Smart injectable hydrogels for periodontal regeneration: Recent advancements in biomaterials and biofabrication strategies
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40487163
PubMed Central
PMC12145717
DOI
10.1016/j.mtbio.2025.101855
PII: S2590-0064(25)00415-6
Knihovny.cz E-zdroje
- Klíčová slova
- Injectable hydrogel, Local drug delivery system, Periodontal regeneration, Periodontitis, Tissue engineering,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Periodontitis is a globally prevalent chronic inflammatory disease that leads to periodontal pocket formation and eventually destroys tooth-supporting structures. Hence, the drastic increase in dental implants for periodontitis has become a severe clinical issue. Injectable hydrogel based on extracellular matrix (ECM) is highly biocompatible and tissue-regenerative with tailor-made mechanical properties and high payload capacity for in situ delivery of bioactive molecules to treat periodontitis. This therapeutic tool not only enhances the drug release efficiency and treatment efficacy but also reduces operation time. Nevertheless, it remains challenging to optimize the mechanical properties and intelligent control drug release rate of injectable hydrogels to achieve the highest therapeutic outcome. Literature precedent has shown the modulation of polymer backbones (synthetic polymers, natural polysaccharides, and proteins), crosslinking strategies, other bioactive constituents, and potentially the incorporation of nanomaterials that overall improve the desirable physiochemical and biological performances as well as biodegradability. In this review, we summarize the recent advances in the development, design, and material characterizations of common injectable hydrogels. Furthermore, we highlight cutting-edge representative examples of polysaccharide-, protein- and nanocomposite-based hydrogels that mediate regenerative factors and anti-inflammatory drugs for periodontal regeneration. Finally, we express our perspectives on potential challenges and future development of multifunctional injectable hydrogels for periodontitis.
Department of Biomedical Engineering Chang Gung University Taoyuan 33302 Taiwan
Department of Orthopaedic Surgery New Taipei Municipal Tucheng Hospital New Taipei 236 Taiwan
Department of Periodontics Chang Gung Memorial Hospital Taipei 10507 Taiwan
School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
Zobrazit více v PubMed
Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015;15:30–44. PubMed PMC
Clark D., Kotronia E., Ramsay S.E. Frailty, aging, and periodontal disease: basic biologic considerations. Periodontol. 2000. 2021;87:143–156. PubMed PMC
Jain N., Jain G.K., Javed S., Iqbal Z., Talegaonkar S., Ahmad F.J., Khar R.K. Recent approaches for the treatment of periodontitis. Drug Discov. Today. 2008;13:932–943. PubMed
Chen E., Wang T., Tu Y., Sun Z., Ding Y., Gu Z., Xiao S. ROS-scavenging biomaterials for periodontitis. J. Mater. Chem. B. 2023;11:482–499. PubMed
Kaldahl W.B., Kalkwarf K.L., Patil K.D., Dyer J.K., Bates R.E., Jr. Evaluation of four modalities of periodontal therapy: mean probing depth, probing attachment level and recession changes. J. Periodontol. 1988;59:783–793. PubMed
Slots J. Periodontitis: facts, fallacies and the future. Periodontol. 2000. 2017;75:7–23. PubMed
Kirou K.A., DallEra M., Aranow C., Anders H.-J. Belimumab or anifrolumab for systemic lupus erythematosus? A risk-benefit assessment. Front. Immunol. 2022;13 PubMed PMC
Walker C.B. The acquisition of antibiotic resistance in the periodontal microflora. Periodontol. 2000. 1996;10:79–88. PubMed
Barça E., Çifcibaşı E., Çintan S. Adjunctive use of antibiotics in periodontal therapy. J. Istanbul Univ. Fac. Dent. 2015;49:55–62. PubMed PMC
Chen F.-M., Gao L.-N., Tian B.-M., Zhang X.-Y., Zhang Y.-J., Dong G.-Y., Lu H., Chu Q., Xu J., Yu Y. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: a randomized clinical trial. Stem Cell Res. Ther. 2016;7:1–11. PubMed PMC
Eke G., Mangir N., Hasirci N., MacNeil S., Hasirci V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials. 2017;129:188–198. PubMed
Larsson L., Decker A.M., Nibali L., Pilipchuk S.P., Berglundh T., V Giannobile W. Regenerative medicine for periodontal and peri-implant diseases. J. Dent. Res. 2016;95:255–266. PubMed PMC
Bottino M.C., Thomas V., Schmidt G., Vohra Y.K., Chu T.-M.G., Kowolik M.J., Janowski G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent. Mater. 2012;28:703–721. PubMed
Mirzaeei S., Ezzati A., Mehrandish S., Asare-Addo K., Nokhodchi A. An overview of guided tissue regeneration (GTR) systems designed and developed as drug carriers for management of periodontitis. J. Drug Deliv. Sci. Technol. 2022;71
Elgali I., Omar O., Dahlin C., Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017;125:315–337. PubMed PMC
Li P., Feng M., Hu X., Zhang C., Zhu J., Xu G., Li L., Zhao Y. Biological evaluation of acellular bovine bone matrix treated with NaOH. J. Mater. Sci. Mater. Med. 2022;33:58. PubMed PMC
Rodriguez A.E., Nowzari H. The long-term risks and complications of bovine-derived xenografts: a case series. J. Indian Soc. Periodontol. 2019;23:487–492. PubMed PMC
Liu P., Zhang Y., Ma Y., Tan S., Ren B., Liu S., Dai H., Xu Z. Application of dental pulp stem cells in oral maxillofacial tissue engineering. Int. J. Med. Sci. 2022;19:310. PubMed PMC
Mosaddad S.A., Rasoolzade B., Namanloo R.A., Azarpira N., Dortaj H. Stem cells and common biomaterials in dentistry: a review study. J. Mater. Sci. Mater. Med. 2022;33:55. PubMed PMC
Wang W., Wang A., Hu G., Bian M., Chen L., Zhao Q., Sun W., Wu Y. Potential of an aligned porous hydrogel scaffold combined with periodontal ligament stem cells or gingival mesenchymal stem cells to promote tissue regeneration in rat periodontal defects. ACS Biomater. Sci. Eng. 2023;9:1961–1975. PubMed
Wang Y., Zhang S., Benoit D.S.W. Degradable poly (ethylene glycol)(PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery. J. Contr. Release. 2018;287:58–66. PubMed PMC
Clegg J.R., Adebowale K., Zhao Z., Mitragotri S. Hydrogels in the clinic: an update. Bioeng Transl Med. 2024;9 PubMed PMC
Kopeček J. Hydrogel biomaterials: a smart future? Biomaterials. 2007;28:5185–5192. PubMed PMC
Basu S., Pacelli S., Paul A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater. 2020;105:159–169. PubMed
Garshasbi H., Salehi S., Naghib S.M., Ghorbanzadeh S., Zhang W. Stimuli-responsive injectable chitosan-based hydrogels for controlled drug delivery systems. Front. Bioeng. Biotechnol. 2023;10 PubMed PMC
Li Y., Yang H.Y., Lee D.S. Advances in biodegradable and injectable hydrogels for biomedical applications. J. Contr. Release. 2021;330:151–160. PubMed
Lee Y., Gou Y., Pan X., Gu Z., Xie H. Advances of multifunctional hydrogels for periodontal disease. Smart Mater. Med. 2023;4:460–467.
