Toward 2D van der Waals Entropy Mixture MX2 (M = Mo, W; X = S, Se, Te) for Hydrogen Evolution Electrocatalysis
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40465521
PubMed Central
PMC12186216
DOI
10.1021/acsami.5c05482
Knihovny.cz E-resources
- Keywords
- 2D material, Electrocatalysis, High Entropy Alloys, Hydrogen Evolution Reaction, Transition Metal Dichalcogenide,
- Publication type
- Journal Article MeSH
High-entropy alloys have emerged as a class of materials, offering unique properties due to their irregular and randomized arrangement of multiple elements in an ordered lattice. This concept has been extended to two-dimensional (2D) van der Waals materials, including transition metal dichalcogenides (TMD), which exhibit promising applications in electrocatalysis. In this work, we have explored the synthesis of entropy mixture crystals (TMDmix) involving the chemical vapor transport of five individual elements, Mo and W as metal elements, S, Se, and Te as chalcogenide elements, resulting in a crystalline structure with a controlled composition Mo0.56W0.44(S0.33Se0.35Te0.32)2, with an estimated ΔSmix of 0.96R. When observed along the [001] zone axis, STEM HAADF images indicate the presence of the different crystal phases of the 2D TMDs (1T, 2H, and 3R). Our findings demonstrate the potential of the entropy TMDmix materials as catalysts for the hydrogen evolution reaction, offering an alternative to noble metal-based catalysts. To maximize the potential of TMDmix, we chose chemical exfoliation with the resulting material being subdivided into size groups, big and small, according to their lateral size. In an acidic medium, the lowest overpotential of 127 mV and a Tafel slope of 79 mV/dec were obtained for the exfoliated sample with a small lateral size (exf-TMDsmall).
Department of Physics Chalmers University of Technology Gothenburg SE 41296 Sweden
Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy
See more in PubMed
Yeh J. W., Chen S. K., Lin S. J., Gan J. Y., Chin T. S., Shun T. T., Tsau C. H., Chang S. Y.. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6(5):299–303. doi: 10.1002/adem.200300567. DOI
Yao Y., Huang Z., Xie P., Lacey S. D., Jacob R. J., Xie H., Chen F., Nie A., Pu T., Rehwoldt M., Yu D., Zachariah M. R., Wang C., Shahbazian-Yassar R., Li J., Hu L.. Carbothermal Shock Synthesis of High-Entropy-Alloy Nanoparticles. Science. 2018;359(6383):1489–1494. doi: 10.1126/science.aan5412. PubMed DOI
Xiao W., Li Y., Elgendy A., Duran E. C., Buckingham M. A., Spencer B. F., Han B., Alam F., Zhong X., Cartmell S. H., Cernik R. J., Eggeman A. S., Dryfe R. A. W., Lewis D. J.. Synthesis of High Entropy and Entropy-Stabilized Metal Sulfides and Their Evaluation as Hydrogen Evolution Electrocatalysts. Chem. Mater. 2023;35(19):7904–7914. doi: 10.1021/acs.chemmater.3c00363. PubMed DOI PMC
Qu J., Elgendy A., Cai R., Buckingham M. A., Papaderakis A. A., de Latour H., Hazeldine K., Whitehead G. F. S., Alam F., Smith C. T., Binks D. J., Walton A., Skelton J. M., Dryfe R. A. W., Haigh S. J., Lewis D. J.. A Low-Temperature Synthetic Route Toward a High-Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis. Adv. Sci. 2023;10(14):1–11. doi: 10.1002/advs.202204488. PubMed DOI PMC
