• This record comes from PubMed

Evaluation and mechanism of the antioxidant activity of lactic acid bacteria

. 2025 Jun 07 ; () : . [epub] 20250607

Status Publisher Language English Country United States Media print-electronic

Document type Journal Article, Review

Grant support
2021GXNSFBA220053 Natural Science Foundation of Guangxi Province
AD23026316 Guangxi Science and Technology Base and Talent Special Project
2021KY0106 Guangxi Young and Middle-aged University Teachers' Scientific Research Ability Enhancement Project

Links

PubMed 40481970
DOI 10.1007/s12223-025-01277-1
PII: 10.1007/s12223-025-01277-1
Knihovny.cz E-resources

Lactic acid bacteria (LABs) have emerged as a significant area of study within the field of probiotics due to their diverse health benefits and wide application. This review examines the various methods used to evaluate the antioxidant activity of LABs, including in vitro chemical evaluation methods, cell model evaluation methods, and in vivo evaluation methods. Comprehensive overview of the various assessment techniques employed to elucidate the multifaceted roles of LABs in enhancing the body's natural defenses against oxidative damage. Moreover, this review emphasizes several pivotal aspects of the antioxidant effects of LABs, including the activation of the antioxidant signal pathway, the induction of antioxidative enzymes, the formation of a ROS-binding system, the production of metabolites, the enhancement of intestinal barrier integrity, the activation of the oxidative damage repair system, and the assurance of mitochondrial function. These represent the key antioxidant effects of LABs. The synthesis of this information advances our understanding of the dynamic and diverse antioxidant effects of LABs, providing a foundation for further research into their therapeutic applications in combating oxidative stress-related disorders. Future research should employ multi-omics technologies, genetic engineering, studies on synergistic effects, and large-scale clinical trials to further elucidate the molecular mechanisms underlying the antioxidant effects of LABs. This will promote their application in functional foods, pharmaceuticals, and cosmetics, providing a scientific basis for the development of more efficient antioxidant products.

See more in PubMed

Ahsan A, Mazhar B, Khan MK, Mustafa M, Hammad M, Ali NM (2022) Bacteriocin-mediated inhibition of some common pathogens by wild and mutant Lactobacillus species and in vitro amplification of bacteriocin encoding genes. Admet dmpk 10(1):75–87. https://doi.org/10.5599/admet.1053 PubMed DOI PMC

Alp D, Kuleaşan H (2019) Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World J Microbiol Biotechnol 35(10):156. https://doi.org/10.1007/s11274-019-2730-x PubMed DOI

Alp D, KuleaŞan H (2020) Determination of competition and adhesion abilities of lactic acid bacteria against gut pathogens in a whole-tissue model. Biosci Microbiota Food Health 39(4):250-258. https://doi.org/10.12938/bmfh.2020-033

Anjana, Tiwari, S. K. (2022). Bacteriocin-producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota. Front Cell Infect Microbiol 12:851140. https://doi.org/10.3389/fcimb.2022.851140

Averill-Bates D (2024) Reactive oxygen species and cell signaling. Review. Biochim Biophys Acta Mol Cell Res 1871(2):119573. https://doi.org/10.1016/j.bbamcr.2023.119573

Batty M, Bennett MR, Yu E (2022) The role of oxidative stress in atherosclerosis. Cells 11(23). https://doi.org/10.3390/cells11233843

Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay (; Research Support, Non-U.S. Gov't). Anal Biochem 239(1):70-6. https://doi.org/10.1006/abio.1996.0292

Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94(2):329-54. https://doi.org/10.1152/physrev.00040.2012

Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation (Article). Biochem Pharmacol 85(6):705-717. https://doi.org/10.1016/j.bcp.2012.11.016

Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Demchenko OA, Nechypurenko OV et al (2017) Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. Epma j 8(4):357-376. https://doi.org/10.1007/s13167-017-0117-3

