• This record comes from PubMed

Toward 2D van der Waals Entropy Mixture MX2 (M = Mo, W; X = S, Se, Te) for Hydrogen Evolution Electrocatalysis

. 2025 Jun 18 ; 17 (24) : 35522-35532. [epub] 20250604

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

High-entropy alloys have emerged as a class of materials, offering unique properties due to their irregular and randomized arrangement of multiple elements in an ordered lattice. This concept has been extended to two-dimensional (2D) van der Waals materials, including transition metal dichalcogenides (TMD), which exhibit promising applications in electrocatalysis. In this work, we have explored the synthesis of entropy mixture crystals (TMDmix) involving the chemical vapor transport of five individual elements, Mo and W as metal elements, S, Se, and Te as chalcogenide elements, resulting in a crystalline structure with a controlled composition Mo0.56W0.44(S0.33Se0.35Te0.32)2, with an estimated ΔSmix of 0.96R. When observed along the [001] zone axis, STEM HAADF images indicate the presence of the different crystal phases of the 2D TMDs (1T, 2H, and 3R). Our findings demonstrate the potential of the entropy TMDmix materials as catalysts for the hydrogen evolution reaction, offering an alternative to noble metal-based catalysts. To maximize the potential of TMDmix, we chose chemical exfoliation with the resulting material being subdivided into size groups, big and small, according to their lateral size. In an acidic medium, the lowest overpotential of 127 mV and a Tafel slope of 79 mV/dec were obtained for the exfoliated sample with a small lateral size (exf-TMDsmall).

See more in PubMed

Yeh J. W., Chen S. K., Lin S. J., Gan J. Y., Chin T. S., Shun T. T., Tsau C. H., Chang S. Y.. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6(5):299–303. doi: 10.1002/adem.200300567. DOI

Yao Y., Huang Z., Xie P., Lacey S. D., Jacob R. J., Xie H., Chen F., Nie A., Pu T., Rehwoldt M., Yu D., Zachariah M. R., Wang C., Shahbazian-Yassar R., Li J., Hu L.. Carbothermal Shock Synthesis of High-Entropy-Alloy Nanoparticles. Science. 2018;359(6383):1489–1494. doi: 10.1126/science.aan5412. PubMed DOI

Xiao W., Li Y., Elgendy A., Duran E. C., Buckingham M. A., Spencer B. F., Han B., Alam F., Zhong X., Cartmell S. H., Cernik R. J., Eggeman A. S., Dryfe R. A. W., Lewis D. J.. Synthesis of High Entropy and Entropy-Stabilized Metal Sulfides and Their Evaluation as Hydrogen Evolution Electrocatalysts. Chem. Mater. 2023;35(19):7904–7914. doi: 10.1021/acs.chemmater.3c00363. PubMed DOI PMC

Qu J., Elgendy A., Cai R., Buckingham M. A., Papaderakis A. A., de Latour H., Hazeldine K., Whitehead G. F. S., Alam F., Smith C. T., Binks D. J., Walton A., Skelton J. M., Dryfe R. A. W., Haigh S. J., Lewis D. J.. A Low-Temperature Synthetic Route Toward a High-Entropy 2D Hexernary Transition Metal Dichalcogenide for Hydrogen Evolution Electrocatalysis. Adv. Sci. 2023;10(14):1–11. doi: 10.1002/advs.202204488. PubMed DOI PMC

Wang R., Huang J., Zhang X., Han J., Zhang Z., Gao T., Xu L., Liu S., Xu P., Song B.. Two-Dimensional High-Entropy Metal Phosphorus Trichalcogenides for Enhanced Hydrogen Evolution Reaction. ACS Nano. 2022;16(3):3593–3603. doi: 10.1021/acsnano.2c01064. PubMed DOI

Oliveira F. M., Paštika J., Ayaz I., Mazánek V., Plutnarová I., Zeng L., Olsson E., Amorim C. O., Melle-Franco M., Gusmão R., Sofer Z.. Alkaline Water Electrolysis Performance of Mixed Cation Metal Phosphorous Trichalcogenides. Mater. Today Energy. 2024;39:101468. doi: 10.1016/j.mtener.2023.101468. DOI