Wang R., Huang J., Zhang X., Han J., Zhang Z., Gao T., Xu L., Liu S., Xu P., Song B.. Two-Dimensional High-Entropy Metal Phosphorus Trichalcogenides for Enhanced Hydrogen Evolution Reaction. ACS Nano. 2022;16(3):3593–3603. doi: 10.1021/acsnano.2c01064. PubMed DOI
Oliveira F. M., Paštika J., Ayaz I., Mazánek V., Plutnarová I., Zeng L., Olsson E., Amorim C. O., Melle-Franco M., Gusmão R., Sofer Z.. Alkaline Water Electrolysis Performance of Mixed Cation Metal Phosphorous Trichalcogenides. Mater. Today Energy. 2024;39:101468. doi: 10.1016/j.mtener.2023.101468. DOI
Ying T., Yu T., Shiah Y. S., Li C., Li J., Qi Y., Hosono H.. High-Entropy van Der Waals Materials Formed from Mixed Metal Dichalcogenides, Halides, and Phosphorus Trisulfides. J. Am. Chem. Soc. 2021;143(18):7042–7049. doi: 10.1021/jacs.1c01580. PubMed DOI
Qiu H. J., Fang G., Wen Y., Liu P., Xie G., Liu X., Sun S.. Nanoporous High-Entropy Alloys for Highly Stable and Efficient Catalysts. J. Mater. Chem. A. 2019;7(11):6499–6506. doi: 10.1039/C9TA00505F. DOI
Nguyen T. X., Tsai C.-C., Nguyen V. T., Huang Y.-J., Su Y.-H., Li S.-Y., Xie R.-K., Lin Y.-J., Lee J.-F., Ting J.-M.. High Entropy Promoted Active Site in Layered Double Hydroxide for Ultra-Stable Oxygen Evolution Reaction Electrocatalyst. Chem. Eng. J. 2023;466:143352. doi: 10.1016/j.cej.2023.143352. DOI
Nemani S. K., Zhang B., Wyatt B. C., Hood Z. D., Manna S., Khaledialidusti R., Hong W., Sternberg M. G., Sankaranarayanan S. K. R. S., Anasori B.. High-Entropy 2D Carbide MXenes: TiVNbMoC3and TiVCrMoC3. ACS Nano. 2021;15(8):12815–12825. doi: 10.1021/acsnano.1c02775. PubMed DOI
Fu H., Jiang Y., Zhang M., Zhong Z., Liang Z., Wang S., Du Y., Yan C.. High-Entropy Rare Earth Materials: Synthesis, Application and Outlook. Chem. Soc. Rev. 2024;53(4):2211–2247. doi: 10.1039/D2CS01030E. PubMed DOI
Zhai Y., Ren X., Wang B., Liu S.. (Frank). High-Entropy CatalystA Novel Platform for Electrochemical Water Splitting. Adv. Funct. Mater. 2022;32(47):2207536. doi: 10.1002/adfm.202207536. DOI
Liu H., Yu S., Wang Y., Huang B., Dai Y., Wei W.. Excited-State Properties of CuInP2S6Monolayer as Photocatalyst for Water Splitting. J. Phys. Chem. Lett. 2022;13(8):1972–1978. doi: 10.1021/acs.jpclett.2c00105. PubMed DOI
Greeley J., Jaramillo T. F., Bonde J., Chorkendorff I., Nørskov J. K.. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. Mater. 2006;5(11):909–913. doi: 10.1038/nmat1752. PubMed DOI
Ren J. T., Chen L., Wang H. Y., Yuan Z. Y.. High-Entropy Alloys in Electrocatalysis: From Fundamentals to Applications. Chem. Soc. Rev. 2023;52:8319–8373. doi: 10.1039/D3CS00557G. PubMed DOI
Karlsson D., Ek G., Cedervall J., Zlotea C., Møller K. T., Hansen T. C., Bednarčík J., Paskevicius M., Sørby M. H., Jensen T. R., Jansson U., Sahlberg M.. Structure and Hydrogenation Properties of a HfNbTiVZr High-Entropy Alloy. Inorg. Chem. 2018;57(4):2103–2110. doi: 10.1021/acs.inorgchem.7b03004. PubMed DOI
Lukowski M. A., Daniel A. S., Meng F., Forticaux A., Li L., Jin S.. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS 2 Nanosheets. J. Am. Chem. Soc. 2013;135(28):10274–10277. doi: 10.1021/ja404523s. PubMed DOI