Campanella D, Rizzello CG, Fasciano C, Gambacorta G, Pinto D, Marzani B et al (2017) Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity (Article). Food Microbiol 65:25–35. https://doi.org/10.1016/j.fm.2017.01.019 PubMed DOI

Cappa F, Cattivelli D, Cocconcelli PS (2005) The uvrA gene is involved in oxidative and acid stress responses in Lactobacillus helveticus CNBL1156. Res Microbiol 156(10):1039–47. https://doi.org/10.1016/j.resmic.2005.06.003 PubMed DOI

Chen LH, Huang SY, Huang KC, Hsu CC, Yang KC, Li LA et al (2019) Lactobacillus paracasei PS23 decelerated age-related muscle loss by ensuring mitochondrial function in SAMP8 mice. Aging (Albany NY) 11(2):756-770. https://doi.org/10.18632/aging.101782

Chen Y, Yang B, Zhao J, Ross RP, Stanton C, Zhang H et al (2024) Exploiting lactic acid bacteria for colorectal cancer: a recent update. Crit Rev Food Sci Nutr 64(16):5433–5449. https://doi.org/10.1080/10408398.2022.2154742 PubMed DOI

Cheng CP, Tsai SW, Chiu CP, Pan TM, Tsai TY (2013) The effect of probiotic-fermented soy milk on enhancing the NO-mediated vascular relaxation factors. J Sci Food Agric 93(5):1219–25. https://doi.org/10.1002/jsfa.5880 PubMed DOI

Daba GM, Elnahas MO, Elkhateeb WA (2021) Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. Int J Biol Macromol 173:79–89. https://doi.org/10.1016/j.ijbiomac.2021.01.110 PubMed DOI

de Oliveira APD, Almeida TJD, Santos TMB, Dias FS (2021) Symbiotic goat milk ice cream with umbu fortified with autochthonous goat cheese lactic acid bacteria (Article). Lwt-Food Sci Technol 141(9). https://doi.org/10.1016/j.lwt.2021.110888

Deepak V, Sundar WA, Pandian SRK, Sivasubramaniam SD, Hariharan N, Sundar K (2021) Exopolysaccharides from Lactobacillus acidophilus modulates the antioxidant status of 1,2-dimethyl hydrazine-induced colon cancer rat model. 3 Biotech 11(5):225. https://doi.org/10.1007/s13205-021-02784-x

Ding WR, Wang LN, Zhang J, Ke WC, Zhou JW, Zhu JX et al (2017) Characterization of antioxidant properties of lactic acid bacteria isolated from spontaneously fermented yak milk in the Tibetan Plateau (Article). J Funct Foods 35:481–488. https://doi.org/10.1016/j.jff.2017.06.008 DOI

dos Santos SL, Petropoulos I, Friguet B (2018) The oxidized protein repair enzymes methionine sulfoxide reductases and their roles in protecting against oxidative stress, in ageing and in regulating protein function (review). Antioxidants 7(12):22. https://doi.org/10.3390/antiox7120191 DOI

Douillard FP, Mora D, Eijlander RT, Wels M, de Vos WM 2018 Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3. PLoS One 13(2): e0192452. https://doi.org/10.1371/journal.pone.0192452

Fardet A, Rock E (2018) In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: a narrative review of evidence (Review). Nutrition Res Rev 31(1):52–70. https://doi.org/10.1017/s0954422417000191 DOI

Felice F, Lucchesi D, di Stefano R, Barsotti MC, Storti E, Penno G et al (2010) Oxidative stress in response to high glucose levels in endothelial cells and in endothelial progenitor cells: evidence for differential glutathione peroxidase-1 expression. Microvasc Res 80(3):332–8. https://doi.org/10.1016/j.mvr.2010.05.004 PubMed DOI

Feng T, Wang J (2020) Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review (Review). Gut Microbes 12(1):24. https://doi.org/10.1080/19490976.2020.1801944 DOI