Ying T., Yu T., Shiah Y. S., Li C., Li J., Qi Y., Hosono H.. High-Entropy van Der Waals Materials Formed from Mixed Metal Dichalcogenides, Halides, and Phosphorus Trisulfides. J. Am. Chem. Soc. 2021;143(18):7042–7049. doi: 10.1021/jacs.1c01580. PubMed DOI

Qiu H. J., Fang G., Wen Y., Liu P., Xie G., Liu X., Sun S.. Nanoporous High-Entropy Alloys for Highly Stable and Efficient Catalysts. J. Mater. Chem. A. 2019;7(11):6499–6506. doi: 10.1039/C9TA00505F. DOI

Nguyen T. X., Tsai C.-C., Nguyen V. T., Huang Y.-J., Su Y.-H., Li S.-Y., Xie R.-K., Lin Y.-J., Lee J.-F., Ting J.-M.. High Entropy Promoted Active Site in Layered Double Hydroxide for Ultra-Stable Oxygen Evolution Reaction Electrocatalyst. Chem. Eng. J. 2023;466:143352. doi: 10.1016/j.cej.2023.143352. DOI

Nemani S. K., Zhang B., Wyatt B. C., Hood Z. D., Manna S., Khaledialidusti R., Hong W., Sternberg M. G., Sankaranarayanan S. K. R. S., Anasori B.. High-Entropy 2D Carbide MXenes: TiVNbMoC3and TiVCrMoC3. ACS Nano. 2021;15(8):12815–12825. doi: 10.1021/acsnano.1c02775. PubMed DOI

Fu H., Jiang Y., Zhang M., Zhong Z., Liang Z., Wang S., Du Y., Yan C.. High-Entropy Rare Earth Materials: Synthesis, Application and Outlook. Chem. Soc. Rev. 2024;53(4):2211–2247. doi: 10.1039/D2CS01030E. PubMed DOI

Zhai Y., Ren X., Wang B., Liu S.. (Frank). High-Entropy CatalystA Novel Platform for Electrochemical Water Splitting. Adv. Funct. Mater. 2022;32(47):2207536. doi: 10.1002/adfm.202207536. DOI

Liu H., Yu S., Wang Y., Huang B., Dai Y., Wei W.. Excited-State Properties of CuInP2S6Monolayer as Photocatalyst for Water Splitting. J. Phys. Chem. Lett. 2022;13(8):1972–1978. doi: 10.1021/acs.jpclett.2c00105. PubMed DOI

Greeley J., Jaramillo T. F., Bonde J., Chorkendorff I., Nørskov J. K.. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. Mater. 2006;5(11):909–913. doi: 10.1038/nmat1752. PubMed DOI

Ren J. T., Chen L., Wang H. Y., Yuan Z. Y.. High-Entropy Alloys in Electrocatalysis: From Fundamentals to Applications. Chem. Soc. Rev. 2023;52:8319–8373. doi: 10.1039/D3CS00557G. PubMed DOI

Karlsson D., Ek G., Cedervall J., Zlotea C., Møller K. T., Hansen T. C., Bednarčík J., Paskevicius M., Sørby M. H., Jensen T. R., Jansson U., Sahlberg M.. Structure and Hydrogenation Properties of a HfNbTiVZr High-Entropy Alloy. Inorg. Chem. 2018;57(4):2103–2110. doi: 10.1021/acs.inorgchem.7b03004. PubMed DOI

Lukowski M. A., Daniel A. S., Meng F., Forticaux A., Li L., Jin S.. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS 2 Nanosheets. J. Am. Chem. Soc. 2013;135(28):10274–10277. doi: 10.1021/ja404523s. PubMed DOI

Huang X., Yang G., Li S., Wang H., Cao Y., Peng F., Yu H.. Noble-Metal-Based High-Entropy-Alloy Nanoparticles for Electrocatalysis. J. Energy Chem. 2022;68:721–751. doi: 10.1016/j.jechem.2021.12.026. DOI