Huang X., Yang G., Li S., Wang H., Cao Y., Peng F., Yu H.. Noble-Metal-Based High-Entropy-Alloy Nanoparticles for Electrocatalysis. J. Energy Chem. 2022;68:721–751. doi: 10.1016/j.jechem.2021.12.026. DOI
Yan X., Zhou Y., Wang S.. Nano-High Entropy Materials in Electrocatalysis. Adv. Funct. Mater. 2025;35:2413115. doi: 10.1002/adfm.202413115. DOI
Mei Y., Feng Y., Zhang C., Zhang Y., Qi Q., Hu J.. High-Entropy Alloy with Mo-Coordination as Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catal. 2022;12(17):10808–10817. doi: 10.1021/acscatal.2c02604. DOI
Ding Q., Song B., Xu P., Jin S.. Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds. Chem. 2016;1(5):699–726. doi: 10.1016/j.chempr.2016.10.007. DOI
Fu Q., Han J., Wang X., Xu P., Yao T., Zhong J., Zhong W., Liu S., Gao T., Zhang Z., Xu L., Song B.. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Adv. Mater. 2021;33(6):1907818. doi: 10.1002/adma.201907818. PubMed DOI PMC
Chen X., Si C., Gao Y., Frenzel J., Sun J., Eggeler G., Zhang Z.. Multi-Component Nanoporous Platinum–Ruthenium–Copper–Osmium–Iridium Alloy with Enhanced Electrocatalytic Activity towards Methanol Oxidation and Oxygen Reduction. J. Power Sources. 2015;273:324–332. doi: 10.1016/j.jpowsour.2014.09.076. DOI
Pedersen J. K., Batchelor T. A. A., Bagger A., Rossmeisl J.. High-Entropy Alloys as Catalysts for the CO 2 and CO Reduction Reactions. ACS Catal. 2020;10(3):2169–2176. doi: 10.1021/acscatal.9b04343. DOI
Yao Y., Dong Q., Brozena A., Luo J., Miao J., Chi M., Wang C., Kevrekidis I. G., Ren Z. J., Greeley J., Wang G., Anapolsky A., Hu L.. High-Entropy Nanoparticles: Synthesis-Structure-Property Relationships and Data-Driven Discovery. Science. 2022;376(6589):eabn3103. doi: 10.1126/science.abn3103. PubMed DOI
Li H., Ling L., Li S., Gao F., Lu Q.. High Entropy MaterialsEmerging Nanomaterials for Electrocatalysis. Energy Adv. 2023;2(11):1800–1817. doi: 10.1039/D3YA00305A. DOI
Wang X., Guo W., Fu Y.. High-Entropy Alloys: Emerging Materials for Advanced Functional Applications. J. Mater. Chem. A. 2021;9(2):663–701. doi: 10.1039/D0TA09601F. DOI
Lee S. A., Bu J., Lee J., Jang H. W.. High-Entropy Nanomaterials for Advanced Electrocatalysis. Small Sci. 2023;3:2200109. doi: 10.1002/smsc.202200109. PubMed DOI PMC
Luxa J., Vosecký P., Mazánek V., Sedmidubský D., Pumera M., Lazar P., Sofer Z.. Layered Transition-Metal Ditellurides in Electrocatalytic Applications - Contrasting Properties. ACS Catal. 2017;7(9):5706–5716. doi: 10.1021/acscatal.7b02080. DOI
Chen H., Li S., Huang S., Ma L., Liu S., Tang F., Fang Y., Dai P.. High-Entropy Structure Design in Layered Transition Metal Dichalcogenides. Acta Mater. 2022;222:117438. doi: 10.1016/j.actamat.2021.117438. DOI
Bolar S., Ito Y., Fujita T.. Future Prospects of High-Entropy Alloys as next-Generation Industrial Electrode Materials. Chem. Sci. 2024;15(23):8664–8722. doi: 10.1039/D3SC06784J. PubMed DOI PMC
Ying T., Yu T., Qi Y., Chen X., Hosono H.. High Entropy van Der Waals Materials. Adv. Sci. 2022;9(30):2203219. doi: 10.1002/advs.202203219. PubMed DOI PMC
