Seed Morphometry Reveals Two Major Groups in Spanish Grapevine Cultivars
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40431087
PubMed Central
PMC12115216
DOI
10.3390/plants14101522
PII: plants14101522
Knihovny.cz E-zdroje
- Klíčová slova
- Vitis cultivars, grape diversity, morphometric geometry, shape analysis, solidity,
- Publikační typ
- časopisecké články MeSH
Seed morphological description requires quantitative methods for further comparison. Here, traditional measurements, curvature analysis, and the J-index (percentage of similarity to a geometric model) were applied to the average contours (Acs) of 271 Vitis cultivars from the Spanish collection at IMIDRA (Madrid, Spain), including 9 different Vitis species and several sylvestris seeds (i.e., those derived from plants that once grew in the wild). Acs are graphical representations of the shape in seed populations, which can be obtained either from image analysis programs or computationally opening the way to quantitative analysis. A geometric model is a geometrically defined, closed curve, used as a reference for shape quantification. Based on existing differences between the Hebén cultivar (collected in 2020 and 2024; Hebén model, for morphotype 1) and the European varieties Chenin and Gewurztraminer (Chenin model, for morphotype 2), we created two models. The comparisons were based on a J-index, resulting in four groups: Group 1 contained all seeds with values lower than 90 for both models and included all Vitis species other than V. vinifera and most sylvestris seeds; Groups 2 and 3 contained seeds with J-index values higher than 94 for the Hebén and Chenin models, respectively. Group 4 consisted of seeds not included in the other groups. Based on J-index values, differences in curvature and solidity, and PCA analysis with Fourier coefficients, this work defines two new morphotypes associated with the Hebén (Group 2) and Chenin (Group 3) models, related to Iberian and Western European varieties, respectively.
Zobrazit více v PubMed
Jacquat C.H., Martinoli D. Vitis vinifera L.: Wild or cultivated? Study of the grape pips found at Petra, Jordan; 150 B.C.-A.D. 40. Veget. Hist. Archaeobot. 1999;8:25–30. doi: 10.1007/BF02042839. DOI
Zohary D. The domestication of the grapevine Vitis vinifera L. in the Near East. In: McGovern P.E., Fleming S.J., Katz S.H., editors. The Origins and Ancient History of Wine. Gordon and Breach; Amsterdam, The Netherlands: 1995. pp. 23–30.
This P., Lacombe T., Thomas M.R. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006;22:511–519. doi: 10.1016/j.tig.2006.07.008. PubMed DOI
Galet P. Dictionnaire Encyclopédique des Cépages. Hachette; Paris, France: 2000.
Lacombe T., Audeguin L., Boselli M., Bucchetti B., Cabello F., Chatelet P., Crespan M., D'Onofrio C., Eiras Dias J., Ercisli S., et al. Grapevine European Catalogue: Towards a comprehensive list. Vitis. 2011;50:65–68.
Lexicon: The Largest Wine Encyclopedia in the World with 26,513 Terms. [(accessed on 1 January 2025)]. Available online: https://www.vivc.de/
Chitwood D.H. The shapes of wine and table grape leaves: An ampelometric study inspired by the methods of Pierre Galet. Plants People Planet. 2021;3:155–170. doi: 10.1002/ppp3.10157. DOI
Somogyi E., Lázár J., Baranyai L., Bodor-Pesti P., Nyitrainé Sárdy D.A. Outline analysis of the grapevine (Vitis vinifera L.) berry shape by elliptic Fourier descriptors. Vitis. 2022;61:63–70. doi: 10.5073/vitis.2022.61.63-70. DOI
Emanuelli F., Lorenzi S., Grzeskowiak L., Catalano V., Stefanini M., Troggio M., Myles S., Martinez-Zapater J.M., Zyprian E., Moreira F.M., et al. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol. 2013;13:39. doi: 10.1186/1471-2229-13-39. PubMed DOI PMC
Cervera M.T., Cabezas J.A., Sancha J.C., de Martínez T.F., Martínez-Zapater J.M. Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain) Theor. Appl. Genet. 1998;97:51–59. doi: 10.1007/s001220050866. DOI
Sefc K.M., Lopes M.S., Lefort F., Botta R., Roubelakis-Angelakis K.A., Ibáñez J., Pejić I., Wagner H.W., Glössl J., Steinkellner H. Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 2000;100:498–505. doi: 10.1007/s001220050065. DOI
Arroyo-García R., Ruiz-Garcia L., Bolling L., Ocete R., Lopez M.A., Arnold C., Ergul A., Söylemezoğlu G., Uzun H.I., Cabello F., et al. Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphisms. Mol. Ecol. 2006;15:3707–3714. doi: 10.1111/j.1365-294X.2006.03049.x. PubMed DOI
This P., Jung A., Boccacci P., Borrego J., Botta R., Costantini L., Crespan M., Dangl G.S., Eisenheld C., Ferreira-Monteiro F., et al. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 2004;109:1448–1458. doi: 10.1007/s00122-004-1760-3. PubMed DOI
Ibañez J., Velez M.D., de Andrés M.T., Borrego J. Molecular markers for establishing distinctness in vegetatively propagated crops: A case study in grapevine. Theor. Appl. Genet. 2009;119:1213–1222. doi: 10.1007/s00122-009-1122-2. PubMed DOI
Santana J.C., Heuertz M., Arranz C., Rubio J.A., Martínez-Zapater J.M., Hidalgo E. Genetic structure, srigins, and relationships of grapevine cultivars from the Castilian Plateau of Spain. Am. J. Enol. Vitic. 2010;61:214–224. doi: 10.5344/ajev.2010.61.2.214. DOI
Jiménez-Cantizano A., Puig-Pujol A., Arroyo-García R. Identification of Vitis vinifera L. local cultivars recovered in Andalusia (Spain) by using microsatellite markers. Horticulturae. 2023;9:316. doi: 10.3390/horticulturae9030316. DOI
Santiago J.L., Boso S., Martín J.P., Ortiz J.M., Martínez M.C. Characterisation and identification of grapevine cultivars (Vitis vinifera L.) from Northwestern Spain using microsatellite markers and ampelometric methods. Vitis. 2015;44:67. doi: 10.5073/vitis.2005.44.67-72. DOI
Röckel E., Töpfer R., Röckel F., Brühl U., Hundemer M., Mahler-Ries A. Vitis International Variety Catalogue—Www.vivc.de—2024. [(accessed on 4 October 2024)]. Available online: https://www.vivc.de/index.php?r=aboutvivc%2Fdescriptors.
