Morphometric Analysis Reveals New Data in the History of Vitis Cultivars
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40872104
PubMed Central
PMC12389402
DOI
10.3390/plants14162481
PII: plants14162481
Knihovny.cz E-zdroje
- Klíčová slova
- Vitis cultivars, curvature, grape diversity, morphometric geometry, shape analysis, solidity,
- Publikační typ
- časopisecké články MeSH
Seeds of different Vitis cultivars (V. vinifera subsp. vinifera) have an interesting diversity of shapes, ranging from the small seeds of high solidity and low aspect ratio in some species of Vitis and V. vinifera subsp. Sylvestris to other morphological types with elongated stalks, characteristic of the more recent cultivars, suggesting a transition with alterations in seed shape associated with groups of cultivars. J-index analysis is a morphometrical technique that measures the percentage similarity of seed images with geometric models. Three models based on the outlines of reference cultivars (a model based on the Spanish female cultivar Hebén; and mixed models for French and German Chenin and Gewürtztraminer, both related to Savagnin Blanc; and Regina dei Vigneti and Muscat Hamburg, related with the Muscat group) have been applied to select the average outlines (Aos) resembling these models from a collection of cultivars maintained at IMIDRA. Three groups resulted, called Hebén, Chenin, and Regina, with 15, 25, and 18 cultivars, respectively. Principal component analysis (PCA) with the Fourier coefficients of the Aos for these cultivars and seeds of other species of Vitis and V. vinifera subsp. sylvestris showed differences between groups. Specific Fourier coefficients were related with geometric properties of the seeds, circularity, roundness, aspect ratio, and solidity as well as with diverse measurements of curvature allowing to establish hypothesis about the change in geometric properties along the evolution of cultivars.
Zobrazit více v PubMed
McGovern P., Jalabadze M., Batiuk S., Callahan M.P., Smith K.E., Hall G.R., Kvavadze E., Maghradze D., Rusishvili N., Bouby L., et al. Early Neolithic wine of Georgia in the South Caucasus. Proc. Natl. Acad. Sci. USA. 2017;114:E10309–E10318. doi: 10.1073/pnas.1714728114. PubMed DOI PMC
Rivera D., Walker M.J. A review of paleobotanical findings of early Vitis in the Mediterranean and on the origin of cultivated grape-vines, with special reference to new pointers to prehistoric explotation in the Western Mediterranean. Rev. Palaeobot. Palynol. 1989;61:205–237.
Ucchesu M., Depalmas A., Sarigu M., Gardiman M., Lallai A., Meggio F., Usai A., Bacchetta G. Unearthing grape heritage: Morphological relationships between late bronze–iron age grape pips and modern cultivars. Plants. 2024;13:1836. doi: 10.3390/plants13131836. PubMed DOI PMC
Buxó R. The agricultural consequences of colonial contacts on the Iberian Peninsula in the first millennium B.C. Veg. Hist. Archaeobot. 2008;17:145–154. doi: 10.1007/s00334-007-0133-7. DOI
Zohary D., Hopf M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley. 3rd ed. Oxford University Press; Oxford, UK: 2000.
McGovern P.E. Ancient Wine: The Search for the Origins of Viniculture. Princeton University Press; Princeton, NJ, USA: 2003.
Myles S., Boyko A.R., Owens C.L., Brown P.J., Grassi F., Aradhya M.K., Prins B., Reynolds A., Chia J.M., Ware D., et al. Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. USA. 2011;108:3530–3535. doi: 10.1073/pnas.1009363108. PubMed DOI PMC
Mullins M.G., Bouquet A., Williams L.E. Biology of the Grapevine. Cambridge University Press; Cambridge, UK: 1992.