Guo H., Huang S., Yang X., Wu J., Kirk T.B., Xu J., Xu A., Xue W. Injectable and self-healing hydrogels with double-dynamic bond tunable mechanical, gel–sol transition and drug delivery properties for promoting periodontium regeneration in periodontitis. ACS Appl. Mater. Interfaces. 2021;13:61638–61652. PubMed
Feng Q., Zhang M., Zhang G., Mei H., Su C., Liu L., Wang X., Wan Z., Xu Z., Hu L. A whole-course-repair system based on ROS/glucose stimuli-responsive EGCG release and tunable mechanical property for efficient treatment of chronic periodontitis in diabetic rats. J. Mater. Chem. B. 2024;12:3719–3740. PubMed
Correa S., Grosskopf A.K., Lopez Hernandez H., Chan D., Yu A.C., Stapleton L.M., Appel E.A. Translational applications of hydrogels. Chem. Rev. 2021;121:11385–11457. PubMed PMC
Zhang Y.S., Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356 1979. PubMed PMC
Chi M., Qi M., Wang P., Weir M.D., Melo M.A., Sun X., Dong B., Li C., Wu J., Wang L. Novel bioactive and therapeutic dental polymeric materials to inhibit periodontal pathogens and biofilms. Int. J. Mol. Sci. 2019;20:278. PubMed PMC
Kapferer-Seebacher I., Oakley-Hannibal E., Lepperdinger U., Johnson D., Ghali N., Brady A.F., Sobey G., Zschocke J., van Dijk F.S. Prospective clinical investigations of children with periodontal Ehlers–Danlos syndrome identify generalized lack of attached gingiva as a pathognomonic feature. Genet. Med. 2021;23:316–322. PubMed
Bidarra S.J., Barrias C.C., Granja P.L. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater. 2014;10:1646–1662. PubMed
Lokhande G., Carrow J.K., Thakur T., Xavier J.R., Parani M., Bayless K.J., Gaharwar A.K. Nanoengineered injectable hydrogels for wound healing application. Acta Biomater. 2018;70:35–47. PubMed PMC
Ma M., Zhong Y., Jiang X. Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing. Carbohydr. Polym. 2020;236 PubMed
Ding C., Zhao L., Liu F., Cheng J., Gu J., Dan S.-, Liu C., Qu X., Yang Z. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Biomacromolecules. 2010;11:1043–1051. PubMed
Shinde U.P., Yeon B., Jeong B. Recent progress of in situ formed gels for biomedical applications. Prog. Polym. Sci. 2013;38:672–701.
Ding X., Wang Y., Liu J., Zhang P., Li G., Sun T., Xiao C. Injectable in situ forming double-network hydrogel to enhance transplanted cell viability and retention. Chem. Mater. 2021;33:5885–5895.