Lacombe T., Boursiquot J.M., Laucou V., Di Vecchi-Staraz M., Péros J.-P., This P. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.) Theor. Appl. Genet. 2013;126:401–414. doi: 10.1007/s00122-012-1988-2. PubMed DOI
Ghaffari S., Hasnaoui N., Zinelabidine L.H., Ferchichi A., Martínez-Zapater J.M., Ibáñez J. Genetic diversity and parentage of Tunisian wild and cultivated grapevines (Vitis vinifera L.) as revealed by single nucleotide polymorphism (SNP) markers. Tree Genet. Genomes. 2014;10:1103–1112. doi: 10.1007/s11295-014-0746-9. DOI
Zinelabidine L.H., Cunha J., Eiras-Dias J.E., Cabello F., Martínez-Zapater J.M., Ibáñez J. Pedigree analysis of the Spanish grapevine cultivar ‘Hebén’. Vitis. 2015;54:81–86.
Zinelabidine L.H., Haddioui A., Rodríguez V., Cabello F., Eiras-Dias J.E., Martínez-Zapater J.M., Ibáñez J. Identification by SNP analysis of a major role for Cayetana Blanca in the genetic network of Iberian Peninsula grapevine cultivars. Am. J. Enol. Vitic. 2012;63:121–126. doi: 10.5344/ajev.2011.11052. DOI
Milla Tapia A., Cabezas J.A., Cabello F., Lacombe T., Martínez-Zapater J.M., Hinrichsen P., Cervera M.T. Determining the Spain Origin of Representative Ancient American Grapevine Cultivars. Am. J. Enol. Vitic. 2007;58:242–251. doi: 10.5344/ajev.2007.58.2.242. DOI
Stummer A. Zur urgeschichte der rebe und des weinbaues. Mitteilungen Anthropol. Ges. Wien. 1911;61:283–296.
Mangafa M., Kotsakis K. A New Method for the identification of wild and cultivated charred grape seeds. J. Archaeol. Sci. 1996;23:409–418. doi: 10.1006/jasc.1996.0036. DOI
Obón C., Rivera-Obón D.J., Valera J., Matilla G., Alcaraz F., Maghradze D., Kikvadze M., Ocete C.-A., Ocete R., Nebish A., et al. Is there a domestication syndrome in Vitis (Vitaceae) seed morphology? Genet. Resour. Crop Evol. 2024;72:1541–1565. doi: 10.1007/s10722-024-02023-1. DOI
Hajnalová M., Látková M., Kajanová M., Eliáš P., Ďurišová Ľ. Wild or cultivated? a study of Vitis sylvestris in natura in Slovakia and implications for archaeology and archaeobotany (morphometric approach) Veget. Hist. Archaeobot. 2023;32:321–337. doi: 10.1007/s00334-023-00909-1. DOI
Martín-Gómez J.J., Rodríguez-Lorenzo J.L., Gutiérrez del Pozo D., Cabello Sáez de Santamaría F., Muñoz-Organero G., Tocino Á., Cervantes E. Seed morphological analysis in species of Vitis and Relatives. Horticulturae. 2024;10:285. doi: 10.3390/horticulturae10030285. DOI
Martín-Gómez J.J., Rodríguez-Lorenzo J.L., Tocino Á., Janoušek B., Juan A., Cervantes E. The Outline of Seed Silhouettes: A morphological approach to Silene (Caryophyllaceae) Plants. 2022;11:3383. doi: 10.3390/plants11233383. PubMed DOI PMC
Cervantes E., Martín-Gómez J.J., Espinosa-Roldán F.E., Muñoz-Organero G., Tocino Á., Cabello-Sáenz de Santamaría F. Seed morphology in Key Spanish grapevine cultivars. Agronomy. 2021;11:734. doi: 10.3390/agronomy11040734. DOI
McLellan T., Endler J.A. The relative success of some methods for measuring and describing the shape of complex objects. Syst. Biol. 1998;47:264–281. doi: 10.1080/106351598260914. DOI
Kuhl F.P., Giardina C.R. Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 1982;18:236–258. doi: 10.1016/0146-664X(82)90034-X. DOI
Terral J.F., Tabard E., Bouby L., Ivorra S., Pastor T., Figueiral I., Picq S., Chevance J.-B., Jung C., Fabre L., et al. Evolution and history of grapevine (Vitis vinifera) under domestication: New morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 2010;105:443–455. doi: 10.1093/aob/mcp298. PubMed DOI PMC
Ucchesu M., Martinetto E., Sarigu M., Orrù M., Bornancin M., Bacchetta G. Morphological characterization of fossil Vitis L. Seeds from the Gelasian of Italy by seed image analysis. Plants. 2024;13:1417. doi: 10.3390/plants13101417. PubMed DOI PMC
Bonhomme V., Picq S., Gaucherel C., Claude J. Momocs: Outline Analysis Using R. J. Stat. Softw. 2014;56:1–24. doi: 10.18637/jss.v056.i13. DOI
R Core Team . R: A Language and Environment for Statistical Computing, Version 4.1.2. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 20 November 2024)]. Available online: https://www.R-project.org.