Lacombe T., Boursiquot J.M., Laucou V., Di Vecchi-Staraz M., Péros J.-P., This P. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.) Theor. Appl. Genet. 2013;126:401–414. doi: 10.1007/s00122-012-1988-2. PubMed DOI
Cervantes E., Martín-Gómez J.J., Rodríguez-Lorenzo J.L., del Pozo D.G., Cabello Sáenz de Santamaría F., Muñoz-Organero G., Tocino Á. Seed Morphology in Vitis Cultivars Related to Hebén. AgriEngineering. 2025;7:62. doi: 10.3390/agriengineering7030062. DOI
Galet P. Dictionnaire Encyclopédique des Cépages. Hachette; Paris, France: 2000.
Lacombe T., Audeguin L., Boselli M., Bucchetti B., Cabello F., Chatelet P., This P. Grapevine European Catalogue: Towards a Comprehensive List. Vitis. 2011;50:65–68.
Negrul A.M. Origin and classification of cultivated grape. In: Baranov A.K.Y., Lazarevski M.A., Palibin T.V., Prosmoserdov N., editors. The Ampelography of the USSR. Volume 1. Pischepromizdat; Moscow, Russia: 1946. pp. 159–216.
Sturtevant A.H. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 1913;14:43–59. doi: 10.1002/jez.1400140104. DOI
Koornneef M., van Eden J., Hanhart C.J., Stam P., Braaksma F.J., Feenstra W.J. Linkage map of Arabidopsis thaliana. J. Hered. 1983;74:265–272. doi: 10.1093/oxfordjournals.jhered.a109781. DOI
Thomas M.R., Scott N.S. Microsatellite repeats in grapevine reveal DNA polymorphisms when analyzed as sequence-tagged sites (STSs) Theor. Appl. Genet. 1993;86:985–990. doi: 10.1007/BF00211051. PubMed DOI
Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M., et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–4414. doi: 10.1093/nar/23.21.4407. PubMed DOI PMC
Vezzulli S., Dolligez A., Bellin D. Chapter 7 Molecular mapping of grapevine genes. In: Cantú D., Walker M.A., editors. The Grape Genome. Springer; Cham, Switzerland: 2019.
Tympakianakis S., Trantas E., Avramidou E.V., Ververidis F. Vitis vinifera genotyping toolbox to highlight diversity and germplasm identification. Front. Plant Sci. 2023;14:1139647. doi: 10.3389/fpls.2023.1139647. PubMed DOI PMC
Lodhi M.A., Ye G.-N., Weeden N.F., Reisch B.I., Daly M.J. A molecular marker-based linkage map of Vitis. Genome. 1995;38:786–794. doi: 10.1139/g95-100. PubMed DOI
Doligez A., Bouquet A., Danglot Y., Lahogue F., Riaz S., Meredith C.P., Edwards K.J., This P. Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor. Appl. Genet. 2002;105:780–795. doi: 10.1007/s00122-002-0951-z. PubMed DOI
Grando M.S., Bellin D., Edwards K.J., Pozzi C., Stefanini M., Velasco R. Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor. Appl. Genet. 2003;106:1213–1224. doi: 10.1007/s00122-002-1170-3. PubMed DOI
Doligez A., Adam-Blondon A.F., Cipriani G., Laucou V., Merdinoglu D., Meredith C.P., Riaz S., Roux C., This P. An integrated SSR map of grapevine based on five mapping populations. Theor. Appl. Genet. 2006;113:369–382. doi: 10.1007/s00122-006-0295-1. PubMed DOI
Riaz S., Dangl G.S., Edwards K.J., Meredith C.P. A microsatellite-based framework linkage map of Vitis vinifera L. Theor. Appl. Genet. 2004;108:864–872. doi: 10.1007/s00122-003-1488-5. PubMed DOI
Dong Y., Duan S., Xia Q., Liang Z., Dong X., Margaryan K., Musayev M., Goryslavets S., Zdunić G., Bert P.-F., et al. Dual domestications and origin of traits in grapevine evolution. Science. 2021;373:1085–1092. doi: 10.1126/science.add8655. PubMed DOI
