Wnt1's Differential Effects on Craniofacial Bone and Tooth Development
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40454459
PubMed Central
PMC12508500
DOI
10.1177/00220345251336191
Knihovny.cz E-zdroje
- Klíčová slova
- Wnt1 activation, enamel, osteoanabolic, osteoclastogenesis, osteopetrosis-like pathology, transgenic mouse model,
- MeSH
- buněčná diferenciace MeSH
- crista neuralis MeSH
- kolagen typu I, řetězec alfa 1 MeSH
- lebka * MeSH
- myši transgenní MeSH
- myši MeSH
- obličejové kosti * embryologie růst a vývoj MeSH
- odontoblasty MeSH
- odontogeneze * genetika fyziologie MeSH
- osteogeneze MeSH
- protein Wnt1 * fyziologie genetika metabolismus MeSH
- rentgenová mikrotomografie MeSH
- signální dráha Wnt MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kolagen typu I, řetězec alfa 1 MeSH
- protein Wnt1 * MeSH
- Wnt1 protein, mouse MeSH Prohlížeč
The development of craniofacial bones and teeth relies heavily on the Wnt signaling pathway, yet the specific mechanisms and Wnt variants involved remain under continual investigation. Using publicly available single-cell sequencing data from the mouse incisor, we reveal Wnt1 expression across dental structures and investigate its role using a Col1a1-dependent Wnt1 transgenic mouse model. Inducing Wnt1 early on affects craniofacial bone without disturbing tooth development, but prolonged embryonic induction leads to postnatal mortality with osteopetrosis-like bone overgrowth and malformed teeth. While tooth formation was initially unaffected by postnatal Wnt1 induction, prolonged activation impaired tooth root formation and odontoblast differentiation, resulting in shortened roots and thinner dentin. Three-dimensional micro-computed tomography quantification reveal that both embryonic and postnatal activation of Wnt1 significantly increase neural crest-derived craniofacial bone volume, whereas mesenchymal-derived craniofacial bones are unaffected. Importantly, osteoclastogenesis is suppressed by Wnt1 in a dose-dependent manner, revealed through bulk RNA sequencing and in vitro experiments. These findings emphasize the differential effects of Wnt1 on bone development based on origin and highlight its role in modulating osteoclast activity, indicating broader implications for craniofacial development and potential therapeutic avenues.
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Orthodontics University of Leipzig Medical Center Leipzig Germany
Department of Osteology and Biomechanics University Medical Center Hamburg Hamburg Germany
Zobrazit více v PubMed
Achilleos A, Trainor PA. 2015. Mouse models of rare craniofacial disorders. Curr Top Dev Biol. 115:413–458. PubMed PMC
Adaimy L, Chouery E, Mégarbané H, Mroueh S, Delague V, Nicolas E, Belguith H, De Mazancourt P, Mégarbané A. 2007. Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia. Am J Human Genet. 81(4):821–828. PubMed PMC
Banerjee S, Gordon L, Donn TM, Berti C, Moens CB, Burden SJ, Granato M. 2011. A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration. Development. 138(15):3287–3296. PubMed PMC
Berger H, Wodarz A, Borchers A. 2017. PTK7 faces the Wnt in development and disease. Front Cell Dev Biol. 5:31. doi: 10.3389/fcell.2017.00031 PubMed DOI PMC
Bohring A, Stamm T, Spaich C, Haase C, Spree K, Hehr U, Hoffmann M, Ledig S, Sel S, Wieacker P, et al. 2009. Wnt10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. Am J Human Genet. 85(1):97–105. PubMed PMC
Buechling T, Boutros M. 2011. Wnt signaling: signaling at and above the receptor level. Curr Top Dev Biol. 97:21–53. PubMed
Chen J, Lan Y, Baek JA, Gao Y, Jiang R. 2009. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Dev Biol. 334(1):174–185. PubMed PMC
Doumpas N, Lampart F, Robinson MD, Lentini A, Nestor CE, Cantu C, Basler K. 2019. TCF/LEF dependent and independent transcriptional regulation of Wnt/β-catenin target genes. EMBO J. 38(2):e98873. doi: 10.15252/embj.201798873 PubMed DOI PMC
Echelard Y, Vassileva G, McMahon AP. 1994. Cis-acting regulatory sequences governing Wnt-1 expression in the developing mouse CNS. Development. 120(8):2213–2224. PubMed
Gilbert SF. 2000. Osteogenesis: the development of bones. In: Developmental biology. 6th ed. Sunderland (MA): Sinauer Associates.
Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA. 2005. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 8(5):751–764. PubMed
Gorlin RJ, Cohen MM, Hennekam RCM. 2001. Syndromes of the head and neck. Oxford (UK): Oxford University Press.