Zhao Y., Cui Z., Liu B., Xiang J., Qiu D., Tian Y., Qu X., Yang Z. An injectable strong hydrogel for bone reconstruction. Adv. Healthcare Mater. 2019;8 PubMed
Woo H.N., Cho Y.J., Tarafder S., Lee C.H. The recent advances in scaffolds for integrated periodontal regeneration. Bioact. Mater. 2021;6:3328–3342. PubMed PMC
Quan Y., Shao H., Wang N., Gao Z., Jin M. Microenvironment-sensitive hydrogels as promising drug delivery systems for co-encapsulating microbial homeostasis probiotics and anti-inflammatory drugs to treat periodontitis. Mater. Today Bio. 2025 PubMed PMC
Johnson A., Kong F., Miao S., Lin H.-T.V., Thomas S., Huang Y.-C., Kong Z.-L. Therapeutic effects of antibiotics loaded cellulose nanofiber and κ-carrageenan oligosaccharide composite hydrogels for periodontitis treatment. Sci. Rep. 2020;10 PubMed PMC
Øvrebø Ø., Perale G., Wojciechowski J.P., Echalier C., Jeffers J.R.T., Stevens M.M., Haugen H.J., Rossi F. Design and clinical application of injectable hydrogels for musculoskeletal therapy. Bioeng Transl Med. 2022;7 PubMed PMC
Zhu W., Liu Y.-W., Zhou L.-Z., Weng X.-S. Strategy of injectable hydrogel and its application in tissue engineering. Chin Med J (Engl) 2021;134:275–277. PubMed PMC
Mastropietro D.J., Omidian H., Park K. Drug delivery applications for superporous hydrogels. Expet Opin. Drug Deliv. 2012;9:71–89. PubMed
Torchilin V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014;13:813–827. PubMed PMC
Ye F., Barrefelt Å., Asem H., Abedi-Valugerdi M., El-Serafi I., Saghafian M., Abu-Salah K., Alrokayan S., Muhammed M., Hassan M. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials. 2014;35:3885–3894. PubMed
Blasiak B., van Veggel F.C.J.M., Tomanek B. Applications of nanoparticles for MRI cancer diagnosis and therapy. J. Nanomater. 2013;2013
Kong K., Kendall C., Stone N., Notingher I. Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 2015;89:121–134. PubMed
Lanzalaco S., Armelin E. Poly (N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels. 2017;3:36. PubMed PMC
Saino E., Focarete M.L., Gualandi C., Emanuele E., Cornaglia A.I., Imbriani M., Visai L. Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules. 2011;12:1900–1911. PubMed
Li Y., Peng H., Tang W., Gu D., Ren S., Yu Y., Yang J., Miao L. Accelerating periodontal regeneration through injectable hydrogel-enabled sequential delivery of nanoceria and erythropoietin. Mater. Des. 2023;225
Xu X., Gu Z., Chen X., Shi C., Liu C., Liu M., Wang L., Sun M., Zhang K., Liu Q. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater. 2019;86:235–246. PubMed
Cheng Y.-H., Yang S.-H., Su W.-Y., Chen Y.-C., Yang K.-C., Cheng W.T.-K., Wu S.-C., Lin F.-H. Thermosensitive chitosan–gelatin–glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitro study. Tissue Eng Part A. 2010;16:695–703. PubMed
El-Husseiny H.M., Mady E.A., El-Dakroury W.A., Zewail M.B., Noshy M., Abdelfatah A.M., Doghish A.S. Smart/stimuli-responsive hydrogels: state-of-the-art platforms for bone tissue engineering. Appl. Mater. Today. 2022;29
El Sayed M.M. Production of polymer hydrogel composites and their applications. J. Polym. Environ. 2023;31:2855–2879.
Catoira M.C., Fusaro L., Di Francesco D., Ramella M., Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019;30:115. doi: 10.1007/s10856-019-6318-7. PubMed DOI PMC
Zussman M., Zilberman M. Injectable metronidazole-eluting gelatin-alginate hydrogels for local treatment of periodontitis. J. Biomater. Appl. 2022;37:166–179. PubMed
Yang Y., Yuan J., Ni Y., Gu Y., Zhou J., Yuan W., Xu S., Che L., Zheng S.Y., Sun W. Spatiotemporal self-strengthening hydrogels for oral tissue regeneration. Compos. B Eng. 2022;243
Bertsch P., Diba M., Mooney D.J., Leeuwenburgh S.C.G. Self-healing injectable hydrogels for tissue regeneration. Chem. Rev. 2022;123:834–873. PubMed PMC
Kurian A.G., Singh R.K., Patel K.D., Lee J.-H., Kim H.-W. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mater. 2022;8:267–295. PubMed PMC
Xing X., Su J., Liu Y., Lin H., Wang Y., Cheng H. A novel visible light-curing chitosan-based hydrogel membrane for guided tissue regeneration. Colloids Surf. B Biointerfaces. 2022;218 PubMed
Chichiricco P.M., Riva R., Thomassin J.-M., Lesoeur J., Struillou X., Le Visage C., Jérôme C., Weiss P. In situ photochemical crosslinking of hydrogel membrane for guided tissue regeneration. Dent. Mater. 2018;34:1769–1782. PubMed
Huang C.-C., Kang M., Shirazi S., Lu Y., Cooper L.F., Gajendrareddy P., Ravindran S. 3D Encapsulation and tethering of functionally engineered extracellular vesicles to hydrogels. Acta Biomater. 2021;126:199–210. PubMed PMC
Li N., Xie L., Wu Y., Wu Y., Liu Y., Gao Y., Yang J., Zhang X., Jiang L. Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment. Mater. Today Bio. 2022;16 PubMed PMC
Ma Y., Ji Y., Zhong T., Wan W., Yang Q., Li A., Zhang X., Lin M. Bioprinting-based PDLSC-ECM screening for in vivo repair of alveolar bone defect using cell-laden, injectable and photocrosslinkable hydrogels. ACS Biomater. Sci. Eng. 2017;3:3534–3545. PubMed
Qu L., Dubey N., Ribeiro J.S., Bordini E.A.F., Ferreira J.A., Xu J., Castilho R.M., Bottino M.C. Metformin-loaded nanospheres-laden photocrosslinkable gelatin hydrogel for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2021;116 PubMed PMC
Williams C.G., Malik A.N., Kim T.K., Manson P.N., Elisseeff J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials. 2005;26:1211–1218. PubMed
Mironi-Harpaz I., Wang D.Y., Venkatraman S., Seliktar D. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 2012;8:1838–1848. PubMed
Li D., Fei X., Wang K., Xu L., Wang Y., Tian J., Li Y. A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing. J. Mater. Chem. B. 2021;9:6844–6855. PubMed
Dong Z., Sun Y., Chen Y., Liu Y., Tang C., Qu X. Injectable adhesive hydrogel through a microcapsule cross-link for periodontitis treatment. ACS Appl. Bio Mater. 2019;2:5985–5994. PubMed
Draget K.I., Skjåk-Bræk G., Smidsrød O. Alginate based new materials. Int. J. Biol. Macromol. 1997;21:47–55. PubMed
Yang J., Chen J., Pan D., Wan Y., Wang Z. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr. Polym. 2013;92:719–725. PubMed
Lee K.Y., Mooney D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. PubMed PMC
Bashir S., Hina M., Iqbal J., Rajpar A.H., Mujtaba M.A., Alghamdi N.A., Wageh S., Ramesh K., Ramesh S. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. 2020;12:2702. PubMed PMC
Ulery B.D., Nair L.S., Laurencin C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 2011;49:832–864. PubMed PMC
Heidari B.S., Dodda J.M., El-Khordagui L.K., Focarete M.L., Maroti P., Toth L., Pacilio S., El-Habashy S.E., Boateng J., Catanzano O. Emerging materials and technologies for advancing bioresorbable surgical meshes. Acta Biomater. 2024;184:1–21. PubMed
Davachi S.M., Heidari B.S., Madormo V.A., DeSpirito T.M., Jabbari E. 2023. Biocompatible Polymers for 3D Printing, Emerging Technologies in Biophysical Sciences: A World Scientific Reference: Volume 1: Emerging Technologies for Biofabrication and Biomanufacturing; pp. 63–101.