Fernandes A, Jobby R (2022) Bacteriocins from lactic acid bacteria and their potential clinical applications. Appl Biochem Biotechnol 194(10):4377–4399. https://doi.org/10.1007/s12010-022-03870-3 PubMed DOI

Finamore A, Ambra R, Nobili F, Garaguso I, Raguzzini A, Serafini M (2018) Redox role of Lactobacillus casei Shirota against the cellular damage induced by 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidative and inflammatory stress in enterocytes-like epithelial cells (article). Front Immunol 9:12. https://doi.org/10.3389/fimmu.2018.01131 DOI

Furumoto H, Nanthirudjanar T, Kume T, Izumi Y, Park SB, Kitamura N et al (2016) 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress. Toxicol Appl Pharmacol 296:1–9. https://doi.org/10.1016/j.taap.2016.02.012 PubMed DOI

Gao DW, Gao ZR, Zhu GH (2013) Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2 (Article). Food & Function 4(6):982–989. https://doi.org/10.1039/c3fo30316k DOI

Gao Y, Liu YJ, Sun MY, Zhang HP, Mu GQ, Tuo YF (2020) Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics (Article). J Dairy Sci 103(7):5916–5930. https://doi.org/10.3168/jds.2019-18047 PubMed DOI

Gaur G, Gänzle MG (2023) Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: novel insights into metabolic pathways and functional metabolites. Curr Res Food Sci 6:100448. https://doi.org/10.1016/j.crfs.2023.100448 PubMed DOI PMC

Ge QF, Yang B, Liu R, Jiang DL, Yu H, Wu MG et al (2021) Antioxidant activity of Lactobacillus plantarum NJAU-01 in an animal model of aging (Article). Bmc Microbiology 21(1):9. https://doi.org/10.1186/s12866-021-02248-5 DOI

Gómez-Gómez B, Pérez-Corona T, Mozzi F, Pescuma M, Madrid Y (2019) Silac-based quantitative proteomic analysis of Lactobacillus reuteri CRL 1101 response to the presence of selenite and selenium nanoparticles. J Proteomics 195:53–65. https://doi.org/10.1016/j.jprot.2018.12.025 PubMed DOI

Gulcin İ (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94(3):651–715. https://doi.org/10.1007/s00204-020-02689-3 PubMed DOI

Han Q, Kong BH, Chen Q, Sun FD, Zhang H (2017) In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics (Article). J Funct Foods 32:391–400. https://doi.org/10.1016/j.jff.2017.03.020 DOI

Henry C, Loiseau L, Vergnes A, Vertommen D, Mérida-Floriano A, Chitteni-Pattu S et al (2021) Redox controls RecA protein activity via reversible oxidation of its methionine residues. Elife 10. https://doi.org/10.7554/eLife.63747

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506-14. https://doi.org/10.1038/nrgastro.2014.66

Hu L, Zhang Y, Miao W, Cheng T (2019) Reactive oxygen species and Nrf2: Functional and transcriptional regulators of hematopoiesis (; Review). Oxidative Med Cell Longevity 5153268. https://doi.org/10.1155/2019/5153268

Irato P, Santovito G (2021) Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants (Basel) 10(4). https://doi.org/10.3390/antiox10040579

Jänsch A, Freiding S, Behr J, Vogel RF (2011) Contribution of the NADH-oxidase (Nox) to the aerobic life of Lactobacillus sanfranciscensis DSM20451T (Article). Food Microbiology 28(1):29–37. https://doi.org/10.1016/j.fm.2010.08.001 PubMed DOI

Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600):1911–2. https://doi.org/10.1126/science.1072682 PubMed DOI

Kang TS, Korber DR, Tanaka T (2013) Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1 (Article). Amb Express 3:9. https://doi.org/10.1186/2191-0855-3-10 DOI

Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145(2):396-406.e1-10. https://doi.org/10.1053/j.gastro.2013.04.056