Barthlott W. Epidermal and seed surface characters of plants: Systematic applicability and some evolutionary aspects. Nord. J. Bot. 1981;1:345–355. doi: 10.1111/j.1756-1051.1981.tb00704.x. DOI
Cervantes E., Martín-Gómez J.J., Gutiérrez del Pozo D., Tocino Á. Seed Geometry in the Vitaceae. Plants. 2021;10:1695. doi: 10.3390/plants10081695. PubMed DOI PMC
Martín-Gómez J.J., Gutiérrez del Pozo D., Ucchesu M., Bacchetta G., Cabello Sáenz de Santamaría F., Tocino Á., Cervantes E. Seed morphology in the Vitaceae based on geometric models. Agronomy. 2020;10:739. doi: 10.3390/agronomy10050739. DOI
Martín-Gómez J.J., Rodríguez-Lorenzo J.L., Gutiérrez del Pozo D., Cabello Sáez de Santamaría F., Muñoz-Organero G., Tocino Á., Cervantes E. Seed morphological analysis in species of Vitis and relatives. Horticulturae. 2024;10:285. doi: 10.3390/horticulturae10030285. DOI
Terral J.F., Tabard E., Bouby L., Ivorra S., Pastor T., Figueiral I., Picq S., Chevance J.-B., Jung C., Fabre L., et al. Evolution and history of grapevine (Vitis vinifera) under domestication: New morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 2010;105:443–455. doi: 10.1093/aob/mcp298. PubMed DOI PMC
Rivera D., Miralles B., Obón C., Carreño E., Palazón J.A. Multivariate analysis of Vitis subgenus Vitis seed morphology. Vitis. 2007;46:158–167.
McLellan T., Endler J.A. The relative success of some methods for measuring and describing the shape of complex objects. Syst. Biol. 1998;47:264–281. doi: 10.1080/106351598260914. DOI
Kuhl F.P., Giardina C.R. Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 1982;18:236–258. doi: 10.1016/0146-664X(82)90034-X. DOI
Ucchesu M., Ivorra S., Pastor T., Bouby L. Comparison of image acquisition techniques and morphometric methods to distinguish between Vitis vinifera subspecies and cultivars. Veg. Hist. Archaeobot. 2024;33:695–704. doi: 10.1007/s00334-024-00992-y. DOI
Bouby L., Bonhomme V., Bacilieri R., Ben Makhad S., Bonnaire E., Cabanis M., Derreumaux M., Dietsch-Sellami M.F., Durand F., Evin A., et al. Seed morphometrics unravels the evolutionary history of grapevine in France. Sci. Rep. 2024;14:22207. doi: 10.1038/s41598-024-72692-6. PubMed DOI PMC
Espinosa-Roldán F.E., Rodríguez-Lorenzo J.L., Martín-Gómez J.J., Tocino Á., Ruiz Martínez V., Remón Elola A., Cabello Sáenz de Santamaría F., Martínez de Toda F., Cervantes E., Muñoz-Organero G. Morphometric Analysis of Grape Seeds: Looking for the Origin of Spanish Cultivars. Seeds. 2024;3:286–310. doi: 10.3390/seeds3030022. DOI
Bonhomme V., Terral J.F., Zech-Matterne V., Ivorra S., Lacombe T., Deborde G., Kuchler P., Limier B., Pastor T., Rollet P., et al. Seed morphology uncovers 1500 years of vine agrobiodiversity before the advent of the Champagne wine. Sci. Rep. 2021;11:2305. doi: 10.1038/s41598-021-81787-3. PubMed DOI PMC
Pagnoux C., Bouby L., Ivorra S., Petit C., Valamoti S.M., Pastor T., Picq S., Terral J.F. Inferring the Agrobiodiversity of Vitis vinifera L. (Grapevine) in Ancient Greece by Comparative Shape Analysis of Archaeological and Modern Seeds. Veg. Hist. Archaeobot. 2015;24:75–84. doi: 10.1007/s00334-014-0482-y. DOI
