Smart injectable hydrogels for periodontal regeneration: Recent advancements in biomaterials and biofabrication strategies

. 2025 Jun ; 32 () : 101855. [epub] 20250511

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40487163
Odkazy

PubMed 40487163
PubMed Central PMC12145717
DOI 10.1016/j.mtbio.2025.101855
PII: S2590-0064(25)00415-6
Knihovny.cz E-zdroje

Periodontitis is a globally prevalent chronic inflammatory disease that leads to periodontal pocket formation and eventually destroys tooth-supporting structures. Hence, the drastic increase in dental implants for periodontitis has become a severe clinical issue. Injectable hydrogel based on extracellular matrix (ECM) is highly biocompatible and tissue-regenerative with tailor-made mechanical properties and high payload capacity for in situ delivery of bioactive molecules to treat periodontitis. This therapeutic tool not only enhances the drug release efficiency and treatment efficacy but also reduces operation time. Nevertheless, it remains challenging to optimize the mechanical properties and intelligent control drug release rate of injectable hydrogels to achieve the highest therapeutic outcome. Literature precedent has shown the modulation of polymer backbones (synthetic polymers, natural polysaccharides, and proteins), crosslinking strategies, other bioactive constituents, and potentially the incorporation of nanomaterials that overall improve the desirable physiochemical and biological performances as well as biodegradability. In this review, we summarize the recent advances in the development, design, and material characterizations of common injectable hydrogels. Furthermore, we highlight cutting-edge representative examples of polysaccharide-, protein- and nanocomposite-based hydrogels that mediate regenerative factors and anti-inflammatory drugs for periodontal regeneration. Finally, we express our perspectives on potential challenges and future development of multifunctional injectable hydrogels for periodontitis.

Zobrazit více v PubMed

Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015;15:30–44. PubMed PMC

Clark D., Kotronia E., Ramsay S.E. Frailty, aging, and periodontal disease: basic biologic considerations. Periodontol. 2000. 2021;87:143–156. PubMed PMC

Jain N., Jain G.K., Javed S., Iqbal Z., Talegaonkar S., Ahmad F.J., Khar R.K. Recent approaches for the treatment of periodontitis. Drug Discov. Today. 2008;13:932–943. PubMed

Chen E., Wang T., Tu Y., Sun Z., Ding Y., Gu Z., Xiao S. ROS-scavenging biomaterials for periodontitis. J. Mater. Chem. B. 2023;11:482–499. PubMed

Kaldahl W.B., Kalkwarf K.L., Patil K.D., Dyer J.K., Bates R.E., Jr. Evaluation of four modalities of periodontal therapy: mean probing depth, probing attachment level and recession changes. J. Periodontol. 1988;59:783–793. PubMed

Slots J. Periodontitis: facts, fallacies and the future. Periodontol. 2000. 2017;75:7–23. PubMed

Kirou K.A., DallEra M., Aranow C., Anders H.-J. Belimumab or anifrolumab for systemic lupus erythematosus? A risk-benefit assessment. Front. Immunol. 2022;13 PubMed PMC

Walker C.B. The acquisition of antibiotic resistance in the periodontal microflora. Periodontol. 2000. 1996;10:79–88. PubMed

Barça E., Çifcibaşı E., Çintan S. Adjunctive use of antibiotics in periodontal therapy. J. Istanbul Univ. Fac. Dent. 2015;49:55–62. PubMed PMC

Chen F.-M., Gao L.-N., Tian B.-M., Zhang X.-Y., Zhang Y.-J., Dong G.-Y., Lu H., Chu Q., Xu J., Yu Y. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res. Ther. 2016;7:1–11. PubMed PMC

Eke G., Mangir N., Hasirci N., MacNeil S., Hasirci V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials. 2017;129:188–198. PubMed

Larsson L., Decker A.M., Nibali L., Pilipchuk S.P., Berglundh T., V Giannobile W. Regenerative medicine for periodontal and peri-implant diseases. J. Dent. Res. 2016;95:255–266. PubMed PMC

Bottino M.C., Thomas V., Schmidt G., Vohra Y.K., Chu T.-M.G., Kowolik M.J., Janowski G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent. Mater. 2012;28:703–721. PubMed

Mirzaeei S., Ezzati A., Mehrandish S., Asare-Addo K., Nokhodchi A. An overview of guided tissue regeneration (GTR) systems designed and developed as drug carriers for management of periodontitis. J. Drug Deliv. Sci. Technol. 2022;71

Elgali I., Omar O., Dahlin C., Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017;125:315–337. PubMed PMC

Li P., Feng M., Hu X., Zhang C., Zhu J., Xu G., Li L., Zhao Y. Biological evaluation of acellular bovine bone matrix treated with NaOH. J. Mater. Sci. Mater. Med. 2022;33:58. PubMed PMC

Rodriguez A.E., Nowzari H. The long-term risks and complications of bovine-derived xenografts: a case series. J. Indian Soc. Periodontol. 2019;23:487–492. PubMed PMC

Liu P., Zhang Y., Ma Y., Tan S., Ren B., Liu S., Dai H., Xu Z. Application of dental pulp stem cells in oral maxillofacial tissue engineering. Int. J. Med. Sci. 2022;19:310. PubMed PMC

Mosaddad S.A., Rasoolzade B., Namanloo R.A., Azarpira N., Dortaj H. Stem cells and common biomaterials in dentistry: a review study. J. Mater. Sci. Mater. Med. 2022;33:55. PubMed PMC

Wang W., Wang A., Hu G., Bian M., Chen L., Zhao Q., Sun W., Wu Y. Potential of an aligned porous hydrogel scaffold combined with periodontal ligament stem cells or gingival mesenchymal stem cells to promote tissue regeneration in rat periodontal defects. ACS Biomater. Sci. Eng. 2023;9:1961–1975. PubMed

