• This record comes from PubMed

Aspergillus latus: A cryptic causative agent of aspergillosis emerging in Japan

. 2025 Jun 05 ; 63 (6) : .

Language English Country Great Britain, England Media print

Document type Journal Article

Grant support
JP24K19262 JSPS
G-2025-1-006 Institute for Fermentation

Allodiploid hybrid species, Aspergillus latus, belonging to section Nidulantes, is a hybrid of A. spinulosporus and an unknown species closely related to A. quadrilineatus and A. sublatus. This hybrid has often been misidentified as the species in section Nidulantes, such as A. nidulans, A. spinulosporus, A. sublatus, or other cryptic species. Aspergillus latus has not been reported in Japan as well as Asia so far. In this study, we screened 23 clinical strains identified as A. spinulosporus isolated in Japan from 2012 to 2023 and found seven A. latus strains. To characterize the A. latus strains, we conducted comprehensive phenotyping including morphological observation, whole genome sequences, and phylogenetic analysis based on calmodulin (CaM) gene. In addition, we conducted antifungal susceptibility testing for A. latus strains. As a result, the morphological characters of A. latus were more similar to those of A. spinulosporus compared to A. sublatus. However, the ascospore of A. latus differed from that of A. spinulosporus. Phylogenetic analysis revealed that different CaM alleles from the same isolate clustered separately with A. spinulosporus and A. sublatus, consistent with its hybrid origin. Furthermore, A. latus strains showed reduced susceptibility to caspofungin and amphotericin B compared to A. spinulosporus, while they were susceptible to azoles. Our results suggest that A. latus has been a causative pathogen of aspergillosis in Japan since 2013.

Aspergillus species are the causal agents for aspergillosis. We present the first report of allodiploid hybrid species Aspergillus latus being isolated in Japan through screening of A. spinulosporus strains. Aspergillus latus has been the causative agent of aspergillosis in Japan since 2013.

See more in PubMed

Latgé  JP. PubMed DOI PMC

Sugui  JA, Kwon-Chung  KJ, Juvvadi  PR, Latgé  JP, Steinbach  WJ. PubMed DOI PMC

Bastos  RW, Valero  C, Silva  LP, et al.  Functional characterization of clinical isolates of the opportunistic fungal pathogen PubMed DOI PMC

Paulussen  C, Hallsworth  JE, Álvarez-Pérez  S, et al.  Ecology of aspergillosis: Insights into the pathogenic potency of PubMed DOI PMC

Zakaria  A, Osman  M, Dabboussi  F, et al.  Recent trends in the epidemiology, diagnosis, treatment, and mechanisms of resistance in clinical PubMed DOI

Hashimoto  A, Hagiwara  D, Watanabe  A, et al.  Drug sensitivity and resistance mechanism in PubMed DOI PMC

Arastehfar  A, Carvalho  A, Houbraken  J, et al. PubMed DOI PMC

Steenwyk  JL, Lind  AL, Ries  LNA, et al.  Pathogenic allodiploid hybrids of PubMed DOI PMC

Steenwyk  JL, Knowles  S, Bastos  RW, et al.  Evolutionary origin and population diversity of a cryptic hybrid pathogen. Nat Commun. 2024; 15(1): 8412. 10.1038/s41467-024-52639-1 PubMed DOI PMC

Toyotome  T, Saito  S, Koshizaki  Y, Komatsu  R, Matsuzawa  T, Yaguchi  T. Prospective survey of PubMed DOI

Tashiro  T. Pulmonary aspergillosis and clinical significance of

Bian  C, Kusuya  Y, Sklenář  F, et al.  Reducing the number of accepted species in PubMed DOI PMC

Kusuya  Y, Bian  C, Hagiwara  D, Ban  S, Takahashi  H. A novel Zn PubMed DOI

Chen  S, Zhou  Y, Chen  Y, Gu  J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018; 34(17): i884–i890.. 10.1093/bioinformatics/bty560 PubMed DOI PMC