Kondo N, Kanai T, Okada M (2023) Rheumatoid arthritis and reactive oxygen species: a review. Curr Issues Mol Biol 45(4):3000–3015. https://doi.org/10.3390/cimb45040197 PubMed DOI PMC

Kong YD, Li M, Chu GS, Liu HJ, Shan XF, Wang GQ et al (2021) The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology (Article). Aquaculture 531:12. https://doi.org/10.1016/j.aquaculture.2020.735852 DOI

Kontoghiorghes GJ (2020) Advances on chelation and chelator metal complexes in medicine. Int J Mol Sci 21(7). https://doi.org/10.3390/ijms21072499

Kuda T, Kawahara M, Nemoto M, Takahashi H, Kimura B (2014) In vitro antioxidant and anti-inflammation properties of lactic acid bacteria isolated from fish intestines and fermented fish from the Sanriku Satoumi region in Japan (Article). Food Res Int 64:248–255. https://doi.org/10.1016/j.foodres.2014.06.028 PubMed DOI

Lam PL, Wong RS, Lam KH, Hung LK, Wong MM, Yung LH et al (2020) The role of reactive oxygen species in the biological activity of antimicrobial agents: an updated mini review. Chem Biol Interact 320. https://doi.org/10.1016/j.cbi.2020.109023

Lee JY, Kang CH (2022) Probiotics alleviate oxidative stress in H2O2-exposed hepatocytes and t-BHP-induced C57BL/6 mice (Article). Microorganisms 10(2) 10. https://doi.org/10.3390/microorganisms10020234

Li BL, Du P, Smith EE, Wang S, Jiao YH, Guo LD et al (2019a) In vitro and in vivo evaluation of an exopolysaccharide produced by Lactobacillus helveticus KLDS1.8701 for the alleviative effect on oxidative stress (Article). Food Function 10(3):1707-1717. https://doi.org/10.1039/c8fo01920g

Li H, Xu W, Hu X, Tian X, Li B, Du Y et al (2024) The surface protein GroEl of lactic acid bacteria mediates its modulation of the intestinal barrier in Penaeus vannamei. Int J Biol Macromol 278(Pt 1): 134624. https://doi.org/10.1016/j.ijbiomac.2024.134624

Li P, Yin Y, Yu Q, Yang Q (2011) Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella-induced apoptosis in Caco-2 cells. Biochem Biophys Res Commun 409(1):142–7. https://doi.org/10.1016/j.bbrc.2011.04.131 PubMed DOI

Li ZX, Teng J, Lyu YL, Hu XQ, Zhao YL, Wang MF (2019b) Enhanced antioxidant activity for apple juice fermented with Lactobacillus plantarum ATCC14917 (Article). Molecules 24(1), 12. https://doi.org/10.3390/molecules24010051

Lin PY, Stern A, Peng HH, Chen JH, Yang HC (2022) Redox and Metabolic Regulation of Intestinal Barrier Function and Associated Disorders. Int J Mol Sci 23(22). https://doi.org/10.3390/ijms232214463

Liu J, Han X, Zhang T, Tian K, Li Z, Luo F (2023) Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. J Hematol Oncol 16(1):116. https://doi.org/10.1186/s13045-023-01512-7 PubMed DOI PMC

Liu J, Tan F, Liu XH, Yi RK, Zhao X (2019) Exploring the Antioxidant Effects and Periodic Regulation of Cancer Cells by Polyphenols Produced by the Fermentation of Grape Skin by Lactobacillus plantarum KFY02 (Article). Biomolecules 9(10):18. https://doi.org/10.3390/biom9100575 DOI

Liu M, Xiang F, Pan J, Xue Y, Sun M, Zhao K et al (2024) Host-derived lactic acid bacteria alleviate short beak and dwarf syndrome by preventing bone loss, intestinal barrier disruption, and inflammation. Vet Microbiol 296:110187. https://doi.org/10.1016/j.vetmic.2024.110187 PubMed DOI