Wang Y., Zhang S., Benoit D.S.W. Degradable poly (ethylene glycol)(PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery. J. Contr. Release. 2018;287:58–66. PubMed PMC

Clegg J.R., Adebowale K., Zhao Z., Mitragotri S. Hydrogels in the clinic: an update. Bioeng Transl Med. 2024;9 PubMed PMC

Kopeček J. Hydrogel biomaterials: a smart future? Biomaterials. 2007;28:5185–5192. PubMed PMC

Basu S., Pacelli S., Paul A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater. 2020;105:159–169. PubMed

Garshasbi H., Salehi S., Naghib S.M., Ghorbanzadeh S., Zhang W. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery systems. Front. Bioeng. Biotechnol. 2023;10 PubMed PMC

Li Y., Yang H.Y., Lee D.S. Advances in biodegradable and injectable hydrogels for biomedical applications. J. Contr. Release. 2021;330:151–160. PubMed

Lee Y., Gou Y., Pan X., Gu Z., Xie H. Advances of multifunctional hydrogels for periodontal disease. Smart Mater. Med. 2023;4:460–467.

Guo H., Huang S., Yang X., Wu J., Kirk T.B., Xu J., Xu A., Xue W. Injectable and self-healing hydrogels with double-dynamic bond tunable mechanical, gel–sol transition and drug delivery properties for promoting periodontium regeneration in periodontitis. ACS Appl. Mater. Interfaces. 2021;13:61638–61652. PubMed

Feng Q., Zhang M., Zhang G., Mei H., Su C., Liu L., Wang X., Wan Z., Xu Z., Hu L. A whole-course-repair system based on ROS/glucose stimuli-responsive EGCG release and tunable mechanical property for efficient treatment of chronic periodontitis in diabetic rats. J. Mater. Chem. B. 2024;12:3719–3740. PubMed

Correa S., Grosskopf A.K., Lopez Hernandez H., Chan D., Yu A.C., Stapleton L.M., Appel E.A. Translational applications of hydrogels. Chem. Rev. 2021;121:11385–11457. PubMed PMC

Zhang Y.S., Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356 1979. PubMed PMC

Chi M., Qi M., Wang P., Weir M.D., Melo M.A., Sun X., Dong B., Li C., Wu J., Wang L. Novel bioactive and therapeutic dental polymeric materials to inhibit periodontal pathogens and biofilms. Int. J. Mol. Sci. 2019;20:278. PubMed PMC

Kapferer-Seebacher I., Oakley-Hannibal E., Lepperdinger U., Johnson D., Ghali N., Brady A.F., Sobey G., Zschocke J., van Dijk F.S. Prospective clinical investigations of children with periodontal Ehlers–Danlos syndrome identify generalized lack of attached gingiva as a pathognomonic feature. Genet. Med. 2021;23:316–322. PubMed

Bidarra S.J., Barrias C.C., Granja P.L. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater. 2014;10:1646–1662. PubMed

Lokhande G., Carrow J.K., Thakur T., Xavier J.R., Parani M., Bayless K.J., Gaharwar A.K. Nanoengineered injectable hydrogels for wound healing application. Acta Biomater. 2018;70:35–47. PubMed PMC

Ma M., Zhong Y., Jiang X. Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing. Carbohydr. Polym. 2020;236 PubMed

Ding C., Zhao L., Liu F., Cheng J., Gu J., Dan S.-, Liu C., Qu X., Yang Z. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Biomacromolecules. 2010;11:1043–1051. PubMed

Shinde U.P., Yeon B., Jeong B. Recent progress of in situ formed gels for biomedical applications. Prog. Polym. Sci. 2013;38:672–701.

Ding X., Wang Y., Liu J., Zhang P., Li G., Sun T., Xiao C. Injectable in situ forming double-network hydrogel to enhance transplanted cell viability and retention. Chem. Mater. 2021;33:5885–5895.

Zhao Y., Cui Z., Liu B., Xiang J., Qiu D., Tian Y., Qu X., Yang Z. An injectable strong hydrogel for bone reconstruction. Adv. Healthcare Mater. 2019;8 PubMed

Woo H.N., Cho Y.J., Tarafder S., Lee C.H. The recent advances in scaffolds for integrated periodontal regeneration. Bioact. Mater. 2021;6:3328–3342. PubMed PMC

Quan Y., Shao H., Wang N., Gao Z., Jin M. Microenvironment-sensitive hydrogels as promising drug delivery systems for co-encapsulating microbial homeostasis probiotics and anti-inflammatory drugs to treat periodontitis. Mater. Today Bio. 2025 PubMed PMC

Johnson A., Kong F., Miao S., Lin H.-T.V., Thomas S., Huang Y.-C., Kong Z.-L. Therapeutic effects of antibiotics loaded cellulose nanofiber and κ-carrageenan oligosaccharide composite hydrogels for periodontitis treatment. Sci. Rep. 2020;10 PubMed PMC

Øvrebø Ø., Perale G., Wojciechowski J.P., Echalier C., Jeffers J.R.T., Stevens M.M., Haugen H.J., Rossi F. Design and clinical application of injectable hydrogels for musculoskeletal therapy. Bioeng Transl Med. 2022;7 PubMed PMC

Zhu W., Liu Y.-W., Zhou L.-Z., Weng X.-S. Strategy of injectable hydrogel and its application in tissue engineering. Chin Med J (Engl) 2021;134:275–277. PubMed PMC

Mastropietro D.J., Omidian H., Park K. Drug delivery applications for superporous hydrogels. Expet Opin. Drug Deliv. 2012;9:71–89. PubMed

Torchilin V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014;13:813–827. PubMed PMC