Hori Y., Stern P.J., Hynes R.O., Irvine D.J. Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy. Biomaterials. 2009;30:6757–6767. PubMed PMC
Tsai T.-Y., Shen K.-H., Chang C.-W., Jovanska L., Wang R., Yeh Y.-C. In situ formation of nanocomposite double-network hydrogels with shear-thinning and self-healing properties. Biomater. Sci. 2021;9:985–999. PubMed
Gaharwar A.K., Peppas N.A., Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 2014;111:441–453. PubMed PMC
Guvendiren M., Molde J., Soares R.M.D., Kohn J. Designing biomaterials for 3D printing. ACS Biomater. Sci. Eng. 2016;2:1679–1693. PubMed PMC
Rutz A.L., Hyland K.E., Jakus A.E., Burghardt W.R., Shah R.N. A multi-material bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 2015;27:1607. PubMed PMC
Tahir M., Vicini S., Sionkowska A. Electrospun materials based on polymer and biopolymer blends—a review. Polymers. 2023;15:1654. PubMed PMC
Raveau S., Jordana F. Tissue engineering and three-dimensional printing in periodontal regeneration: a literature review. J. Clin. Med. 2020;9:4008. PubMed PMC
Chung J.H.Y., Naficy S., Yue Z., Kapsa R., Quigley A., Moulton S.E., Wallace G.G. Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 2013;1:763–773. PubMed
Olechnovič K., Venclovas Č. VoroMQA web server for assessing three-dimensional structures of proteins and protein complexes. Nucleic Acids Res. 2019;47:W437–W442. PubMed PMC
Babo P.S., Pires R.L., Santos L., Franco A., Rodrigues F., Leonor I., Reis R.L., Gomes M.E. Platelet lysate-loaded photocrosslinkable hyaluronic acid hydrogels for periodontal endogenous regenerative technology. ACS Biomater. Sci. Eng. 2017;3:1359–1369. PubMed
Pandya M., Diekwisch T.G.H. Enamel biomimetics—fiction or future of dentistry. Int. J. Oral Sci. 2019;11:8. PubMed PMC
da Silva K.T.L., Grazziotin-Soares R., de Miranda R.R., Novais V.R., Carvalho E.M., da Silva G.R., Bauer J., Carvalho C.N. Effect of an enamel matrix derivative (Emdogain) on the microhardness and chemical composition of human root dentin: an in vitro study. Sci. Rep. 2022;12:8874. PubMed PMC
Zhao T., Chen L., Yu C., He G., Lin H., Sang H., Chen Z., Hong Y., Sui W., Zhao J. Effect of injectable calcium alginate–amelogenin hydrogel on macrophage polarization and promotion of jawbone osteogenesis. RSC Adv. 2024;14:2016–2026. PubMed PMC
Feng L., Wang L., Hu C., Jiang X. Pharmacokinetics, tissue distribution, metabolism, and excretion of ginsenoside Rg 1 in rats. Arch Pharm. Res. (Seoul) 2010;33:1975–1984. PubMed
Kim J.H., Yi Y.-S., Kim M.-Y., Cho J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J Ginseng Res. 2017;41:435–443. PubMed PMC
Jeon J.E., Vaquette C., Theodoropoulos C., Klein T.J., Hutmacher D.W. Multiphasic construct studied in an ectopic osteochondral defect model. J. R. Soc. Interface. 2014;11 PubMed PMC
Reis E.C.C., Borges A.P.B., Araújo M.V.F., Mendes V.C., Guan L., Davies J.E. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct. Biomaterials. 2011;32:9244–9253. PubMed
Ivanovski S., Vaquette C., Gronthos S., Hutmacher D.W., Bartold P.M. Multiphasic scaffolds for periodontal tissue engineering. J. Dent. Res. 2014;93:1212–1221. PubMed PMC
Filippi M., Born G., Chaaban M., Scherberich A. Natural polymeric scaffolds in bone regeneration. Front. Bioeng. Biotechnol. 2020;8 doi: 10.3389/fbioe.2020.00474. PubMed DOI PMC
Wasyłeczko M., Sikorska W., Chwojnowski A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes. 2020;10:348. PubMed PMC
Sowmya S., Mony U., Jayachandran P., Reshma S., Kumar R.A., Arzate H., V Nair S., Jayakumar R. Tri‐layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv. Healthcare Mater. 2017;6 PubMed
Yu Y., You Z., Li X., Lou F., Xiong D., Ye L., Wang Z. Injectable nanocomposite hydrogels with strong antibacterial, osteoinductive, and ROS-scavenging capabilities for periodontitis treatment. ACS Appl. Mater. Interfaces. 2024;16:14421–14433. PubMed
Roldan L., Montoya C., Solanki V., Cai K.Q., Yang M., Correa S., Orrego S. A novel injectable piezoelectric hydrogel for periodontal disease treatment. ACS Appl. Mater. Interfaces. 2023;15:43441–43454. PubMed
Le X.T., Rioux L.-E., Turgeon S.L. Formation and functional properties of protein–polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv. Colloid Interface Sci. 2017;239:127–135. PubMed
Davari N., Bakhtiary N., Khajehmohammadi M., Sarkari S., Tolabi H., Ghorbani F., Ghalandari B. Protein-based hydrogels: promising materials for tissue engineering. Polymers. 2022;14:986. PubMed PMC
Dinerman A.A., Cappello J., Ghandehari H., Hoag S.W. Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel. Biomaterials. 2002;23:4203–4210. PubMed
Li Y., Xue B., Cao Y. 100th anniversary of macromolecular science viewpoint: synthetic protein hydrogels. ACS Macro Lett. 2020;9:512–524. PubMed