Pagnoux C., Bouby L., Valamoti S.M., Bonhomme V., Ivorra S., Gkatzogia E., Karathanou A., Kotsachristou D., Kroll H., Terral J.F. Local Domestication or Diffusion? Insights into Viticulture in Greece from Neolithic to Archaic Times, using Geometric Morphometric Analyses of Archaeological Grape Seeds. J. Archaeol. Sci. 2021;125:105263. doi: 10.1016/j.jas.2020.105263. DOI
Bouby L., Figueiral I., Bouchette A., Rovira N., Ivorra S., Lacombe T., Pastor T., Picq S., Marinval P., Terral J.F. Bioarchaeological Insights into the Process of Domestication of Grapevine (Vitis vinifera L.) during Roman Times in Southern France. PLoS ONE. 2013;8:e6319. doi: 10.1371/journal.pone.0063195. PubMed DOI PMC
Bouby L., Wales N., Jalabadze M., Rusishvili N., Bonhomme V., Ramos-Madrigal J., Evin A., Ivorra S., Lacombe T., Pagnoux C., et al. Tracking the history of grapevine cultivation in Georgia by combining geometric morphometrics and ancient DNA. Veget. Hist. Archaeobot. 2021;30:63–76. doi: 10.1007/s00334-020-00803-0. DOI
Bonhomme V., Allen S.E., Pagnoux C., Valamoti S.M., Ivorra S., Bouby L. Cooking with Plants in Prehistoric Europe and Beyond. Sidestone Press; Leiden, The Netherlands: 2022. Early viticulture in Neolithic and Bronze Age Greece: Looking for the best traditional morphometric method to distinguish wild and domestic grape pips.
Orrù M., Grillo O., Venora G., Bacchetta G. Computer vision as a method complementary to molecular analysis: Grapevine cultivar seeds case study. Comptes Rendus Biol. 2012;335:602–615. doi: 10.1016/j.crvi.2012.08.002. PubMed DOI
Bonhomme V., Picq S., Gaucherel C., Claude J. Momocs: Contour analysis using R. J. Stat. Softw. 2014;56:24. doi: 10.18637/jss.v056.i13. DOI
Martín-Gómez J.J., Rodríguez-Lorenzo J.L., Espinosa-Roldán F.E., de Santamaría F.C.S., Muñoz-Organero G., Tocino Á., Cervantes E. Seed Morphometry Reveals Two Major Groups in Spanish Grapevine Cultivars. Plants. 2025;14:1522. doi: 10.3390/plants14101522. PubMed DOI PMC
Gyulai G., Rovner I., Vinogradov S., Kerti B., Emödi A., Csákvári E., Kerekes A., Mravcsik Z., Gyulai F. Digital seed morphometry of dioecious wild and crop plants—Development and usefulness of the seed diversity index. Seed Sci. Technol. 2015;43:492–506. doi: 10.15258/sst.2015.43.3.15. DOI
Jannah R.M., Ratnawati S., Suwarno W.B., Ardie S.W. Digital phenotyping for robust seeds variability assessment in Setaria italica (L.) P. Beauv. J. Seed Sci. 2024;46:e202446012. doi: 10.1590/2317-1545v46281586. DOI
Martín-Gómez J.J., Gutiérrez del Pozo D., Rodríguez-Lorenzo J.L., Tocino Á., Cervantes E. Geometric Analysis of Seed Shape Diversity in the Cucurbitaceae. Seeds. 2024;3:40–55. doi: 10.3390/seeds3010004. DOI
Gutiérrez del Pozo D., Martín-Gómez J.J., Reyes Tomala N.I., Tocino Á., Cervantes E. Seed Geometry in Species of the Nepetoideae (Lamiaceae) Horticulturae. 2025;11:315. doi: 10.3390/horticulturae11030315. DOI
Cervantes E., Martín-Gómez J.J., del Pozo D.G., Tocino Á. Curvature Analysis of Seed Silhouettes in the Euphorbiaceae. Seeds. 2024;3:608–638. doi: 10.3390/seeds3040041. DOI
Boissier E. In: Flora Orientalis. Georg H., editor. Volume 1. Bibliopolam; Basel, Switzerland: 1867. pp. 567–656.