Ye F., Barrefelt Å., Asem H., Abedi-Valugerdi M., El-Serafi I., Saghafian M., Abu-Salah K., Alrokayan S., Muhammed M., Hassan M. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials. 2014;35:3885–3894. PubMed

Blasiak B., van Veggel F.C.J.M., Tomanek B. Applications of nanoparticles for MRI cancer diagnosis and therapy. J. Nanomater. 2013;2013

Kong K., Kendall C., Stone N., Notingher I. Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 2015;89:121–134. PubMed

Lanzalaco S., Armelin E. Poly (N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels. 2017;3:36. PubMed PMC

Saino E., Focarete M.L., Gualandi C., Emanuele E., Cornaglia A.I., Imbriani M., Visai L. Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules. 2011;12:1900–1911. PubMed

Li Y., Peng H., Tang W., Gu D., Ren S., Yu Y., Yang J., Miao L. Accelerating periodontal regeneration through injectable hydrogel-enabled sequential delivery of nanoceria and erythropoietin. Mater. Des. 2023;225

Xu X., Gu Z., Chen X., Shi C., Liu C., Liu M., Wang L., Sun M., Zhang K., Liu Q. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater. 2019;86:235–246. PubMed

Cheng Y.-H., Yang S.-H., Su W.-Y., Chen Y.-C., Yang K.-C., Cheng W.T.-K., Wu S.-C., Lin F.-H. Thermosensitive chitosan–gelatin–glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitro study. Tissue Eng Part A. 2010;16:695–703. PubMed

El-Husseiny H.M., Mady E.A., El-Dakroury W.A., Zewail M.B., Noshy M., Abdelfatah A.M., Doghish A.S. Smart/stimuli-responsive hydrogels: state-of-the-art platforms for bone tissue engineering. Appl. Mater. Today. 2022;29

El Sayed M.M. Production of polymer hydrogel composites and their applications. J. Polym. Environ. 2023;31:2855–2879.

Catoira M.C., Fusaro L., Di Francesco D., Ramella M., Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019;30:115. doi: 10.1007/s10856-019-6318-7. PubMed DOI PMC

Zussman M., Zilberman M. Injectable metronidazole-eluting gelatin-alginate hydrogels for local treatment of periodontitis. J. Biomater. Appl. 2022;37:166–179. PubMed

Yang Y., Yuan J., Ni Y., Gu Y., Zhou J., Yuan W., Xu S., Che L., Zheng S.Y., Sun W. Spatiotemporal self-strengthening hydrogels for oral tissue regeneration. Compos. B Eng. 2022;243

Bertsch P., Diba M., Mooney D.J., Leeuwenburgh S.C.G. Self-healing injectable hydrogels for tissue regeneration. Chem. Rev. 2022;123:834–873. PubMed PMC

Kurian A.G., Singh R.K., Patel K.D., Lee J.-H., Kim H.-W. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mater. 2022;8:267–295. PubMed PMC

Xing X., Su J., Liu Y., Lin H., Wang Y., Cheng H. A novel visible light-curing chitosan-based hydrogel membrane for guided tissue regeneration. Colloids Surf. B Biointerfaces. 2022;218 PubMed

Chichiricco P.M., Riva R., Thomassin J.-M., Lesoeur J., Struillou X., Le Visage C., Jérôme C., Weiss P. In situ photochemical crosslinking of hydrogel membrane for guided tissue regeneration. Dent. Mater. 2018;34:1769–1782. PubMed

Huang C.-C., Kang M., Shirazi S., Lu Y., Cooper L.F., Gajendrareddy P., Ravindran S. 3D Encapsulation and tethering of functionally engineered extracellular vesicles to hydrogels. Acta Biomater. 2021;126:199–210. PubMed PMC

Li N., Xie L., Wu Y., Wu Y., Liu Y., Gao Y., Yang J., Zhang X., Jiang L. Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment. Mater. Today Bio. 2022;16 PubMed PMC

Ma Y., Ji Y., Zhong T., Wan W., Yang Q., Li A., Zhang X., Lin M. Bioprinting-based PDLSC-ECM screening for in vivo repair of alveolar bone defect using cell-laden, injectable and photocrosslinkable hydrogels. ACS Biomater. Sci. Eng. 2017;3:3534–3545. PubMed

Qu L., Dubey N., Ribeiro J.S., Bordini E.A.F., Ferreira J.A., Xu J., Castilho R.M., Bottino M.C. Metformin-loaded nanospheres-laden photocrosslinkable gelatin hydrogel for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2021;116 PubMed PMC

Williams C.G., Malik A.N., Kim T.K., Manson P.N., Elisseeff J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26:1211–1218. PubMed

Mironi-Harpaz I., Wang D.Y., Venkatraman S., Seliktar D. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 2012;8:1838–1848. PubMed

Li D., Fei X., Wang K., Xu L., Wang Y., Tian J., Li Y. A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing. J. Mater. Chem. B. 2021;9:6844–6855. PubMed

Dong Z., Sun Y., Chen Y., Liu Y., Tang C., Qu X. Injectable adhesive hydrogel through a microcapsule cross-link for periodontitis treatment. ACS Appl. Bio Mater. 2019;2:5985–5994. PubMed

Draget K.I., Skjåk-Bræk G., Smidsrød O. Alginate based new materials. Int. J. Biol. Macromol. 1997;21:47–55. PubMed

Yang J., Chen J., Pan D., Wan Y., Wang Z. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr. Polym. 2013;92:719–725. PubMed

Lee K.Y., Mooney D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. PubMed PMC

Bashir S., Hina M., Iqbal J., Rajpar A.H., Mujtaba M.A., Alghamdi N.A., Wageh S., Ramesh K., Ramesh S. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. 2020;12:2702. PubMed PMC

Ulery B.D., Nair L.S., Laurencin C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 2011;49:832–864. PubMed PMC

Heidari B.S., Dodda J.M., El-Khordagui L.K., Focarete M.L., Maroti P., Toth L., Pacilio S., El-Habashy S.E., Boateng J., Catanzano O. Emerging materials and technologies for advancing bioresorbable surgical meshes. Acta Biomater. 2024;184:1–21. PubMed

Davachi S.M., Heidari B.S., Madormo V.A., DeSpirito T.M., Jabbari E. 2023. Biocompatible Polymers for 3D Printing, Emerging Technologies in Biophysical Sciences: A World Scientific Reference: Volume 1: Emerging Technologies for Biofabrication and Biomanufacturing; pp. 63–101.