Li Z., Meng X., Xu W., Zhang S., Ouyang J., Zhang Z., Liu Y., Niu Y., Ma S., Xue Z. Single network double cross-linker (SNDCL) hydrogels with excellent stretchability, self-recovery, adhesion strength, and conductivity for human motion monitoring. Soft Matter. 2020;16:7323–7331. PubMed
Itohiya H., Matsushima Y., Shirakawa S., Kajiyama S., Yashima A., Nagano T., Gomi K. Organic resolution function and effects of platinum nanoparticles on bacteria and organic matter. PLoS One. 2019;14 PubMed PMC
Jadhav K., Rajeshwari H.R., Deshpande S., Jagwani S., Dhamecha D., Jalalpure S., Subburayan K., Baheti D. Phytosynthesis of gold nanoparticles: characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry. Mater. Sci. Eng. C. 2018;93:664–670. PubMed
Azarpazhooh A., Shah P.S., Tenenbaum H.C., Goldberg M.B. The effect of photodynamic therapy for periodontitis: a systematic review and meta‐analysis. J. Periodontol. 2010;81:4–14. PubMed
Guo Y.-F., Fang W.-J., Fu J.-R., Wu Y., Zheng J., Gao G.-Q., Chen C., Yan R.-W., Huang S.-G., Wang C.-C. Facile synthesis of Ag@ ZIF-8 core-shell heterostructure nanowires for improved antibacterial activities. Appl. Surf. Sci. 2018;435:149–155.
Li J., Song S., Meng J., Tan L., Liu X., Zheng Y., Li Z., Yeung K.W.K., Cui Z., Liang Y. 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 2021;143:15427–15439. PubMed
Liu Y., Li T., Sun M., Cheng Z., Jia W., Jiao K., Wang S., Jiang K., Yang Y., Dai Z. ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater. 2022;146:37–48. PubMed
Zou T., Liang Y., Kang J., Liu J., Kang W., Jiang S., Zhang C. Oxygen enrichment mediated by calcium peroxide loaded gelatin methacrylate hydrogel eradicates periodontal biofilms. Int. J. Biol. Macromol. 2024;265 PubMed
Seo B.-M., Miura M., Gronthos S., Bartold P.M., Batouli S., Brahim J., Young M., Robey P.G., Wang C.Y., Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–155. PubMed
Chien K.-H., Chang Y.-L., Wang M.-L., Chuang J.-H., Yang Y.-C., Tai M.-C., Wang C.-Y., Liu Y.-Y., Li H.-Y., Chen J.-T. Promoting induced pluripotent stem cell-driven biomineralization and periodontal regeneration in rats with maxillary-molar defects using injectable BMP-6 hydrogel. Sci. Rep. 2018;8:114. PubMed PMC
Asthana A., Kisaalita W.S. Microtissue size and hypoxia in HTS with 3D cultures. Drug Discov. Today. 2012;17:810–817. PubMed
Ylärinne J.H., Qu C., Lammi M.J. Scaffold-free approach produces neocartilage tissue of similar quality as the use of HyStemTM and HydromatrixTM scaffolds. J. Mater. Sci. Mater. Med. 2017;28:1–8. PubMed PMC
Eller K.I., Lehotay S.J. Evaluation of hydromatrix and magnesium sulfate drying agents for supercritical fluid extraction of multiple pesticides in produce. Analyst. 1997;122:429–435. PubMed
Nagy K., Láng O., Láng J., Perczel-Kovách K., Gyulai-Gaál S., Kádár K., Kőhidai L., Varga G. A novel hydrogel scaffold for periodontal ligament stem cells. Interv Med Appl Sci. 2018;10:162–170. PubMed PMC
Sun X., Gao J., Meng X., Lu X., Zhang L., Chen R. Polarized macrophages in periodontitis: characteristics, function, and molecular signaling. Front. Immunol. 2021;12 PubMed PMC
Mantovani A. Reflections on immunological nomenclature: in praise of imperfection. Nat. Immunol. 2016;17:215–216. PubMed
Gao Y., Li Y., Chen J., Zhu S., Liu X., Zhou L., Shi P., Niu D., Gu J., Shi J. Multifunctional gold nanostar-based nanocomposite: synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials. 2015;60:31–41. PubMed
Chen M., Zhang Y., Zhou P., Liu X., Zhao H., Zhou X., Gu Q., Li B., Zhu X., Shi Q. Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway. Bioact. Mater. 2020;5:880–890. PubMed PMC
Kang H., Wong S.H.D., Pan Q., Li G., Bian L. Anisotropic ligand nanogeometry modulates the adhesion and polarization state of macrophages. Nano Lett. 2019;19:1963–1975. PubMed
Kang H., Kim S., Wong D.S.H., Jung H.J., Lin S., Zou K., Li R., Li G., Dravid V.P., Bian L. Remote manipulation of ligand nano-oscillations regulates adhesion and polarization of macrophages in vivo. Nano Lett. 2017;17:6415–6427. PubMed
Wong D.S.H., Li J., Yan X., Wang B., Li R., Zhang L., Bian L. Magnetically tuning tether mobility of integrin ligand regulates adhesion, spreading, and differentiation of stem cells. Nano Lett. 2017;17:1685–1695. PubMed
Wong S.H.D., Yin B., Yang B., Lin S., Li R., Feng Q., Yang H., Zhang L., Yang Z., Li G. Anisotropic nanoscale presentation of cell adhesion ligand enhances the recruitment of diverse integrins in adhesion structures and mechanosensing‐dependent differentiation of stem cells. Adv. Funct. Mater. 2019;29
Shiroud Heidari B., Ruan R., De-Juan-Pardo E.M., Zheng M., Doyle B. Biofabrication and signaling strategies for tendon/ligament interfacial tissue engineering. ACS Biomater. Sci. Eng. 2021;7:383–399. doi: 10.1021/acsbiomaterials.0c00731. PubMed DOI
Wong S.H.D., Wong W.K.R., Lai C.H.N., Oh J., Li Z., Chen X., Yuan W., Bian L. Soft polymeric matrix as a macroscopic cage for magnetically modulating reversible nanoscale ligand presentation. Nano Lett. 2020;20:3207–3216. PubMed