Yan X., Zhou Y., Wang S.. Nano-High Entropy Materials in Electrocatalysis. Adv. Funct. Mater. 2025;35:2413115. doi: 10.1002/adfm.202413115. DOI

Mei Y., Feng Y., Zhang C., Zhang Y., Qi Q., Hu J.. High-Entropy Alloy with Mo-Coordination as Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catal. 2022;12(17):10808–10817. doi: 10.1021/acscatal.2c02604. DOI

Ding Q., Song B., Xu P., Jin S.. Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds. Chem. 2016;1(5):699–726. doi: 10.1016/j.chempr.2016.10.007. DOI

Fu Q., Han J., Wang X., Xu P., Yao T., Zhong J., Zhong W., Liu S., Gao T., Zhang Z., Xu L., Song B.. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Adv. Mater. 2021;33(6):1907818. doi: 10.1002/adma.201907818. PubMed DOI PMC

Chen X., Si C., Gao Y., Frenzel J., Sun J., Eggeler G., Zhang Z.. Multi-Component Nanoporous Platinum–Ruthenium–Copper–Osmium–Iridium Alloy with Enhanced Electrocatalytic Activity towards Methanol Oxidation and Oxygen Reduction. J. Power Sources. 2015;273:324–332. doi: 10.1016/j.jpowsour.2014.09.076. DOI

Pedersen J. K., Batchelor T. A. A., Bagger A., Rossmeisl J.. High-Entropy Alloys as Catalysts for the CO 2 and CO Reduction Reactions. ACS Catal. 2020;10(3):2169–2176. doi: 10.1021/acscatal.9b04343. DOI

Yao Y., Dong Q., Brozena A., Luo J., Miao J., Chi M., Wang C., Kevrekidis I. G., Ren Z. J., Greeley J., Wang G., Anapolsky A., Hu L.. High-Entropy Nanoparticles: Synthesis-Structure-Property Relationships and Data-Driven Discovery. Science. 2022;376(6589):eabn3103. doi: 10.1126/science.abn3103. PubMed DOI

Li H., Ling L., Li S., Gao F., Lu Q.. High Entropy MaterialsEmerging Nanomaterials for Electrocatalysis. Energy Adv. 2023;2(11):1800–1817. doi: 10.1039/D3YA00305A. DOI

Wang X., Guo W., Fu Y.. High-Entropy Alloys: Emerging Materials for Advanced Functional Applications. J. Mater. Chem. A. 2021;9(2):663–701. doi: 10.1039/D0TA09601F. DOI

Lee S. A., Bu J., Lee J., Jang H. W.. High-Entropy Nanomaterials for Advanced Electrocatalysis. Small Sci. 2023;3:2200109. doi: 10.1002/smsc.202200109. PubMed DOI PMC

Luxa J., Vosecký P., Mazánek V., Sedmidubský D., Pumera M., Lazar P., Sofer Z.. Layered Transition-Metal Ditellurides in Electrocatalytic Applications - Contrasting Properties. ACS Catal. 2017;7(9):5706–5716. doi: 10.1021/acscatal.7b02080. DOI

Chen H., Li S., Huang S., Ma L., Liu S., Tang F., Fang Y., Dai P.. High-Entropy Structure Design in Layered Transition Metal Dichalcogenides. Acta Mater. 2022;222:117438. doi: 10.1016/j.actamat.2021.117438. DOI

Bolar S., Ito Y., Fujita T.. Future Prospects of High-Entropy Alloys as next-Generation Industrial Electrode Materials. Chem. Sci. 2024;15(23):8664–8722. doi: 10.1039/D3SC06784J. PubMed DOI PMC

Ying T., Yu T., Qi Y., Chen X., Hosono H.. High Entropy van Der Waals Materials. Adv. Sci. 2022;9(30):2203219. doi: 10.1002/advs.202203219. PubMed DOI PMC

Bagheri M., Komsa H. P.. High-Throughput Computation of Raman Spectra from First Principles. Sci. Data. 2023;10(1):1–11. doi: 10.1038/s41597-023-01988-5. PubMed DOI PMC