Hori Y., Stern P.J., Hynes R.O., Irvine D.J. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials. 2009;30:6757–6767. PubMed PMC

Tsai T.-Y., Shen K.-H., Chang C.-W., Jovanska L., Wang R., Yeh Y.-C. In situ formation of nanocomposite double-network hydrogels with shear-thinning and self-healing properties. Biomater. Sci. 2021;9:985–999. PubMed

Gaharwar A.K., Peppas N.A., Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 2014;111:441–453. PubMed PMC

Guvendiren M., Molde J., Soares R.M.D., Kohn J. Designing biomaterials for 3D printing. ACS Biomater. Sci. Eng. 2016;2:1679–1693. PubMed PMC

Rutz A.L., Hyland K.E., Jakus A.E., Burghardt W.R., Shah R.N. A multi-material bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 2015;27:1607. PubMed PMC

Tahir M., Vicini S., Sionkowska A. Electrospun materials based on polymer and biopolymer blends—a review. Polymers. 2023;15:1654. PubMed PMC

Raveau S., Jordana F. Tissue engineering and three-dimensional printing in periodontal regeneration: a literature review. J. Clin. Med. 2020;9:4008. PubMed PMC

Chung J.H.Y., Naficy S., Yue Z., Kapsa R., Quigley A., Moulton S.E., Wallace G.G. Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 2013;1:763–773. PubMed

Olechnovič K., Venclovas Č. VoroMQA web server for assessing three-dimensional structures of proteins and protein complexes. Nucleic Acids Res. 2019;47:W437–W442. PubMed PMC

Babo P.S., Pires R.L., Santos L., Franco A., Rodrigues F., Leonor I., Reis R.L., Gomes M.E. Platelet lysate-loaded photocrosslinkable hyaluronic acid hydrogels for periodontal endogenous regenerative technology. ACS Biomater. Sci. Eng. 2017;3:1359–1369. PubMed

Pandya M., Diekwisch T.G.H. Enamel biomimetics—fiction or future of dentistry. Int. J. Oral Sci. 2019;11:8. PubMed PMC

da Silva K.T.L., Grazziotin-Soares R., de Miranda R.R., Novais V.R., Carvalho E.M., da Silva G.R., Bauer J., Carvalho C.N. Effect of an enamel matrix derivative (Emdogain) on the microhardness and chemical composition of human root dentin: an in vitro study. Sci. Rep. 2022;12:8874. PubMed PMC

Zhao T., Chen L., Yu C., He G., Lin H., Sang H., Chen Z., Hong Y., Sui W., Zhao J. Effect of injectable calcium alginate–amelogenin hydrogel on macrophage polarization and promotion of jawbone osteogenesis. RSC Adv. 2024;14:2016–2026. PubMed PMC

Feng L., Wang L., Hu C., Jiang X. Pharmacokinetics, tissue distribution, metabolism, and excretion of ginsenoside Rg 1 in rats. Arch Pharm. Res. (Seoul) 2010;33:1975–1984. PubMed

Kim J.H., Yi Y.-S., Kim M.-Y., Cho J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res. 2017;41:435–443. PubMed PMC

Jeon J.E., Vaquette C., Theodoropoulos C., Klein T.J., Hutmacher D.W. Multiphasic construct studied in an ectopic osteochondral defect model. J. R. Soc. Interface. 2014;11 PubMed PMC

Reis E.C.C., Borges A.P.B., Araújo M.V.F., Mendes V.C., Guan L., Davies J.E. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct. Biomaterials. 2011;32:9244–9253. PubMed

Ivanovski S., Vaquette C., Gronthos S., Hutmacher D.W., Bartold P.M. Multiphasic scaffolds for periodontal tissue engineering. J. Dent. Res. 2014;93:1212–1221. PubMed PMC

Filippi M., Born G., Chaaban M., Scherberich A. Natural polymeric scaffolds in bone regeneration. Front. Bioeng. Biotechnol. 2020;8 doi: 10.3389/fbioe.2020.00474. PubMed DOI PMC

Wasyłeczko M., Sikorska W., Chwojnowski A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes. 2020;10:348. PubMed PMC

Sowmya S., Mony U., Jayachandran P., Reshma S., Kumar R.A., Arzate H., V Nair S., Jayakumar R. Tri‐layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv. Healthcare Mater. 2017;6 PubMed

Yu Y., You Z., Li X., Lou F., Xiong D., Ye L., Wang Z. Injectable nanocomposite hydrogels with strong antibacterial, osteoinductive, and ROS-scavenging capabilities for periodontitis treatment. ACS Appl. Mater. Interfaces. 2024;16:14421–14433. PubMed

Roldan L., Montoya C., Solanki V., Cai K.Q., Yang M., Correa S., Orrego S. A novel injectable piezoelectric hydrogel for periodontal disease treatment. ACS Appl. Mater. Interfaces. 2023;15:43441–43454. PubMed

Le X.T., Rioux L.-E., Turgeon S.L. Formation and functional properties of protein–polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv. Colloid Interface Sci. 2017;239:127–135. PubMed

Davari N., Bakhtiary N., Khajehmohammadi M., Sarkari S., Tolabi H., Ghorbani F., Ghalandari B. Protein-based hydrogels: promising materials for tissue engineering. Polymers. 2022;14:986. PubMed PMC