Liu R, Sun B (2023) Lactic acid bacteria and aging: unraveling the interplay for healthy longevity. Aging Dis 15(4):1487-98. https://doi.org/10.14336/ad.2023.0926

Liu YP, Liu XQ, Wang Y, Yi C, Tian JH, Liu KC et al (2019) Protective effect of lactobacillus plantarum on alcoholic liver injury and regulating of keap-Nrf2-ARE signaling pathway in zebrafish larvae (Article). Plos One 14(9):16. https://doi.org/10.1371/journal.pone.0222339 DOI

Liu Z (2023) Antioxidant activity of the thioredoxin system. Biophys Rep 9(1):26-32. https://doi.org/10.52601/bpr.2023.230002

Liu ZQ, Dong LY, Jia KY, Zhan H, Zhang ZH, Shah NP et al (2019) Sulfonation of Lactobacillus plantarum WLPL04 exopolysaccharide amplifies its antioxidant activities in vitro and in a Caco-2 cell model (Article). J Dairy Sci 102(7):5922–5932. https://doi.org/10.3168/jds.2018-15831 PubMed DOI

Lobo RE, Figueroa T, Navarro D, Gomez MI, de Valdez GF, Torino MI (2021) Techno-functional properties of HoPS from lactic acid bacteria of different origins as potential food additives (Article). Food Chem 356:10. https://doi.org/10.1016/j.foodchem.2021.129627

Lourenço Dos Santos S, Petropoulos I, Friguet B (2018) The oxidized protein repair enzymes methionine sulfoxide reductases and their roles in protecting against oxidative stress, in ageing and in regulating protein function. Antioxidants (Basel) 7(12). https://doi.org/10.3390/antiox7120191

Luo S, Jiang X, Jia L, Tan C, Li M, Yang Q et al (2019) In vivo and in vitro antioxidant activities of methanol extracts from olive leaves on Caenorhabditis elegans. Molecules 24(4). https://doi.org/10.3390/molecules24040704

Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R (2023) Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 14:1228754. https://doi.org/10.3389/fimmu.2023.1228754 PubMed DOI PMC

Luu M, Visekruna A (2019) Short-chain fatty acids: bacterial messengers modulating the immunometabolism of T cells. Eur J Immunol 49(6):842–848. https://doi.org/10.1002/eji.201848009 PubMed DOI

Mikelsaar M, Zilmer M (2009) Lactobacillus fermentum ME-3 - an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis 21(1):1–27. https://doi.org/10.1080/08910600902815561 PubMed DOI

Mohseni AH, Casolaro V, Bermúdez-Humarán L G, Keyvani H, Taghinezhad SS (2021) Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful target for orchestrating the immune response. Gut Microbes 13(1):1-17. https://doi.org/10.1080/19490976.2021.1886844

Moradi M, Guimaraes JT, Sahin S (2021) Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging (Review). Current Opinion Food Sci 40:33–39. https://doi.org/10.1016/j.cofs.2020.06.001 DOI

Mu G, Gao Y, Tuo Y, Li H, Zhang Y, Qian F et al (2018) Assessing and comparing antioxidant activities of lactobacilli strains by using different chemical and cellular antioxidant methods. J Dairy Sci 101(12):10792–10806. https://doi.org/10.3168/jds.2018-14989 PubMed DOI

Mumby S, Adcock IM (2022) Recent evidence from omic analysis for redox signalling and mitochondrial oxidative stress in COPD. J Inflamm (Lond) 19(1): 10. https://doi.org/10.1186/s12950-022-00308-9

Nakagawa H, Miyazaki T (2017) Beneficial effects of antioxidative lactic acid bacteria. AIMS Microbiol 3(1):1–7. https://doi.org/10.3934/microbiol.2017.1.1

Nakagawa H, Shiozaki T, Kobatake E, Hosoya T, Moriya T, Sakai F et al (2016) Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell 15(2):227–36. https://doi.org/10.1111/acel.12431 PubMed DOI

