BODIPY Fluorophores. Chem. Commun. 2018;54(92):12914–12929. doi: 10.1039/C8CC06403B. PubMed DOI
Yu C., Wu Q., Wang J., Wei Y., Hao E., Jiao L.. Red to Near-Infrared Isoindole BODIPY Fluorophores: Synthesis, Crystal Structures, and Spectroscopic and Electrochemical Properties. J. Org. Chem. 2016;81(9):3761–3770. doi: 10.1021/acs.joc.6b00414. PubMed DOI
Dahlen M. A.. The Phthalocyanines A New Class of Synthetic Pigments and Dyes. Ind. Eng. Chem. 1939;31(7):839–847. doi: 10.1021/ie50355a012. DOI
Chen Q., Jia Y., Zhang J.. Effect of Isoindole Derivative Pigments with Planar Macroconjugated Structure on the UV Resistance of HDPE. Mater. Today Commun. 2023;37:107314. doi: 10.1016/j.mtcomm.2023.107314. DOI
Christie R., Abel A.. Phthalocyanine Pigments: General Principles. Phys. Sci. Rev. 2021;6(11):671–677. doi: 10.1515/psr-2020-0194. DOI
Chen Y.-L., Lee M.-H., Wong W.-Y., Lee A. W. M.. Oxadisilole-Fused Isoindole. Synlett. 2006;2006(15):2510–2512. doi: 10.1055/s-2006-950420. DOI
Akiyama T., Uoyama H., Okujima T., Yamada H., Ono N., Uno H.. 1-Aminoisoindole as a Useful π-System Elongation Unit. Tetrahedron. 2009;65(22):4345–4350. doi: 10.1016/j.tet.2009.03.072. DOI
Lyaskovskyy V. V., Voitenko Z. V., Kovtunenko V. A.. 11H-Isoindolo[2,1-a]Benzimidazoles (Review) Chem. Heterocycl. Compd. 2007;43(3):253–276. doi: 10.1007/s10593-007-0040-y. DOI
Hu Q., Li L., Yin F., Zhang H., Hu Y., Liu B., Hu Y.. Fused Multifunctionalized Isoindole-1,3-Diones via the Coupled Oxidation of Imidazoles and Tetraynes. RSC Adv. 2017;7(78):49810–49816. doi: 10.1039/C7RA08817E. DOI
Gentry P. R., Kokubo M., Bridges T. M., Kett N. R., Harp J. M., Cho H. P., Smith E., Chase P., Hodder P. S., Niswender C. M., Daniels J. S., Conn P. J., Wood M. R., Lindsley C. W.. Discovery of the First M5-Selective and CNS Penetrant Negative Allosteric Modulator (NAM) of a Muscarinic Acetylcholine Receptor: (S)-9b-(4-Chlorophenyl)-1-(3,4-Difluorobenzoyl)-2,3-Dihydro-1H-Imidazo[2,1-a]Isoindol-5(9bH)-One (ML375) J. Med. Chem. 2013;56(22):9351–9355. doi: 10.1021/jm4013246. PubMed DOI PMC
Bouzayani N., Kraïem J., Marque S., Kacem Y., Carlin-Sinclair A., Marrot J., Hassine B. B.. Green Synthesis of New Chiral 1-(Arylamino)Imidazo[2,1-a]Isoindole-2,5-Diones from the Corresponding α-Amino Acid Arylhydrazides in Aqueous Medium. Beilstein J. Org. Chem. 2018;14(1):2923–2930. doi: 10.3762/bjoc.14.271. PubMed DOI PMC
Neumann C. S., Walsh C. T.. Biosynthesis of (−)-(1S,2R)-Allocoronamic Acyl Thioester by an FeII-Dependent Halogenase and a Cyclopropane-Forming Flavoprotein. J. Am. Chem. Soc. 2008;130(43):14022–14023. doi: 10.1021/ja8064667. PubMed DOI PMC
Shiraki T., Morikawa M., Kimizuka N.. Amplification of Molecular Information through Self-Assembly: Nanofibers Formed from Amino Acids and Cyanine Dyes by Extended Molecular Pairing. Angew. Chem., Int. Ed. 2008;47(1):106–108. doi: 10.1002/anie.200702793. PubMed DOI
Surya Prakash Rao H., Prabhakaran J.. Palladium-Catalyzed Intramolecular C–N Coupling: Facile Synthesis of Tetracyclic C(3)-Aminoisoindolinones. Synth. Commun. 2022;52(11–12):1448–1456. doi: 10.1080/00397911.2022.2095647. DOI
Müller E., Zountsas G.. Diin-Reaktion, XV. 11H-Isoindolo[2.1-α]benzimidazole, 10H-Furo-, 10H-Thieno- und 10H-Selenopheno[3′.4′: 3.4]pyrrolo[1.2-α]benzimidazole sowie ein 2-Oxo-10H-cyclopenta[3.4]pyrrolo[1.2-α]benzimidazol. Chem. Ber. 1972;105(8):2529–2533. doi: 10.1002/cber.19721050813. DOI
Toy, P. H. ; Lam, Y. . Solid-Phase Organic Synthesis: Concepts, Strategies, and Applications John Wiley & Sons, 2012. Wiley.com. https://www.wiley.com/en-us/Solid-Phase+Organic+Synthesis%3A+Concepts%2C+Strategies%2C+and+Applications-p-9781118141649 (accessed 2024–06–28).
Crich D., Sharma I.. Triblock Peptide and Peptide Thioester Synthesis With Reactivity-Differentiated Sulfonamides and Peptidyl Thioacids. Angew. Chem., Int. Ed. 2009;48(41):7591–7594. doi: 10.1002/anie.200903050. PubMed DOI PMC
Shibata A., Uzawa T., Nakashima Y., Ito M., Nakano Y., Shuto S., Ito Y., Abe H.. Very Rapid DNA-Templated Reaction for Efficient Signal Amplification and Its Steady-State Kinetic Analysis of the Turnover Cycle. J. Am. Chem. Soc. 2013;135(38):14172–14178. doi: 10.1021/ja404743m. PubMed DOI
Abe, H. ; Shibata, A. ; Ito, Y. ; Ito, M. . Deprotection Method Using Glutathione-S-Transferase and Use Thereof, March 29, 2012. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012039499 (accessed 2024–06–27).
Cankařová N., Schütznerová E., Krchňák V.. Traceless Solid-Phase Organic Synthesis. Chem. Rev. 2019;119(24):12089–12207. doi: 10.1021/acs.chemrev.9b00465. PubMed DOI
McMaster C., Fülöpová V., Popa I., Grepl M., Soural M.. Solid-Phase Synthesis of Anagrelide Sulfonyl Analogues. ACS Comb. Sci. 2014;16(5):221–224. doi: 10.1021/co400119c. PubMed DOI