Dinerman A.A., Cappello J., Ghandehari H., Hoag S.W. Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel. Biomaterials. 2002;23:4203–4210. PubMed

Li Y., Xue B., Cao Y. 100th anniversary of macromolecular science viewpoint: synthetic protein hydrogels. ACS Macro Lett. 2020;9:512–524. PubMed

Li Z., Meng X., Xu W., Zhang S., Ouyang J., Zhang Z., Liu Y., Niu Y., Ma S., Xue Z. Single network double cross-linker (SNDCL) hydrogels with excellent stretchability, self-recovery, adhesion strength, and conductivity for human motion monitoring. Soft Matter. 2020;16:7323–7331. PubMed

Itohiya H., Matsushima Y., Shirakawa S., Kajiyama S., Yashima A., Nagano T., Gomi K. Organic resolution function and effects of platinum nanoparticles on bacteria and organic matter. PLoS One. 2019;14 PubMed PMC

Jadhav K., Rajeshwari H.R., Deshpande S., Jagwani S., Dhamecha D., Jalalpure S., Subburayan K., Baheti D. Phytosynthesis of gold nanoparticles: characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry. Mater. Sci. Eng. C. 2018;93:664–670. PubMed

Azarpazhooh A., Shah P.S., Tenenbaum H.C., Goldberg M.B. The effect of photodynamic therapy for periodontitis: a systematic review and meta‐analysis. J. Periodontol. 2010;81:4–14. PubMed

Guo Y.-F., Fang W.-J., Fu J.-R., Wu Y., Zheng J., Gao G.-Q., Chen C., Yan R.-W., Huang S.-G., Wang C.-C. Facile synthesis of Ag@ ZIF-8 core-shell heterostructure nanowires for improved antibacterial activities. Appl. Surf. Sci. 2018;435:149–155.

Li J., Song S., Meng J., Tan L., Liu X., Zheng Y., Li Z., Yeung K.W.K., Cui Z., Liang Y. 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 2021;143:15427–15439. PubMed

Liu Y., Li T., Sun M., Cheng Z., Jia W., Jiao K., Wang S., Jiang K., Yang Y., Dai Z. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater. 2022;146:37–48. PubMed

Zou T., Liang Y., Kang J., Liu J., Kang W., Jiang S., Zhang C. Oxygen enrichment mediated by calcium peroxide loaded gelatin methacrylate hydrogel eradicates periodontal biofilms. Int. J. Biol. Macromol. 2024;265 PubMed

Seo B.-M., Miura M., Gronthos S., Bartold P.M., Batouli S., Brahim J., Young M., Robey P.G., Wang C.Y., Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–155. PubMed

Chien K.-H., Chang Y.-L., Wang M.-L., Chuang J.-H., Yang Y.-C., Tai M.-C., Wang C.-Y., Liu Y.-Y., Li H.-Y., Chen J.-T. Promoting induced pluripotent stem cell-driven biomineralization and periodontal regeneration in rats with maxillary-molar defects using injectable BMP-6 hydrogel. Sci. Rep. 2018;8:114. PubMed PMC

Asthana A., Kisaalita W.S. Microtissue size and hypoxia in HTS with 3D cultures. Drug Discov. Today. 2012;17:810–817. PubMed

Ylärinne J.H., Qu C., Lammi M.J. Scaffold-free approach produces neocartilage tissue of similar quality as the use of HyStemTM and HydromatrixTM scaffolds. J. Mater. Sci. Mater. Med. 2017;28:1–8. PubMed PMC

Eller K.I., Lehotay S.J. Evaluation of hydromatrix and magnesium sulfate drying agents for supercritical fluid extraction of multiple pesticides in produce. Analyst. 1997;122:429–435. PubMed

Nagy K., Láng O., Láng J., Perczel-Kovách K., Gyulai-Gaál S., Kádár K., Kőhidai L., Varga G. A novel hydrogel scaffold for periodontal ligament stem cells. Interv Med Appl Sci. 2018;10:162–170. PubMed PMC

Sun X., Gao J., Meng X., Lu X., Zhang L., Chen R. Polarized macrophages in periodontitis: characteristics, function, and molecular signaling. Front. Immunol. 2021;12 PubMed PMC

Mantovani A. Reflections on immunological nomenclature: in praise of imperfection. Nat. Immunol. 2016;17:215–216. PubMed

Gao Y., Li Y., Chen J., Zhu S., Liu X., Zhou L., Shi P., Niu D., Gu J., Shi J. Multifunctional gold nanostar-based nanocomposite: synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials. 2015;60:31–41. PubMed

Chen M., Zhang Y., Zhou P., Liu X., Zhao H., Zhou X., Gu Q., Li B., Zhu X., Shi Q. Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway. Bioact. Mater. 2020;5:880–890. PubMed PMC

Kang H., Wong S.H.D., Pan Q., Li G., Bian L. Anisotropic ligand nanogeometry modulates the adhesion and polarization state of macrophages. Nano Lett. 2019;19:1963–1975. PubMed

Kang H., Kim S., Wong D.S.H., Jung H.J., Lin S., Zou K., Li R., Li G., Dravid V.P., Bian L. Remote manipulation of ligand nano-oscillations regulates adhesion and polarization of macrophages in vivo. Nano Lett. 2017;17:6415–6427. PubMed

Wong D.S.H., Li J., Yan X., Wang B., Li R., Zhang L., Bian L. Magnetically tuning tether mobility of integrin ligand regulates adhesion, spreading, and differentiation of stem cells. Nano Lett. 2017;17:1685–1695. PubMed

