Serum Glutathione and Malondialdehyde Levels as Predictors of Early Neurological Deficits and Short-Term Outcomes in Acute Cerebral Infarction

. 2025 Apr 30 ; 74 (2) : 327-336.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40432446

This study investigates the association between serum glutathione (GSH) and malondialdehyde (MDA) levels and early neurological deficits and short-term outcomes in individuals with acute cerebral infarction (ACI). The study included 114 patients with ACI within 48 hours of symptom onset, between January and August 2023, alongside 96 healthy individuals as a control group. Neurological deficits were assessed using the National Institute of Health Stroke Scale (NIHSS), classifying deficits as mild (<5) or moderate to severe (>/=5). Associations between GSH and MDA levels with early neurological deficits were analyzed. Short-term prognosis, assessed three months post-discharge using the Modified Rankin Scale (mRS), was examined in relation to GSH and MDA levels in patients with ACI. Independent predictors of neurological deficits and short-term outcomes were identified through binary logistic regression analysis. Compared to the control group, patients with ACI had higher rates of hypertension, diabetes, smoking, and alcohol consumption. Additionally, elevated levels of MDA, glycated hemoglobin, triglycerides, C-reactive protein (CRP), and D-dimer levels were observed, whereas GSH and high-density lipoprotein (HDL) levels were lower. Among those with moderate to severe ACI, levels of CRP, MDA, triglycerides, low-density lipoprotein (LDL), uric acid, and D-dimer levels were higher compared to mild ACI, while HDL and GSH levels were significantly lower. Low serum GSH levels and elevated MDA levels are associated with early neurological deficits and short-term prognosis in ACI, serving as independent risk factors for adverse prognosis. The combined assessment of MDA, infarct volume, and LDL provides enhanced predictive value for adverse prognosis in patients with ACI. Keywords: Acute cerebral infarction, Malondialdehyde, Neurological deficits, Serum glutathione, Short-term prognosis.

Zobrazit více v PubMed

Han ZH, Li XG. Selection of Independent Risk Factors for Large Vessel Occlusion-Related Cerebral Infarction and Establishment of Nomogram Model. Chin J Geriatr Cardiol Cerebrovasc Dis. 2023;25(4):408–411.

Xu Y, Li K, Zhao Y, Zhou L, Liu Y, Zhao J. Role of Ferroptosis in Stroke. Cell Mol Neurobiol. 2023;43(1):205–222. doi: 10.1007/s10571-022-01196-6. PubMed DOI PMC

Alamri FF, Karamyan ST, Karamyan VT. A Low-Budget Photothrombotic Rodent Stroke Model. Methods Mol Biol. 2023;2616:21–28. doi: 10.1007/978-1-0716-2926-0_3. PubMed DOI

Zhu R, Zeng Q, Huang GZ. Ferroptosis and Cerebral Stroke. Organ Eng Res. 2021;25(23):3734–3739.

Kelly PJ, Morrow JD, Ning M, et al. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study. Stroke. 2008;39(1):100–104. doi: 10.1161/STROKEAHA.107.488189. PubMed DOI

Ivanov AV, Alexandrin VV, Paltsyn AA, et al. Metoprolol and Nebivolol Prevent the Decline of the Redox Status of Low-Molecular-Weight Aminothiols in Blood Plasma of Rats During Acute Cerebral Ischemia. J Cardiovasc Pharmacol. 2018;72(4):195–203. doi: 10.1097/FJC.0000000000000616. PubMed DOI

Zhong D, Zhang ST, Wu B. Interpretation of the “Chinese Guidelines for the Diagnosis and Treatment of Acute Ischemic Stroke 2018”. Chin J Mod Neurol Dis. 2019;19(11):897–901.

Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ. 2020;368:m441. doi: 10.1136/bmj.m441. PubMed DOI

Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke. Stroke. 2019;50(5):1263–1265. doi: 10.1161/STROKEAHA.118.024293. PubMed DOI

Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022;17(4):478. doi: 10.1177/17474930211065917. PubMed DOI

Wang P, Ren Q, Shi M, Liu Y, Bai H, Chang YZ. Overexpression of Mitochondrial Ferritin Enhances Blood-Brain Barrier Integrity Following Ischemic Stroke in Mice by Maintaining Iron Homeostasis in Endothelial Cells. Antioxidants (Basel) 2022;11(7):1257. doi: 10.3390/antiox11071257. PubMed DOI PMC

Alim I, Caulfield JT, Chen Y, et al. Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell. 2019;177(5):1262–1279.e25. doi: 10.1016/j.cell.2019.03.032. PubMed DOI

Ren JX, Sun X, Yan XL, Guo ZN, Yang Y. Ferroptosis in Neurological Diseases. Front Cell Neurosci. 2020;14:218. doi: 10.3389/fncel.2020.00218. PubMed DOI PMC

Yao MY, Liu T, Zhang L, Wang MJ, Yang Y, Gao J. Role of ferroptosis in neurological diseases. Neurosci Lett. 2021;747:135614. doi: 10.1016/j.neulet.2020.135614. PubMed DOI

Li Y, Wang T, Sun P, Zhu W, Chen Y, Chen M, Yang X, Du X, Zhao Y. Farrerol Alleviates Hypoxic-Ischemic Encephalopathy by Inhibiting Ferroptosis in Neonatal Rats via the Nrf2 Pathway. Physiol Res. 2023;72(4):511–520. doi: 10.33549/physiolres.935040. PubMed DOI PMC

Diao X, Zhou Z, Xiang W, et al. Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction. Brain Res. 2020;1727:146514. doi: 10.1016/j.brainres.2019.146514. PubMed DOI

Deng XQ, Wang ZY, Zhang YT, et al. Multi-Omics Joint Technology-Based Exploration of Ferroptosis Induced by Glutathione Metabolic Imbalance in Stroke. Chin J Tradit Med. 2021;36(4):2000–2005.

Tuo QZ, Lei P, Jackman KA, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 2017;22(11):1520–1530. doi: 10.1038/mp.2017.171. PubMed DOI

Valdés Hernández MDC, Case T, Chappell FM, et al. Association between Striatal Brain Iron Deposition, Microbleeds and Cognition 1 Year After a Minor Ischaemic Stroke. Int J Mol Sci. 2019;20(6):1293. doi: 10.3390/ijms20061293. PubMed DOI PMC

Bu BZQ, Yu HY, Wang J, et al. Emerging Role of Ferroptosis in the Pathogenesis of Ischemic Stroke: A New Therapeutic Target? ASN Neuro. 2021;13:17590914211037505. doi: 10.1177/17590914211037505. PubMed DOI PMC

Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;113(34):E4966–E4975. doi: 10.1073/pnas.1603244113. PubMed DOI PMC

Yuan Y, Zhai Y, Chen J, Xu X, Wang H. Kaempferol Ameliorates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by Activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules. 2021;11(7):923. doi: 10.3390/biom11070923. PubMed DOI PMC

Wang H, Du YS, Xu WS, et al. Exogenous glutathione exerts a therapeutic effect in ischemic stroke rats by interacting with intrastriatal dopamine. Acta Pharmacol Sin. 2022;43(3):541–551. doi: 10.1038/s41401-021-00650-3. PubMed DOI PMC

Song J, Kang SM, Lee WT, Park KA, Lee KM, Lee JE. Glutathione protects brain endothelial cells from hydrogen peroxide-induced oxidative stress by increasing nrf2 expression. Exp Neurobiol. 2014;23(1):93–103. doi: 10.5607/en.2014.23.1.93. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...