Bagheri M., Komsa H. P.. High-Throughput Computation of Raman Spectra from First Principles. Sci. Data. 2023;10(1):1–11. doi: 10.1038/s41597-023-01988-5. PubMed DOI PMC
Zhang X., Qiao X. F., Shi W., Wu J. B., Jiang D. S., Tan P. H.. Phonon and Raman Scattering of Two-Dimensional Transition Metal Dichalcogenides from Monolayer, Multilayer to Bulk Material. Chem. Soc. Rev. 2015;44(9):2757–2785. doi: 10.1039/C4CS00282B. PubMed DOI
Jana M. K., Singh A., Late D. J., Rajamathi C. R., Biswas K., Felser C., Waghmare U. V., Rao C. N. R.. A Combined Experimental and Theoretical Study of the Structural, Electronic and Vibrational Properties of Bulk and Few-Layer Td-WTe2. J. Phys.: Condens. Matter. 2015;27(28):285401. doi: 10.1088/0953-8984/27/28/285401. PubMed DOI
Patterson A. L.. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939;56(10):978. doi: 10.1103/PhysRev.56.978. DOI
Navarro-Pardo F., Martínez-Barrera G., Martínez-Hernández A. L., Castaño V. M., Rivera-Armenta J. L., Medellín-Rodríguez F., Velasco-Santos C.. Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D) and Two Dimensional (2D) Carbon. Materials. 2013;6(8):3494–3513. doi: 10.3390/ma6083494. PubMed DOI PMC
Luxa J., Mazánek V., Bouša D., Sedmidubský D., Pumera M., Sofer Z.. Graphene-Amorphous Transition-Metal Chalcogenide (MoSx, WSx) Composites as Highly Efficient Hybrid Electrocatalysts for the Hydrogen Evolution Reaction. ChemElectrochem. 2016;3(4):565–571. doi: 10.1002/celc.201500497. DOI
Yin Y., Jin S., Cao X., Zhang P., Xu P., Zhang Z., Song B., Wang X., Yao T., Han J., Zhang X., Zhang Y., Zhang Y., Gao T., Yao T., Zhang X., Han J., Wang X., Zhang Z., Xu P., Zhang P., Cao X., Song B., Jin S., Yin Y.. Synergistic Phase and Disorder Engineering in 1T-MoSe2 Nanosheets for Enhanced Hydrogen-Evolution Reaction. Adv. Mater. 2017;29(28):1700311. doi: 10.1002/ADMA.201700311. PubMed DOI
Wang H., Kong D., Johanes P., Cha J. J., Zheng G., Yan K., Liu N., Cui Y.. MoSe2 and WSe2 Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces. Nano Lett. 2013;13(7):3426–3433. doi: 10.1021/nl401944f. PubMed DOI
Yin Y., Han J., Zhang Y., Zhang X., Xu P., Yuan Q., Samad L., Wang X., Wang Y., Zhang Z., Zhang P., Cao X., Song B., Jin S.. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J. Am. Chem. Soc. 2016;138(25):7965–7972. doi: 10.1021/jacs.6b03714. PubMed DOI
Voiry D., Yamaguchi H., Li J., Silva R., Alves D. C. B., Fujita T., Chen M., Asefa T., Shenoy V. B., Eda G., Chhowalla M.. Enhanced Catalytic Activity in Strained Chemically Exfoliated WS2 Nanosheets for Hydrogen Evolution. Nat. Mater. 2013;12(9):850–855. doi: 10.1038/nmat3700. PubMed DOI
Wei C., Xu Z. J.. The Comprehensive Understanding of 10 MA Cmgeo–2 as an Evaluation Parameter for Electrochemical Water Splitting. Small Methods. 2018;2(11):1800168. doi: 10.1002/smtd.201800168. DOI
Jones L. A. H., Xing Z., Swallow J. E. N., Shiel H., Featherstone T. J., Smiles M. J., Fleck N., Thakur P. K., Lee T.-L., Hardwick L. J., Scanlon D. O., Regoutz A., Veal T. D., Dhanak V. R.. Band Alignments Electronic Structure, and Core-Level Spectra of Bulk Molybdenum Dichalcogenides (MoS 2, MoSe 2, and MoTe 2) J. Phys. Chem. C. 2022;126(49):21022–21033. doi: 10.1021/acs.jpcc.2c05100. PubMed DOI PMC