Wong S.H.D., Yin B., Yang B., Lin S., Li R., Feng Q., Yang H., Zhang L., Yang Z., Li G. Anisotropic nanoscale presentation of cell adhesion ligand enhances the recruitment of diverse integrins in adhesion structures and mechanosensing‐dependent differentiation of stem cells. Adv. Funct. Mater. 2019;29

Shiroud Heidari B., Ruan R., De-Juan-Pardo E.M., Zheng M., Doyle B. Biofabrication and signaling strategies for tendon/ligament interfacial tissue engineering. ACS Biomater. Sci. Eng. 2021;7:383–399. doi: 10.1021/acsbiomaterials.0c00731. PubMed DOI

Wong S.H.D., Wong W.K.R., Lai C.H.N., Oh J., Li Z., Chen X., Yuan W., Bian L. Soft polymeric matrix as a macroscopic cage for magnetically modulating reversible nanoscale ligand presentation. Nano Lett. 2020;20:3207–3216. PubMed

He X.-T., Li X., Xia Y., Yin Y., Wu R.-X., Sun H.-H., Chen F.-M. Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: experimental studies in vitro and in rats. Acta Biomater. 2019;88:162–180. PubMed

Pugliese R., Gelain F. Peptidic biomaterials: from self-assembling to regenerative medicine. Trends Biotechnol. 2017;35:145–158. PubMed

Aggeli A., Bell M., Boden N., Keen J.N., Knowles P.F., McLeish T.C.B., Pitkeathly M., Radford S.E. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Nature. 1997;386:259–262. PubMed

Maude S., Ingham E., Aggeli A. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine. 2013;8:823–847. PubMed

Firth A., Aggeli A., Burke J.L., Yang X., Kirkham J. 2006. Biomimetic Self-Assembling Peptides as Injectable Scaffolds for Hard Tissue Engineering. PubMed

Suda S., Takamizawa T., Takahashi F., Tsujimoto A., Akiba S., Nagura Y., Kurokawa H., Miyazaki M. Application of the self-assembling peptide P11-4 for prevention of acidic erosion. Oper Dent. 2018;43:E166–E172. PubMed

Wierichs R.J., Kogel J., Lausch J., Esteves-Oliveira M., Meyer-Lueckel H. Effects of self-assembling peptide P11-4, fluorides, and caries infiltration on artificial enamel caries lesions in vitro. Caries Res. 2017;51:451–459. PubMed

Koch F., Meyer N., Valdec S., Jung R.E., Mathes S.H. Development and application of a 3D periodontal in vitro model for the evaluation of fibrillar biomaterials. BMC Oral Health. 2020;20:1–12. PubMed PMC

Bommer C., Waller T., Hilbe M., Wiedemeier D., Meyer N., Mathes S., Jung R. Efficacy and safety of P11-4 for the treatment of periodontal defects in dogs. Clin. Oral Invest. 2022;26:3151–3166. PubMed PMC

Aveic S., Craveiro R.B., Wolf M., Fischer H. Current trends in in vitro modeling to mimic cellular crosstalk in periodontal tissue. Adv. Healthcare Mater. 2021;10 PubMed PMC

Cui X., Li J., Hartanto Y., Durham M., Tang J., Zhang H., Hooper G., Lim K., Woodfield T. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel‐based bioinks. Adv. Healthcare Mater. 2020;9 PubMed

Raveendran N.T., Vaquette C., Meinert C., Ipe D.S., Ivanovski S. Optimization of 3D bioprinting of periodontal ligament cells. Dent. Mater. 2019;35:1683–1694. PubMed

Liu S., Wang Y.-N., Ma B., Shao J., Liu H., Ge S. Gingipain-responsive thermosensitive hydrogel loaded with SDF-1 facilitates in situ periodontal tissue regeneration. ACS Appl. Mater. Interfaces. 2021;13:36880–36893. PubMed

Fan Z., Qin Y., Liu S., Xing R., Yu H., Chen X., Li K., Li P. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydr. Polym. 2018;190:1–11. PubMed

Liu T., Li J., Tang Q., Qiu P., Gou D., Zhao J. Chitosan-based materials: an overview of potential applications in food packaging. Foods. 2022;11:1490. PubMed PMC

Li M., Lv J., Yang Y., Cheng G., Guo S., Liu C., Ding Y. Advances of hydrogel therapy in periodontal regeneration—a materials perspective review. Gels. 2022;8:624. PubMed PMC

Chen Y., Zhang F., Fu Q., Liu Y., Wang Z., Qi N. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel. J. Biomater. Appl. 2016;31:317–327. PubMed

Wassif R.K., Elkheshen S.A., Shamma R.N., Amer M.S., Elhelw R., El-Kayal M. Injectable systems of chitosan in situ forming composite gel incorporating linezolid-loaded biodegradable nanoparticles for long-term treatment of bone infections. Drug Deliv Transl Res. 2024;14:80–102. PubMed PMC

Huang Z., Chen Y., Feng Q.-L., Zhao W., Yu B., Tian J., Li S.-J., Lin B.-M. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells. Front. Mater. Sci. 2011;5:301–310.

Letchmanan K., Shen S.-C., Ng W.K., Kingshuk P., Shi Z., Wang W., Tan R.B.H. Mechanical properties and antibiotic release characteristics of poly (methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles. J. Mech. Behav. Biomed. Mater. 2017;72:163–170. PubMed

Larsson S., Hannink G. Injectable bone-graft substitutes: current products, their characteristics and indications, and new developments. Injury. 2011;42:S30–S34. PubMed

Shi M., Kretlow J.D., Nguyen A., Young S., Baggett L.S., Wong M.E., Kasper F.K., Mikos A.G. Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control. Biomaterials. 2010;31:4146–4156. PubMed PMC

Sa Y., Yang F., Leeuwenburgh S.C.G., Wolke J.G.C., Ye G., de Wijn J.R., Jansen J.A., Wang Y. Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles. J. Biomed. Mater. Res. B Appl. Biomater. 2015;103:548–555. PubMed

Li T., Weng X., Bian Y., Zhou L., Cui F., Qiu Z. Influence of nano-HA coated bone collagen to acrylic (polymethylmethacrylate) bone cement on mechanical properties and bioactivity. PLoS One. 2015;10 PubMed PMC

Sa Y., Wang M., Deng H., Wang Y., Jiang T. Beneficial effects of biomimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan–glycerophosphate hydrogel on the performance of injectable polymethylmethacrylate. RSC Adv. 2015;5:91082–91092.