Zhang X., Qiao X. F., Shi W., Wu J. B., Jiang D. S., Tan P. H.. Phonon and Raman Scattering of Two-Dimensional Transition Metal Dichalcogenides from Monolayer, Multilayer to Bulk Material. Chem. Soc. Rev. 2015;44(9):2757–2785. doi: 10.1039/C4CS00282B. PubMed DOI

Jana M. K., Singh A., Late D. J., Rajamathi C. R., Biswas K., Felser C., Waghmare U. V., Rao C. N. R.. A Combined Experimental and Theoretical Study of the Structural, Electronic and Vibrational Properties of Bulk and Few-Layer Td-WTe2. J. Phys.: Condens. Matter. 2015;27(28):285401. doi: 10.1088/0953-8984/27/28/285401. PubMed DOI

Patterson A. L.. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939;56(10):978. doi: 10.1103/PhysRev.56.978. DOI

Navarro-Pardo F., Martínez-Barrera G., Martínez-Hernández A. L., Castaño V. M., Rivera-Armenta J. L., Medellín-Rodríguez F., Velasco-Santos C.. Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D) and Two Dimensional (2D) Carbon. Materials. 2013;6(8):3494–3513. doi: 10.3390/ma6083494. PubMed DOI PMC

Luxa J., Mazánek V., Bouša D., Sedmidubský D., Pumera M., Sofer Z.. Graphene-Amorphous Transition-Metal Chalcogenide (MoSx, WSx) Composites as Highly Efficient Hybrid Electrocatalysts for the Hydrogen Evolution Reaction. ChemElectrochem. 2016;3(4):565–571. doi: 10.1002/celc.201500497. DOI

Yin Y., Jin S., Cao X., Zhang P., Xu P., Zhang Z., Song B., Wang X., Yao T., Han J., Zhang X., Zhang Y., Zhang Y., Gao T., Yao T., Zhang X., Han J., Wang X., Zhang Z., Xu P., Zhang P., Cao X., Song B., Jin S., Yin Y.. Synergistic Phase and Disorder Engineering in 1T-MoSe2 Nanosheets for Enhanced Hydrogen-Evolution Reaction. Adv. Mater. 2017;29(28):1700311. doi: 10.1002/ADMA.201700311. PubMed DOI

Wang H., Kong D., Johanes P., Cha J. J., Zheng G., Yan K., Liu N., Cui Y.. MoSe2 and WSe2 Nanofilms with Vertically Aligned Molecular Layers on Curved and Rough Surfaces. Nano Lett. 2013;13(7):3426–3433. doi: 10.1021/nl401944f. PubMed DOI

Yin Y., Han J., Zhang Y., Zhang X., Xu P., Yuan Q., Samad L., Wang X., Wang Y., Zhang Z., Zhang P., Cao X., Song B., Jin S.. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J. Am. Chem. Soc. 2016;138(25):7965–7972. doi: 10.1021/jacs.6b03714. PubMed DOI

Voiry D., Yamaguchi H., Li J., Silva R., Alves D. C. B., Fujita T., Chen M., Asefa T., Shenoy V. B., Eda G., Chhowalla M.. Enhanced Catalytic Activity in Strained Chemically Exfoliated WS2 Nanosheets for Hydrogen Evolution. Nat. Mater. 2013;12(9):850–855. doi: 10.1038/nmat3700. PubMed DOI

Wei C., Xu Z. J.. The Comprehensive Understanding of 10 MA Cmgeo–2 as an Evaluation Parameter for Electrochemical Water Splitting. Small Methods. 2018;2(11):1800168. doi: 10.1002/smtd.201800168. DOI

Jones L. A. H., Xing Z., Swallow J. E. N., Shiel H., Featherstone T. J., Smiles M. J., Fleck N., Thakur P. K., Lee T.-L., Hardwick L. J., Scanlon D. O., Regoutz A., Veal T. D., Dhanak V. R.. Band Alignments Electronic Structure, and Core-Level Spectra of Bulk Molybdenum Dichalcogenides (MoS 2, MoSe 2, and MoTe 2) J. Phys. Chem. C. 2022;126(49):21022–21033. doi: 10.1021/acs.jpcc.2c05100. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...