Green J, Nusse R, van Amerongen R. 2014. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol. 6(2):a009175. doi: 10.1101/cshperspect.a009175 PubMed DOI PMC
Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S. 1997. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature. 389(6654):966–970. PubMed
Jin SW, Sim KB, Kim SD. 2016. Development and growth of the normal cranial vault: an embryologic review. J Korean Neurosurg Soc. 59(3):192–196. PubMed PMC
Joeng KS, Lee Y-C, Lim J, Chen Y, Jiang M-M, Munivez E, Ambrose C, Lee BH. 2017. Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest. 127(7):2678–2688. PubMed PMC
Kahn M. 2014. Can we safely target the WNT pathway? Nat Rev Drug Discov. 13(7):513–532. PubMed PMC
Kantaputra P, Sripathomsawat W. 2011. WNT10A and isolated hypodontia. Am J Med Genet A. 155A(5):1119–1122. PubMed
Ko FC, Sumner DR. 2021. How faithfully does intramembranous bone regeneration recapitulate embryonic skeletal development? Dev Dyn. 250(3):377–392. PubMed
Koehne T, Marshall RP, Jeschke A, Kahl-Nieke B, Schinke T, Amling M. 2013. Osteopetrosis, osteopetrorickets and hypophosphatemic rickets differentially affect dentin and enamel mineralization. Bone. 53(1):25–33. PubMed
Komiya Y, Habas R. 2008. Wnt signal transduction pathways. Organogenesis. 4(2):68–75. PubMed PMC
Krivanek J, Soldatov RA, Kastriti ME, Chontorotzea T, Herdina AN, Petersen J, Szarowska B, Landova M, Matejova VK, Holla LI, et al. 2020. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun. 11(1):4816. doi: 10.1038/s41467-020-18512-7 PubMed DOI PMC
Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ, et al. 2013. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med. 368(19):1809–1816. PubMed PMC
Lana-Elola E, Rice R, Grigoriadis AE, Rice DP. 2007. Cell fate specification during calvarial bone and suture development. Dev Biol. 311(2):335–346. PubMed
Luther J, Yorgan TA, Rolvien T, Ulsamer L, Koehne T, Liao N, Keller D, Vollersen N, Teufel S, Neven M, et al. 2018. Wnt1 is an Lrp5-independent bone-anabolic Wnt ligand. Sci Transl Med. 10(466):eaau7137. doi: 10.1126/scitranslmed.aau7137 PubMed DOI
Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, Weber JL, Müller U. 2004. Homozygous Wnt3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 74(3):558–563. PubMed PMC
Nottmeier C, Liao N, Simon A, Decker MG, Luther J, Schweizer M, Yorgan T, Kaucka M, Bockamp E, Kahl-Nieke B, et al. 2021. Wnt1 promotes cementum and alveolar bone growth in a time-dependent manner. J Dent Res. 100(13):1501–1509. PubMed PMC
Ortega N, Behonick DJ, Werb Z. 2004. Matrix remodeling during endochondral ossification. Trends Cell Biol. 14(2):86–93. PubMed PMC
Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, Robu ME, Schleiffarth JR, Billington CJ, Van Bokhoven H, Hoogeboom JM, et al. 2010. Wnt5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn. 239(1):327–337. PubMed PMC
Pyott SM, Tran TT, Leistritz DF, Pepin MG, Mendelsohn NJ, Temme RT, Fernandez BA, Elsayed SM, Elsobky E, Verma I, et al. 2013. WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet. 92(4):590–597. PubMed PMC
Ren Q, Chen J, Liu Y. 2021. LRP5 and LRP6 in Wnt signaling: similarity and divergence. Front Cell Dev Biol. 9:670960. doi: 10.3389/fcell.2021.670960 PubMed DOI PMC
Serbedzija GN, Bronner-Fraser M, Fraser SE. 1992. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development. 116(2):297–307. PubMed
Wang F, Tarkkonen K, Nieminen-Pihala V, Nagano K, Majidi RA, Puolakkainen T, Rummukainen P, Lehto J, Roivainen A, Zhang FP, et al. 2019. Mesenchymal cell-derived juxtacrine Wnt1 signaling regulates osteoblast activity and osteoclast differentiation. J Bone Miner Res. 34(6):1129–1142. PubMed PMC
Wei X, Thomas N, Hatch NE, Hu M, Liu F. 2017. Postnatal craniofacial skeletal development of female C57BL/6NCrl mice. Front Physiol. 8:697. doi: 10.3389/fphys.2017.00697 PubMed DOI PMC
Woods CG, Stricker S, Seemann P, Stern R, Cox J, Sherridan E, Roberts E, Springell K, Scott S, Karbani G, et al. 2006. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome. Am J Hum Genet. 79(2):402–408. PubMed PMC
Wu J, Saint-Jeannet JP, Klein PS. 2003. Wnt-frizzled signaling in neural crest formation. Trends Neurosci. 26(1):40–45. PubMed
Wu Y, Yuan X, Perez KC, Hyman S, Wang L, Pellegrini G, Salmon B, Bellido T, Helms JA. 2019. Aberrantly elevated Wnt signaling is responsible for cementum overgrowth and dental ankylosis. Bone. 122:176–183. PubMed PMC
Xu Y, Malladi P, Zhou D, Longaker MT. 2007. Molecular and cellular characterization of mouse calvarial osteoblasts derived from neural crest and paraxial mesoderm. Plast Reconstr Surg. 120(7):1783–1795. PubMed
Yu B, Chang J, Liu Y, Li J, Kevork K, Al-Hezaimi K, Graves DT, Park NH, Wang CY. 2014. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-κB. Nat Med. 20(9):1009–1017. PubMed PMC
Zhang R, Yang G, Wu X, Xie J, Yang X, Li T. 2013. Disruption of Wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int J Biol Sci. 9(3):228–236. PubMed PMC