Nowak A, Paliwoda A, Błasiak J (2019) Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: a review of mechanisms and therapeutic perspectives. Crit Rev Food Sci Nutr 59(21):3456-3467. https://doi.org/10.1080/10408398.2018.1494539

Paone P, Cani PD (2020) Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69(12):2232–2243. https://doi.org/10.1136/gutjnl-2020-322260 PubMed DOI

Pinela J, Dias MI, Pereira C, Alonso-Esteban JI (2024) Antioxidant activity of foods and natural products. Molecules 29(8). https://doi.org/10.3390/molecules29081814

Raman J, Kim JS, Choi KR, Eun H, Yang D, Ko YJ et al 2022 Application of lactic acid bacteria (LAB) in sustainable agriculture: advantages and limitations. Int J Mol Sci 23(14). https://doi.org/10.3390/ijms23147784

Rezaei M, Noori N, Shariatifar N, Gandomi H, Basti AA, Khaneghah AM (2020) Isolation of lactic acid probiotic strains from Iranian camel milk: technological and antioxidant properties (Article). Lwt-Food Sci Technol 132:8. https://doi.org/10.1016/j.lwt.2020.109823 DOI

Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A (2025) The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. Autophagy 21(2):260–282. https://doi.org/10.1080/15548627.2024.2403277 PubMed DOI

Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D et al (2023) Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne) 14:1217165. https://doi.org/10.3389/fendo.2023.1217165 PubMed DOI

Sasikumar K, Kozhummal Vaikkath D, Devendra L, Nampoothiri KM (2017) An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresour Technol 241:1152–1156. https://doi.org/10.1016/j.biortech.2017.05.075 PubMed DOI

Segref A, Kevei É, Pokrzywa W, Schmeisser K, Mansfeld J, Livnat-Levanon N et al (2014) Pathogenesis of human mitochondrial diseases is modulated by reduced activity of the ubiquitin/proteasome system. Cell Metab 19(4):642–52. https://doi.org/10.1016/j.cmet.2014.01.016 PubMed DOI

Serata M, Iino T, Yasuda E, Sako T (2012) Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei. Microbiology (Reading) 158(Pt 4): 953-962. https://doi.org/10.1099/mic.0.053942-0

Seth A, Yan F, Polk DB, Rao RK (2008) Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 294(4):G1060-9. https://doi.org/10.1152/ajpgi.00202.2007

Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383:132531. https://doi.org/10.1016/j.foodchem.2022.132531 PubMed DOI

Skrzypczak K, Gustaw W, Szwajgier D, Fornal E, Waśko A (2017) κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. J Food Sci Technol 54(11):3679–3688. https://doi.org/10.1007/s13197-017-2830-2 PubMed DOI PMC

Slattery C, Cotter PD, O'Toole PW (2019) Analysis of health benefits conferred by lactobacillus species from kefir. Nutrients 11(6). https://doi.org/10.3390/nu11061252

Song X, Qiao L, Chang J, Dou X, Zhang X, Pi S et al (2022) Dietary supplementation with selenium nanoparticles-enriched Lactobacillus casei ATCC 393 alleviates intestinal barrier dysfunction of mice exposed to deoxynivalenol by regulating endoplasmic reticulum stress and gut microbiota. Ecotoxicol Environ Saf 248:114276. https://doi.org/10.1016/j.ecoenv.2022.114276 PubMed DOI

Suez J, Zmora N, Segal E, Elinav E (2019) The pros, cons, and many unknowns of probiotics. Nat Med 25(5):716–729. https://doi.org/10.1038/s41591-019-0439-x PubMed DOI

Sun Z, Li P, Liu F, Bian H, Wang D, Wang X et al (2017) Synergistic antibacterial mechanism of the Lactobacillus crispatus surface layer protein and nisin on Staphylococcus saprophyticus. Sci Rep 7(1):265. https://doi.org/10.1038/s41598-017-00303-8 PubMed DOI PMC