He X.-T., Li X., Xia Y., Yin Y., Wu R.-X., Sun H.-H., Chen F.-M. Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: experimental studies in vitro and in rats. Acta Biomater. 2019;88:162–180. PubMed
Pugliese R., Gelain F. Peptidic biomaterials: from self-assembling to regenerative medicine. Trends Biotechnol. 2017;35:145–158. PubMed
Aggeli A., Bell M., Boden N., Keen J.N., Knowles P.F., McLeish T.C.B., Pitkeathly M., Radford S.E. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Nature. 1997;386:259–262. PubMed
Maude S., Ingham E., Aggeli A. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine. 2013;8:823–847. PubMed
Firth A., Aggeli A., Burke J.L., Yang X., Kirkham J. 2006. Biomimetic Self-Assembling Peptides as Injectable Scaffolds for Hard Tissue Engineering. PubMed
Suda S., Takamizawa T., Takahashi F., Tsujimoto A., Akiba S., Nagura Y., Kurokawa H., Miyazaki M. Application of the self-assembling peptide P11-4 for prevention of acidic erosion. Oper Dent. 2018;43:E166–E172. PubMed
Wierichs R.J., Kogel J., Lausch J., Esteves-Oliveira M., Meyer-Lueckel H. Effects of self-assembling peptide P11-4, fluorides, and caries infiltration on artificial enamel caries lesions in vitro. Caries Res. 2017;51:451–459. PubMed
Koch F., Meyer N., Valdec S., Jung R.E., Mathes S.H. Development and application of a 3D periodontal in vitro model for the evaluation of fibrillar biomaterials. BMC Oral Health. 2020;20:1–12. PubMed PMC
Bommer C., Waller T., Hilbe M., Wiedemeier D., Meyer N., Mathes S., Jung R. Efficacy and safety of P11-4 for the treatment of periodontal defects in dogs. Clin. Oral Invest. 2022;26:3151–3166. PubMed PMC
Aveic S., Craveiro R.B., Wolf M., Fischer H. Current trends in in vitro modeling to mimic cellular crosstalk in periodontal tissue. Adv. Healthcare Mater. 2021;10 PubMed PMC
Cui X., Li J., Hartanto Y., Durham M., Tang J., Zhang H., Hooper G., Lim K., Woodfield T. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel‐based bioinks. Adv. Healthcare Mater. 2020;9 PubMed
Raveendran N.T., Vaquette C., Meinert C., Ipe D.S., Ivanovski S. Optimization of 3D bioprinting of periodontal ligament cells. Dent. Mater. 2019;35:1683–1694. PubMed
Liu S., Wang Y.-N., Ma B., Shao J., Liu H., Ge S. Gingipain-responsive thermosensitive hydrogel loaded with SDF-1 facilitates in situ periodontal tissue regeneration. ACS Appl. Mater. Interfaces. 2021;13:36880–36893. PubMed
Fan Z., Qin Y., Liu S., Xing R., Yu H., Chen X., Li K., Li P. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydr. Polym. 2018;190:1–11. PubMed
Liu T., Li J., Tang Q., Qiu P., Gou D., Zhao J. Chitosan-based materials: an overview of potential applications in food packaging. Foods. 2022;11:1490. PubMed PMC
Li M., Lv J., Yang Y., Cheng G., Guo S., Liu C., Ding Y. Advances of hydrogel therapy in periodontal regeneration—a materials perspective review. Gels. 2022;8:624. PubMed PMC
Chen Y., Zhang F., Fu Q., Liu Y., Wang Z., Qi N. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel. J. Biomater. Appl. 2016;31:317–327. PubMed
Wassif R.K., Elkheshen S.A., Shamma R.N., Amer M.S., Elhelw R., El-Kayal M. Injectable systems of chitosan in situ forming composite gel incorporating linezolid-loaded biodegradable nanoparticles for long-term treatment of bone infections. Drug Deliv Transl Res. 2024;14:80–102. PubMed PMC
Huang Z., Chen Y., Feng Q.-L., Zhao W., Yu B., Tian J., Li S.-J., Lin B.-M. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells. Front. Mater. Sci. 2011;5:301–310.
Letchmanan K., Shen S.-C., Ng W.K., Kingshuk P., Shi Z., Wang W., Tan R.B.H. Mechanical properties and antibiotic release characteristics of poly (methyl methacrylate)-based bone cement formulated with mesoporous silica nanoparticles. J. Mech. Behav. Biomed. Mater. 2017;72:163–170. PubMed
Larsson S., Hannink G. Injectable bone-graft substitutes: current products, their characteristics and indications, and new developments. Injury. 2011;42:S30–S34. PubMed
Shi M., Kretlow J.D., Nguyen A., Young S., Baggett L.S., Wong M.E., Kasper F.K., Mikos A.G. Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control. Biomaterials. 2010;31:4146–4156. PubMed PMC
Sa Y., Yang F., Leeuwenburgh S.C.G., Wolke J.G.C., Ye G., de Wijn J.R., Jansen J.A., Wang Y. Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles. J. Biomed. Mater. Res. B Appl. Biomater. 2015;103:548–555. PubMed
Li T., Weng X., Bian Y., Zhou L., Cui F., Qiu Z. Influence of nano-HA coated bone collagen to acrylic (polymethylmethacrylate) bone cement on mechanical properties and bioactivity. PLoS One. 2015;10 PubMed PMC
Sa Y., Wang M., Deng H., Wang Y., Jiang T. Beneficial effects of biomimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan–glycerophosphate hydrogel on the performance of injectable polymethylmethacrylate. RSC Adv. 2015;5:91082–91092.