Jafari F., Zarre S., Gholipour A., Eggens F., Rabeler R.K., Oxelman B. A new taxonomic backbone for the infrageneric classification of the species-rich genus Silene (Caryophyllaceae) Taxon. 2020;69:337–368. doi: 10.1002/tax.12230. DOI
Grassi F., Labra M., Imazio S., Rubio R.O., Failla O., Scienza A., Sala F. Phylogeographical structure and conservation genetics of wild grapevine. Conserv. Genet. 2006;7:837–845. doi: 10.1007/s10592-006-9118-9. DOI
Regner F., Stadlhuber A., Eisenheld C., Kaserer H. Considerations about the evolution of grapevine and the role of Traminer. Acta Hortic. 2000;528:179–184. doi: 10.17660/ActaHortic.2000.528.22. DOI
Stummer A. Zur Urgeschichte der Rebe und desWeinbaumes. Mitt. Anthrop. Ges. Wien. 1911;41:283–296.
Ocete R., Arnold C., Failla O., Lovicu G., Biagini B., Imazio S., Lara M., Maghradze D., Lopez M.A. Considerations on the European wild grapevine (Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi) and Phylloxera infestation. Vitis. 2011;50:97–98.
Rivera D., Valera J., Maghradze D., Kikvadze M., Nebish A., Ocete R., Ocete C.Á., Arnold C., Laguna E., Alcaraz F., et al. Heterogeneity in Seed Samples from Vineyards and Natural Habitats Along the Eurasian Vitis vinifera Range: Implications for Domestication and Hybridization. Horticulturae. 2025;11:92. doi: 10.3390/horticulturae11010092. DOI
Di Cecco V., Manzi A., Zulli C., Di Musciano M., D’Archivio A.A., Di Santo M., Palmerini G., Di Martino L. Study of Grapevine (Vitis vinifera L.) Seed Morphometry and Comparison with Archaeological Remains in Central Apennines. Seeds. 2024;3:311–323. doi: 10.3390/seeds3030023. DOI
Cosmo I. Principali Vitigni da Vino Coltivati in Italia. Volume 1–5 Ministero dell’Agricoltura e Foreste; Roma, Italy: 1952–1966.
D’Onofrio C., Tumino G., Gardiman M., Crespan M., Bignami C., de Palma L., Barbagallo M.G., Muganu M., Morcia C., Novello V., et al. Parentage Atlas of Italian Grapevine Varieties as Inferred from SNP Genotyping. Front. Plant Sci. 2020;11:605934. doi: 10.3389/fpls.2020.605934. PubMed DOI PMC
Viala P., Vermorel V. Traité Général de Viticulture, Ampélographie. Volume 3. Masson et Compagnie; Paris, France: 1905–1910. p. 105.
Cho K.H., Bae K.M., Noh J.H., Shin I.S., Kim S.H., Kim J.H., Kim D.-Y., Hwang H.S. Genetic diversity and identification of Korean grapevine cultivars using SSR markers. Korean J. Breed. Sci. 2011;43:422–429.
Ferreira T., Rasband W. ImageJ User Guide-Ij1.46r, 186 p. 2012. [(accessed on 12 June 2024)]. Available online: https://imagej.net/
Cervantes E., Tocino A. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development. J. Plant Physiol. 2005;162:1038–1045. doi: 10.1016/j.jplph.2004.10.013. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2021. [(accessed on 20 November 2024)]. Version 4.1.2. Available online: https://www.R-project.org.