Muñoz-Organero G., Espinosa F.E., Cabello F., Zamorano J.P., Urbanos M.A., Puertas B., Lara M., Domingo C., Puig-Pujol A., Valdés M.E., et al. Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae. 2022;8:984. doi: 10.3390/horticulturae8110984. DOI
Badouin H., Velt A., Gindraud F., Flutre T., Dumas V., Vautrin S., Marande W., Corbi J., Sallet E., Ganofsky J., et al. The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome. Biol. 2020;21:223. doi: 10.1186/s13059-020-02131-y. PubMed DOI PMC
Xiao H., Wang Y., Liu W., Shi X., Huang S., Cao S., Long Q., Wang X., Liu Z., Xu X., et al. Impacts of reproductive systems on grapevine genome and breeding. Nat. Commun. 2025;16:2031. doi: 10.1038/s41467-025-56817-7. PubMed DOI PMC
Cervantes E., Martín-Gómez J.J., Rodríguez-Lorenzo J.L., del Pozo D.G., Cabello Sáenz de Santamaría F., Muñoz-Organero G., Tocino Á. Seed morphology in Vitis cultivars related to Hebén. Agriengineering. 2025;7:62. doi: 10.3390/agriengineering7030062. DOI
Espinosa-Roldán F.E., Rodríguez-Lorenzo J.L., Martín-Gómez J.J., Tocino Á., Ruiz Martínez V., Remón Elola A., Cabello Sáenz de Santamaría F., Martínez de Toda F., Cervantes E., Muñoz-Organero G. Morphometric Analysis of Grape Seeds: Looking for the Origin of Spanish Cultivars. Seeds. 2024;3:286–310. doi: 10.3390/seeds3030022. DOI
Apomixis Database. Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium). University of Goettingen. [(accessed on 1 January 2020)]. Available online: https://uni-goettingen.de/en/433689.html.
Laucou V., Launay A., Bacilieri R., Lacombe T., Adam-Blondon A.F., Berard A., Chauveau A., de Andrés M.T., Hausmann L., Ibáñez J., et al. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE. 2018;13:e0192540. doi: 10.1371/journal.pone.0192540. PubMed DOI PMC
Cunha J., Zinelabidine L.H., Teixeira-Santos M., Brazão J., Fevereiro P., Martínez-Zapater J.M., Ibáñez J., Eiras-Dias J.E. Grapevine Cultivar ’Alfrocheiro’ or ’Bruñal’ Plays a Primary Role in the Relationship Among Iberian Grapevines. Vitis. 2015;54:59–65. doi: 10.5073/vitis.2015.54.special-issue.59-65. DOI
Dong Y., Duan S., Xia Q., Liang Z., Dong X., Margaryan K., Musayev M., Goryslavets S., Zdunić G., Bert P.-F., et al. Dual domestications and origin of traits in grapevine evolution. Science. 2023;379:892–901. doi: 10.1126/science.add8655. PubMed DOI
Tello J., Ibáñez J. Review: Status and prospects of association mapping in grapevine. Plant Sci. 2023;327:111539. doi: 10.1016/j.plantsci.2022.111539. PubMed DOI
Ferreira T., Rasband W. ImageJ User Guide-Ij1.46r. 2012. 186p. [(accessed on 12 June 2024)]. Available online: https://imagej.net/
Cox E.P. A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol. 1927;1:179–183.
Riley N.A. Projection sphericity. J. Sediment. Res. 1941;11:94–97.
Schwartz H. Two-dimensional feature-shape indexes. Mikroskopie. 1980;37:64–67.
Cervantes E., Tocino A. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development. J. Plant Physiol. 2005;162:1038–1045. doi: 10.1016/j.jplph.2004.10.013. PubMed DOI