Tan M, Yin Y, Ma X, Zhang J, Pan W, Tan M et al (2023) Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis. Cell Death Dis 14(2):131. https://doi.org/10.1038/s41419-023-05645-y PubMed DOI PMC

Tan SX, Greetham D, Raeth S, Grant CM, Dawes IW, Perrone GG (2010) The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J Biol Chem 285(9):6118–26. https://doi.org/10.1074/jbc.M109.062844 PubMed DOI

Tang H, Huang W, Yao YF (2023) The metabolites of lactic acid bacteria: classification, biosynthesis and modulation of gut microbiota. Microb Cell 10(3):49-62. https://doi.org/10.15698/mic2023.03.792

Tang W, Xing Z, Hu W, Li C, Wang J, Wang Y (2016) Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Appl Microbiol Biotechnol 100(16):7193–202. https://doi.org/10.1007/s00253-016-7581-x PubMed DOI

Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E et al (2022) An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci 23(11). https://doi.org/10.3390/ijms23115938

Teng Q, Lv H, Peng L, Ren Z, Chen J, Ma L et al (2024) Lactiplantibacillus plantarum ZDY2013 inhibits the development of non-alcoholic fatty liver disease by regulating the intestinal microbiota and modulating the PI3K/Akt pathway. Nutrients 16(7). https://doi.org/10.3390/nu16070958

Tsujikawa Y, Suzuki M, Sakane I (2021) Isolation, identification, and impact on intestinal barrier integrity of Lactiplantibacillus plantarum from fresh tea leaves (Camellia sinensis). Biosci Microbiota Food Health 40(4):186-195. https://doi.org/10.12938/bmfh.2020-083

van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82(1–4):187–216 PubMed DOI

Wang K, Niu MM, Yao D, Zhao J, Wu Y, Lu BX et al (2019) Physicochemical characteristics and in vitro and in vivo antioxidant activity of a cell-bound exopolysaccharide produced by Lactobacillus fermentum S1 (Article). Int J Biol Macromole 139:252–261. https://doi.org/10.1016/j.ijbiomac.2019.07.200 DOI

Wang P, Gong Q, Hu J, Li X, Zhang X (2021) Reactive oxygen species (ROS)-responsive prodrugs, probes, and theranostic prodrugs: applications in the ROS-related diseases. J Med Chem 64(1):298–325. https://doi.org/10.1021/acs.jmedchem.0c01704 PubMed DOI

Wang RR, Zhou KX, Xiong RR, Yang Y, Yi RK, Hu J et al (2020) Pretreatment with Lactobacillus fermentum XY18 relieves gastric injury induced by HCl/ethanol in mice via antioxidant and anti-inflammatory mechanisms (Article). Drug Design Dev Therapy 14:5721–5734. https://doi.org/10.2147/dddt.S280429 DOI

Wang X, Shao C, Liu L, Guo X, Xu Y, Lü X (2017) Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int J Biol Macromol 103:1173–1184. https://doi.org/10.1016/j.ijbiomac.2017.05.118 PubMed DOI

Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D et al (2017b) Antioxidant properties of probiotic bacteria. Nutrients 9(5). https://doi.org/10.3390/nu9050521

Wang ZJ, Xie JH, Nie SP, Xie MY (2017) Review on cell models to evaluate the potential antioxidant activity of polysaccharides (Review). Food Function 8(3):915–926. https://doi.org/10.1039/c6fo01315e PubMed DOI

Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19(2):142–9. https://doi.org/10.1016/j.ceb.2007.02.001 PubMed DOI

Wigerblad G, Kaplan MJ (2023) Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol 23(5):274–288. https://doi.org/10.1038/s41577-022-00787-0 PubMed DOI

Xiao LY, Li YY, Tian JJ, Zhou JZ, Xu Q, Feng L et al (2020) Influences of drying methods on the structural, physicochemical and antioxidant properties of exopolysaccharide from Lactobacillus helveticus MB2-1. Int J Biol Macromole 157:220–231. https://doi.org/10.1016/j.ijbiomac.2020.04.196 DOI