Hämmerle C.H.F., Olah A.J., rg Schmid J., Fl¨ ckiger L., Gogolewski S., Winkler J.R., Lang N.P. The biological effect of natural bone mineral on bone neoformation on the rabbit skull. Clin. Oral Implants Res. 1997;8:198–207. PubMed

Liao F., Chen Y., Li Z., Wang Y., Shi B., Gong Z., Cheng X. A novel bioactive three-dimensional β-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J. Mater. Sci. Mater. Med. 2010;21:489–496. PubMed

Janmey P.A., Winer J.P., Weisel J.W. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface. 2009;6:1–10. PubMed PMC

Ruangsawasdi N., Zehnder M., Weber F.E. Fibrin gel improves tissue ingrowth and cell differentiation in human immature premolars implanted in rats. J. Endod. 2014;40:246–250. PubMed

Ducret M., Montembault A., Josse J., Pasdeloup M., Celle A., Benchrih R., Mallein-Gerin F., Alliot-Licht B., David L., Farges J.-C. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dent. Mater. 2019;35:523–533. PubMed

Yang M., Du D., Hao Y., Meng Z., Zhang H., Liu Y. Preparation of an injectable zinc-containing hydrogel with double dynamic bond and its potential application in the treatment of periodontitis. RSC Adv. 2024;14:19312–19321. PubMed PMC

Lin T., Hsu S. Self‐healing hydrogels and cryogels from biodegradable polyurethane nanoparticle crosslinked chitosan. Adv. Sci. 2020;7 PubMed PMC

Arpornmaeklong P., Sareethammanuwat M., Apinyauppatham K., Boonyuen S. Characteristics and biologic effects of thermosensitive quercetin‐chitosan/collagen hydrogel on human periodontal ligament stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 2021;109:1656–1670. PubMed

Zhang Y., Dou X., Zhang L., Wang H., Zhang T., Bai R., Sun Q., Wang X., Yu T., Wu D. Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration. Bioact. Mater. 2022;11:130–139. PubMed PMC

Yan X.-Z., van den Beucken J.J.J.P., Cai X., Yu N., Jansen J.A., Yang F. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading. Tissue Eng Part A. 2015;21:1066–1076. PubMed PMC

Chanaj-Kaczmarek J., Osmałek T., Szymańska E., Winnicka K., Karpiński T.M., Dyba M., Bekalarska-Dębek M., Cielecka-Piontek J. Development and evaluation of thermosensitive hydrogels with binary mixture of scutellariae baicalensis radix extract and chitosan for periodontal diseases treatment. Int. J. Mol. Sci. 2021;22 PubMed PMC

Mou J., Liu Z., Liu J., Lu J., Zhu W., Pei D. Hydrogel containing minocycline and zinc oxide-loaded serum albumin nanopartical for periodontitis application: preparation, characterization and evaluation. Drug Deliv. 2019;26:179–187. PubMed PMC

Liu Y., Liu C., Wang C., Zhang Q., Qu X., Liang C., Si C., Wang L. Treatment of periodontal inflammation in diabetic rats with IL-1ra thermosensitive hydrogel. Int. J. Mol. Sci. 2022;23 PubMed PMC

Wang Q., Chen S., Chen D. Preparation and characterization of chitosan based injectable hydrogels enhanced by chitin nano-whiskers. J. Mech. Behav. Biomed. Mater. 2017;65:466–477. PubMed

Kumar R.A., Sivashanmugam A., Deepthi S., Bumgardner J.D., V Nair S., Jayakumar R. Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis. Carbohydr. Polym. 2016;140:144–153. PubMed

Nimal T.R., Baranwal G., Bavya M.C., Biswas R., Jayakumar R. Anti-staphylococcal activity of injectable nano tigecycline/chitosan-PRP composite hydrogel using Drosophila melanogaster model for infectious wounds. ACS Appl. Mater. Interfaces. 2016;8:22074–22083. PubMed

Lo K.W.-H., Jiang T., Gagnon K.A., Nelson C., Laurencin C.T. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol. 2014;32:74–81. PubMed PMC

Burdick J.A., Prestwich G.D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011;23 doi: 10.1002/adma.201003963. PubMed DOI PMC

Chen M., Li L., Wang Z., Li P., Feng F., Zheng X. High molecular weight hyaluronic acid regulates P. gingivalis–induced inflammation and migration in human gingival fibroblasts via MAPK and NF-κB signaling pathway. Arch. Oral Biol. 2019;98:75–80. PubMed

Hu Z., Lv X., Zhang H., Zhuang S., Zheng K., Zhou T., Cen L. An injectable gel based on photo-cross-linkable hyaluronic acid and mesoporous bioactive glass nanoparticles for periodontitis treatment. Int. J. Biol. Macromol. 2024;257 PubMed

Silva C.R., Babo P.S., Gulino M., Costa L., Oliveira J.M., Silva-Correia J., Domingues R.M.A., Reis R.L., Gomes M.E. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater. 2018;77:155–171. PubMed

Yu Y., Li X., Ying Q., Zhang Z., Liu W., Su J. Synergistic effects of shed-derived exosomes, Cu2+, and an injectable hyaluronic acid hydrogel on antibacterial, anti-inflammatory, and osteogenic activity for periodontal bone regeneration. ACS Appl. Mater. Interfaces. 2024;16:33053–33069. PubMed