Jin  JJ, Yu  WB, Yang  JB, et al.  GetOrganelle: A fast and versatile toolkit for accurate PubMed DOI PMC

Li  H, Durbin  R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009; 25(14): 1754–1760.. 10.1093/bioinformatics/btp324 PubMed DOI PMC

Danecek  P, Bonfield  JK, Liddle  J, et al.  Twelve years of SAMtools and BCFtools. Gigascience. 2021; 10(2): giab008. 10.1093/gigascience/giab008 PubMed DOI PMC

Shen  W, Le  S, Li  Y, Hu  F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 2016; 11(10): e0163962. 10.1371/journal.pone.0163962 PubMed DOI PMC

Zerbino  DR, Birney  E. Velvet: Algorithms for PubMed DOI PMC

Seppey  M, Manni  M, Zdobnov  EM. BUSCO: Assessing genome assembly and annotation completeness. Methods Mol Biol. 2019; 1962: 227–245.. 10.1007/978-1-4939-9173-0_14 PubMed DOI

Camacho  C, Coulouris  G, Avagyan  V, et al.  BLAST+: Architecture and applications. BMC Bioinf. 2009; 10: 421. 10.1186/1471-2105-10-421 PubMed DOI PMC

Marçais  G, Kingsford  C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011; 27(6): 764–770.. 10.1093/bioinformatics/btr011 PubMed DOI PMC

Vurture  GW, Sedlazeck  FJ, Nattestad  M, et al.  GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics. 2017; 33(14): 2202–2204.. 10.1093/bioinformatics/btx153 PubMed DOI PMC

Hoff  KJ, Stanke  M. WebAUGUSTUS—A web service for training AUGUSTUS and predicting genes in eukaryotes. Nucleic Acids Res.. 2013; 41(Web Server issue): W123–W128.. 10.1093/nar/gkt418 PubMed DOI PMC

Peterson  SW. Multilocus DNA sequence analysis shows that PubMed DOI

Peterson  SW, Vega  FE, Posada  F, Nagai  C. PubMed DOI

Arazoe  T, Ohsato  S, Arie  T, Yoneyama  K, Kuwata  S. Construction of a system for exploring mitotic homologous recombination in the genome of DOI

Huey  B, Hall  J. Hypervariable DNA fingerprinting in PubMed DOI PMC

Katoh  K, Misawa  K, Kuma  K, Miyata  T. MAFFT: A novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002; 30(14): 3059–3066.. 10.1093/nar/gkf436 PubMed DOI PMC

Katoh  K, Standley  DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013; 30(4): 772–780.. 10.1093/molbev/mst010 PubMed DOI PMC

Capella-Gutiérrez  S, Silla-Martínez  JM, Gabaldón  T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009; 25(15): 1972–1973.. 10.1093/bioinformatics/btp348 PubMed DOI PMC

Stamatakis  A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics.2014; 30(9): 1312–1313.. 10.1093/bioinformatics/btu033 PubMed DOI PMC

Kikuchi  K, Watanabe  A, Ito  J, et al.  Antifungal susceptibility of PubMed DOI

CLSI . Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. In: CLSI Standard M38, 3rd Edn.  Clinical and Laboratory Standards Institute, Wayne, PA;2017.

He  X, Kusuya  Y, Hagiwara  D, et al.  Genomic diversity of the pathogenic fungus PubMed DOI PMC

Chen  AJ, Frisvad  JC, Sun  BD, et al. PubMed DOI PMC

Horie  Y. New or interesting

Tavakoli  M, Rivero-Menendez  O, Abastabar  M, et al.  Genetic diversity and antifungal susceptibility patterns of PubMed DOI

Rocha  EMF, Guillermo  GE, Steven  P, David  SP. A Ser678Pro substitution in Fks1p confers resistance to echinocandin drugs in PubMed DOI PMC

Van Der Linden  JWM, Warris  A, Verweij  PE. PubMed DOI

Blum  G, Perkhofer  S, Haas  H, et al.  Potential basis for amphotericin B resistance in PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...