Xu CL, Qiao L, Ma L, Guo Y, Dou XN, Yan SQ et al (2019) Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway (Article). Int J Nanomed 14:4491–4502. https://doi.org/10.2147/ijn.S199193 DOI

Yu XM, Li SJ, Yang D, Qiu L, Wu YP, Wang DY et al (2016) A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in D-galactose-induced aging mice (Article). J Dairy Sci 99(2):903–914. https://doi.org/10.3168/jds.2015-10265 PubMed DOI

Zapaśnik A, Sokołowska B, Bryła M (2022) Role of lactic acid bacteria in food preservation and safety. Foods 11(9). https://doi.org/10.3390/foods110912

Zeng Z, Yuan QP, Yu R, Zhang JL, Ma HQ, Chen SW (2019) Ameliorative Effects of probiotic Lactobacillus paracasei NL41 on insulin sensitivity, oxidative stress, and beta-cell function in a type 2 diabetes mellitus rat model (Article). Molecular Nutrition Food Res 63(22):9. https://doi.org/10.1002/mnfr.201900457 DOI

Zhai Z, Yang Y, Wang H, Wang G, Ren F, Li Z et al (2020) Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress. Food Microbiol 87:103389. https://doi.org/10.1016/j.fm.2019.103389 PubMed DOI

Zhang H, Wang Z, Li Z, Wang K, Kong B, Chen Q (2022) l-glycine and l-glutamic acid protect Pediococcus pentosaceus R1 against oxidative damage induced by hydrogen peroxide. Food Microbiol 101:103897. https://doi.org/10.1016/j.fm.2021.103897 PubMed DOI

Zhang Y, Mu T, Yang Y, Zhang J, Ren F, Wu Z (2021) Lactobacillus johnsonii attenuates Citrobacter rodentium-induced colitis by regulating inflammatory responses and endoplasmic reticulum stress in mice. J Nutr 151(11):3391–3399. https://doi.org/10.1093/jn/nxab250 PubMed DOI

Zhang YC, Zhang LW, Ma W, Yi HX, Yang X, Du M et al (2012) Screening of probiotic lactobacilli for inhibition of Shigella sonnei and the macromolecules involved in inhibition. Anaerobe 18(5):498–503. https://doi.org/10.1016/j.anaerobe.2012.08.007 PubMed DOI

Zhao JC, Tian FW, Yan S, Zhai QX, Zhang H, Chen W (2018) Evaluation of antioxidative effects of Lactobacillus plantarum with fuzzy synthetic models (Article). J Microb Biotechnol 28(7):1052–1060. https://doi.org/10.4014/jmb.1712.12022 DOI

Zhao M, Tang S, Xin J, Wei Y, Liu D (2018) Reactive oxygen species induce injury of the intestinal epithelium during hyperoxia. Int J Mol Med 41(1):322–330. https://doi.org/10.3892/ijmm.2017.3247 PubMed DOI

Zhao W, Zhuang P, Chen Y, Wu Y, Zhong M, Lun, Y. (2023). “Double-edged sword” effect of reactive oxygen species (ROS) in tumor development and carcinogenesis. Physiol Res 72(3):301-307. https://doi.org/10.33549/physiolres.935007

Zhou X, Du HH, Ni L, Ran J, Hu J, Yu J et al (2021) Nicotinamide mononucleotide combined with Lactobacillus fermentum TKSN041 reduces the photoaging damage in murine skin by activating AMPK signaling pathway. Front Pharmacol 12:643089. https://doi.org/10.3389/fphar.2021.643089 PubMed DOI PMC

Zuriarrain-Ocio A, Zuriarrain J, Vidal M, Dueñas MT, Berregi I (2021) Antioxidant activity and phenolic profiles of ciders from the Basque Country (Article). Food Biosci 41:8. https://doi.org/10.1016/j.fbio.2021.100887 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...