Özçelik H., Batool F., Corre M., Garlaschelli A., Conzatti G., Stutz C., Petit C., Delpy E., Zal F., Leize-Zal E. Characterization of a hyaluronic acid-based hydrogel containing an extracellular oxygen carrier (M101) for periodontitis treatment: an in vitro study. Int. J. Pharm. 2021;605 PubMed

Chen N., Ren R., Wei X., Mukundan R., Li G., Xu X., Zhao G., Zhao Z., Lele S.M., Reinhardt R.A. Thermoresponsive hydrogel-based local delivery of simvastatin for the treatment of periodontitis. Mol. Pharm. 2021;18:1992–2003. PubMed PMC

Tong X., Qi X., Mao R., Pan W., Zhang M., Wu X., Chen G., Shen J., Deng H., Hu R. Construction of functional curdlan hydrogels with bio-inspired polydopamine for synergistic periodontal antibacterial therapeutics. Carbohydr. Polym. 2020;245 PubMed

Oliveira I.M., Gonçalves C., Shin M.E., Lee S., Reis R.L., Khang G., Oliveira J.M. Anti-inflammatory properties of injectable betamethasone-loaded tyramine-modified gellan gum/silk fibroin hydrogels. Biomolecules. 2020;10:1456. PubMed PMC

Xiong X., Xiao W., Zhou S., Cui R., Xu H.H.K., Qu S. Enhanced proliferation and angiogenic phenotype of endothelial cells via negatively-charged alginate and chondroitin sulfate microsphere hydrogels. Biomed. Mater. 2021;16 PubMed

Wang D.K., Varanasi S., Strounina E., Hill D.J.T., Symons A.L., Whittaker A.K., Rasoul F. Synthesis and characterization of a POSS-PEG macromonomer and POSS-PEG-PLA hydrogels for periodontal applications. Biomacromolecules. 2014;15:666–679. PubMed

Fraser D., Benoit D. Dual peptide-functionalized hydrogels differentially control periodontal cell function and promote tissue regeneration. Biomater. Adv. 2022;141 PubMed PMC

Pan J., Tian H., Xu S., Zhang L., Ding J., Wang H., Yu L., Fu W., Liu X. Sustained delivery of chemically modified mRNA encoding amelogenin from self-assembling hydrogels for periodontal regeneration. Compos. B Eng. 2024;271

Liu H., Li M., Du L., Yang P., Ge S. Local administration of stromal cell-derived factor-1 promotes stem cell recruitment and bone regeneration in a rat periodontal bone defect model. Mater. Sci. Eng. C. 2015;53:83–94. PubMed

Mojsoska B., Jenssen H. Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals. 2015;8:366–415. PubMed PMC

Qaiser M., Asmatullah M., Shahwar D., Aqeel M., Ameer N., Mahmood K., Hanif M., Chughtai F.R.S., Abid H.M.U., Bukhari S.W. A yeast–malic acid crosslinker/polyacrylic acid hydrogel containing doxycycline for the treatment of periodontitis. RSC Adv. 2024;14:25174–25189. PubMed PMC

Jeong J.-O., Park J.-S., Kim E.J., Jeong S.-I., Lee J.Y., Lim Y.-M. Preparation of radiation cross-linked poly (Acrylic acid) hydrogel containing metronidazole with enhanced antibacterial activity. Int. J. Mol. Sci. 2020;21:187. PubMed PMC

Boonlai W., Tantishaiyakul V., Hirun N., Sangfai T., Suknuntha K. Thermosensitive poloxamer 407/poly (acrylic acid) hydrogels with potential application as injectable drug delivery system. AAPS PharmSciTech. 2018;19:2103–2117. PubMed

Chenicheri S., Ramachandran R., Rajamanikam U. Antimicrobial effects of hydroxyapatite mosaicked polyvinyl alcohol-alginate semi-interpenetrating hydrogel-loaded with ethanolic extract of Glycyrrhiza glabra against oral pathogens. Prog. Biomater. 2022;11:373–383. PubMed PMC

Dong Z., Sun Y., Chen Y., Liu Y., Tang C., Qu X. Injectable adhesive hydrogel through a microcapsule cross-link for periodontitis treatment. ACS Appl. Bio Mater. 2019;2:5985–5994. PubMed

Kerdmanee K., Phaechamud T., Limsitthichaikoon S. Thermoresponsive azithromycin-loaded niosome gel based on poloxamer 407 and hyaluronic interactions for periodontitis treatment. Pharmaceutics. 2022;14:2032. PubMed PMC

Liu S., Wang Y., Yu L., Li J., Ge S. Development of a thermosensitive hydrogel loaded with DTT and SDF-1 facilitating in situ periodontal bone regeneration. Chem. Eng. J. 2022;432

Shue L., Yufeng Z., Mony U. Biomaterials for periodontal regeneration: a review of ceramics and polymers. Biomatter. 2012;2:271–277. PubMed PMC

Zussman M., Giladi S., Zilberman M. In vitro characterization of injectable chlorhexidine‐eluting gelatin hydrogels for local treatment of periodontal infections. Polym. Adv. Technol. 2022;33:3810–3821.

Pereira K.A.B., Aguiar K.L.N.P., Oliveira P.F., Vicente B.M., Pedroni L.G., Mansur C.R.E. Synthesis of hydrogel nanocomposites based on partially hydrolyzed polyacrylamide, polyethyleneimine, and modified clay. ACS Omega. 2020;5:4759–4769. PubMed PMC

Moghanian A., Cecen B., Nafisi N., Miri Z., Rosenzweig D.H., Miri A.K. Review of current literature for vascularized biomaterials in dental repair. Biochem. Eng. J. 2022;187

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...