Hämmerle C.H.F., Olah A.J., rg Schmid J., Fl¨ ckiger L., Gogolewski S., Winkler J.R., Lang N.P. The biological effect of natural bone mineral on bone neoformation on the rabbit skull. Clin. Oral Implants Res. 1997;8:198–207. PubMed
Liao F., Chen Y., Li Z., Wang Y., Shi B., Gong Z., Cheng X. A novel bioactive three-dimensional β-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J. Mater. Sci. Mater. Med. 2010;21:489–496. PubMed
Janmey P.A., Winer J.P., Weisel J.W. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface. 2009;6:1–10. PubMed PMC
Ruangsawasdi N., Zehnder M., Weber F.E. Fibrin gel improves tissue ingrowth and cell differentiation in human immature premolars implanted in rats. J. Endod. 2014;40:246–250. PubMed
Ducret M., Montembault A., Josse J., Pasdeloup M., Celle A., Benchrih R., Mallein-Gerin F., Alliot-Licht B., David L., Farges J.-C. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration. Dent. Mater. 2019;35:523–533. PubMed
Yang M., Du D., Hao Y., Meng Z., Zhang H., Liu Y. Preparation of an injectable zinc-containing hydrogel with double dynamic bond and its potential application in the treatment of periodontitis. RSC Adv. 2024;14:19312–19321. PubMed PMC
Lin T., Hsu S. Self‐healing hydrogels and cryogels from biodegradable polyurethane nanoparticle crosslinked chitosan. Adv. Sci. 2020;7 PubMed PMC
Arpornmaeklong P., Sareethammanuwat M., Apinyauppatham K., Boonyuen S. Characteristics and biologic effects of thermosensitive quercetin‐chitosan/collagen hydrogel on human periodontal ligament stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 2021;109:1656–1670. PubMed
Zhang Y., Dou X., Zhang L., Wang H., Zhang T., Bai R., Sun Q., Wang X., Yu T., Wu D. Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration. Bioact. Mater. 2022;11:130–139. PubMed PMC
Yan X.-Z., van den Beucken J.J.J.P., Cai X., Yu N., Jansen J.A., Yang F. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading. Tissue Eng Part A. 2015;21:1066–1076. PubMed PMC
Chanaj-Kaczmarek J., Osmałek T., Szymańska E., Winnicka K., Karpiński T.M., Dyba M., Bekalarska-Dębek M., Cielecka-Piontek J. Development and evaluation of thermosensitive hydrogels with binary mixture of scutellariae baicalensis radix extract and chitosan for periodontal diseases treatment. Int. J. Mol. Sci. 2021;22 PubMed PMC
Mou J., Liu Z., Liu J., Lu J., Zhu W., Pei D. Hydrogel containing minocycline and zinc oxide-loaded serum albumin nanopartical for periodontitis application: preparation, characterization and evaluation. Drug Deliv. 2019;26:179–187. PubMed PMC
Liu Y., Liu C., Wang C., Zhang Q., Qu X., Liang C., Si C., Wang L. Treatment of periodontal inflammation in diabetic rats with IL-1ra thermosensitive hydrogel. Int. J. Mol. Sci. 2022;23 PubMed PMC
Wang Q., Chen S., Chen D. Preparation and characterization of chitosan based injectable hydrogels enhanced by chitin nano-whiskers. J. Mech. Behav. Biomed. Mater. 2017;65:466–477. PubMed
Kumar R.A., Sivashanmugam A., Deepthi S., Bumgardner J.D., V Nair S., Jayakumar R. Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis. Carbohydr. Polym. 2016;140:144–153. PubMed
Nimal T.R., Baranwal G., Bavya M.C., Biswas R., Jayakumar R. Anti-staphylococcal activity of injectable nano tigecycline/chitosan-PRP composite hydrogel using Drosophila melanogaster model for infectious wounds. ACS Appl. Mater. Interfaces. 2016;8:22074–22083. PubMed
Lo K.W.-H., Jiang T., Gagnon K.A., Nelson C., Laurencin C.T. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol. 2014;32:74–81. PubMed PMC
Burdick J.A., Prestwich G.D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011;23 doi: 10.1002/adma.201003963. PubMed DOI PMC
Chen M., Li L., Wang Z., Li P., Feng F., Zheng X. High molecular weight hyaluronic acid regulates P. gingivalis–induced inflammation and migration in human gingival fibroblasts via MAPK and NF-κB signaling pathway. Arch. Oral Biol. 2019;98:75–80. PubMed
Hu Z., Lv X., Zhang H., Zhuang S., Zheng K., Zhou T., Cen L. An injectable gel based on photo-cross-linkable hyaluronic acid and mesoporous bioactive glass nanoparticles for periodontitis treatment. Int. J. Biol. Macromol. 2024;257 PubMed
Silva C.R., Babo P.S., Gulino M., Costa L., Oliveira J.M., Silva-Correia J., Domingues R.M.A., Reis R.L., Gomes M.E. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater. 2018;77:155–171. PubMed
Yu Y., Li X., Ying Q., Zhang Z., Liu W., Su J. Synergistic effects of shed-derived exosomes, Cu2+, and an injectable hyaluronic acid hydrogel on antibacterial, anti-inflammatory, and osteogenic activity for periodontal bone regeneration. ACS Appl. Mater. Interfaces. 2024;16:33053–33069. PubMed
Özçelik H., Batool F., Corre M., Garlaschelli A., Conzatti G., Stutz C., Petit C., Delpy E., Zal F., Leize-Zal E. Characterization of a hyaluronic acid-based hydrogel containing an extracellular oxygen carrier (M101) for periodontitis treatment: an in vitro study. Int. J. Pharm. 2021;605 PubMed
Chen N., Ren R., Wei X., Mukundan R., Li G., Xu X., Zhao G., Zhao Z., Lele S.M., Reinhardt R.A. Thermoresponsive hydrogel-based local delivery of simvastatin for the treatment of periodontitis. Mol. Pharm. 2021;18:1992–2003. PubMed PMC
Tong X., Qi X., Mao R., Pan W., Zhang M., Wu X., Chen G., Shen J., Deng H., Hu R. Construction of functional curdlan hydrogels with bio-inspired polydopamine for synergistic periodontal antibacterial therapeutics. Carbohydr. Polym. 2020;245 PubMed
Oliveira I.M., Gonçalves C., Shin M.E., Lee S., Reis R.L., Khang G., Oliveira J.M. Anti-inflammatory properties of injectable betamethasone-loaded tyramine-modified gellan gum/silk fibroin hydrogels. Biomolecules. 2020;10:1456. PubMed PMC
Xiong X., Xiao W., Zhou S., Cui R., Xu H.H.K., Qu S. Enhanced proliferation and angiogenic phenotype of endothelial cells via negatively-charged alginate and chondroitin sulfate microsphere hydrogels. Biomed. Mater. 2021;16 PubMed
Wang D.K., Varanasi S., Strounina E., Hill D.J.T., Symons A.L., Whittaker A.K., Rasoul F. Synthesis and characterization of a POSS-PEG macromonomer and POSS-PEG-PLA hydrogels for periodontal applications. Biomacromolecules. 2014;15:666–679. PubMed
Fraser D., Benoit D. Dual peptide-functionalized hydrogels differentially control periodontal cell function and promote tissue regeneration. Biomater. Adv. 2022;141 PubMed PMC
Pan J., Tian H., Xu S., Zhang L., Ding J., Wang H., Yu L., Fu W., Liu X. Sustained delivery of chemically modified mRNA encoding amelogenin from self-assembling hydrogels for periodontal regeneration. Compos. B Eng. 2024;271
Liu H., Li M., Du L., Yang P., Ge S. Local administration of stromal cell-derived factor-1 promotes stem cell recruitment and bone regeneration in a rat periodontal bone defect model. Mater. Sci. Eng. C. 2015;53:83–94. PubMed
Mojsoska B., Jenssen H. Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals. 2015;8:366–415. PubMed PMC
Qaiser M., Asmatullah M., Shahwar D., Aqeel M., Ameer N., Mahmood K., Hanif M., Chughtai F.R.S., Abid H.M.U., Bukhari S.W. A yeast–malic acid crosslinker/polyacrylic acid hydrogel containing doxycycline for the treatment of periodontitis. RSC Adv. 2024;14:25174–25189. PubMed PMC
Jeong J.-O., Park J.-S., Kim E.J., Jeong S.-I., Lee J.Y., Lim Y.-M. Preparation of radiation cross-linked poly (Acrylic acid) hydrogel containing metronidazole with enhanced antibacterial activity. Int. J. Mol. Sci. 2020;21:187. PubMed PMC
Boonlai W., Tantishaiyakul V., Hirun N., Sangfai T., Suknuntha K. Thermosensitive poloxamer 407/poly (acrylic acid) hydrogels with potential application as injectable drug delivery system. AAPS PharmSciTech. 2018;19:2103–2117. PubMed
Chenicheri S., Ramachandran R., Rajamanikam U. Antimicrobial effects of hydroxyapatite mosaicked polyvinyl alcohol-alginate semi-interpenetrating hydrogel-loaded with ethanolic extract of Glycyrrhiza glabra against oral pathogens. Prog. Biomater. 2022;11:373–383. PubMed PMC
Dong Z., Sun Y., Chen Y., Liu Y., Tang C., Qu X. Injectable adhesive hydrogel through a microcapsule cross-link for periodontitis treatment. ACS Appl. Bio Mater. 2019;2:5985–5994. PubMed
Kerdmanee K., Phaechamud T., Limsitthichaikoon S. Thermoresponsive azithromycin-loaded niosome gel based on poloxamer 407 and hyaluronic interactions for periodontitis treatment. Pharmaceutics. 2022;14:2032. PubMed PMC
Liu S., Wang Y., Yu L., Li J., Ge S. Development of a thermosensitive hydrogel loaded with DTT and SDF-1 facilitating in situ periodontal bone regeneration. Chem. Eng. J. 2022;432
Shue L., Yufeng Z., Mony U. Biomaterials for periodontal regeneration: a review of ceramics and polymers. Biomatter. 2012;2:271–277. PubMed PMC
Zussman M., Giladi S., Zilberman M. In vitro characterization of injectable chlorhexidine‐eluting gelatin hydrogels for local treatment of periodontal infections. Polym. Adv. Technol. 2022;33:3810–3821.
Pereira K.A.B., Aguiar K.L.N.P., Oliveira P.F., Vicente B.M., Pedroni L.G., Mansur C.R.E. Synthesis of hydrogel nanocomposites based on partially hydrolyzed polyacrylamide, polyethyleneimine, and modified clay. ACS Omega. 2020;5:4759–4769. PubMed PMC
Moghanian A., Cecen B., Nafisi N., Miri Z., Rosenzweig D.H., Miri A.K. Review of current literature for vascularized biomaterials in dental repair. Biochem. Eng. J. 2022;187