• This record comes from PubMed

Aspartate in the Brain: A Review

. 2025 Jun 12 ; 50 (3) : 199. [epub] 20250612

Language English Country United States Media electronic

Document type Journal Article, Review

Grant support
DP180101702 Australian Research Council

Links

PubMed 40506607
PubMed Central PMC12162812
DOI 10.1007/s11064-025-04454-3
PII: 10.1007/s11064-025-04454-3
Knihovny.cz E-resources

L-Aspartate (aspartic acid; C4H7NO4; 2-aminobutanedoic acid) is a non-essential α-amino acid found ubiquitously throughout the body, including in the brain. Aspartate is one of the protein-forming amino acids and the formation of tRNA-aspartate complex is catalysed by aspartyl tRNA synthetase. Free aspartate, which is the main subject of this review, plays key roles in metabolism, as an amino donor and acceptor. It contributes to the synthesis of protein, arginine and nitric oxide, asparagine, N-acetylaspartate and N-methyl-D-aspartate. Its major metabolic role in the brain is recycling reducing equivalents (protons) between the cytoplasm and mitochondrial matrix as part of the malate-aspartate shuttle. L-Aspartate's actions on synaptic receptors, as well as its possible presence in nerve terminals and synaptic vesicles, are, in principle, consistent with a role as an excitatory neurotransmitter. The evidence is far from conclusive and at times controversial. The role of D-aspartate in brain function is even less certain but, it appears that, rather than being a minor neurotransmitter, D-aspartate is more likely to be involved in fine regulation of endocrine and homeostatic processes. Much research remains to be done in this area. The diversity of its functions and chemistry make aspartate a complex molecule to investigate and measure in vivo. Perturbations of aspartate metabolism have been described in a range of neurological deficits, particularly those of white matter. Here, we examine what is known about the various roles of aspartate in brain, its metabolism, transport and compartmentation, its role as a neurotransmitter or a more general signalling molecule, and what is currently known about its role(s) in disease processes.

See more in PubMed

Liebecq C (1992) Biochemical nomenclature and related documents. Portland Press, London

Vickery HB, Schmidt CL (1931) The history of the discovery of the amino acids. Chem Rev 9(2):169–318

Plisson A (1827) Sur l’identité du malate acide d’althéine avec l’asparagine. Ann chim phys 36:175

Liebig J (1833) Ueber die zusammensetzung des asparamids und der asparaginsäure. Annalen der Pharmacie 7(2):146–150

Kreusler W (1869) Asparaginsäure als Zersetzungsproduct thierischer Proteïnstoffe etc. J Prakt Chem 107(1):240–245

Urenjak J et al (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural types. J Neurosci 13:981–989 PubMed PMC

Wu X et al (2014) Determination of amino acid neurotransmitters in rat hippocampi by HPLC-UV using NBD-F as a derivative. Biomed Chromatogr 28(4):459–462 PubMed

Banay-Schwartz M, Lajtha A, Palkovits M (1992) Regional distribution of glutamate and aspartate in adult and old human brain. Brain Res 594(2):343–346 PubMed

Forgacsova A et al (2018) A novel liquid chromatography/mass spectrometry method for determination of neurotransmitters in brain tissue: Application to human tauopathies. J Chromatogr B 1073:154–162 PubMed

Dienel GA (2021) Stop the rot. Enzyme inactivation at brain harvest prevents artifacts: a guide for preservation of the in vivo concentrations of brain constituents. J Neurochem 158(5):1007–1031 PubMed

Duarte JM et al (2012) The neurochemical profile quantified by in vivo 1 H NMR spectroscopy. Neuroimage 61(2):342–362 PubMed

Penner J, Bartha R (2015) Semi-LASER 1H MR spectroscopy at 7 Tesla in human brain: metabolite quantification incorporating subject-specific macromolecule removal. Magn Reson Med 74(1):4–12 PubMed

Bednařík P et al (2015) Neurochemical and BOLD responses during neuronal activation measured in the human visual cortex at 7 Tesla. J Cereb Blood Flow Metab 35(4):601–610 PubMed PMC

Rothstein JD et al (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 28(1):18–25 PubMed

Niebroj-Dobosz I, Janik P (1999) Amino acids acting as transmitters in amyotrophic lateral sclerosis (ALS). Acta Neurol Scand 100(1):6–11 PubMed

Bank B et al (2015) Multi-center reproducibility of neurochemical profiles in the human brain at 7 T. NMR Biomed 28(3):306–316 PubMed PMC

Mekle R et al (2009) MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med 61(6):1279–1285 PubMed

Chan KL et al (2017) Simultaneous measurement of Aspartate, NAA, and NAAG using HERMES spectral editing at 3 Tesla. NeuroImage PubMed PMC

Tkac I et al (2009) In vivo H-1 NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn Reson Med 62(4):868–879 PubMed PMC

Terpstra M, Ugurbil K, Tkac I (2010) Noninvasive quantification of human brain ascorbate concentration using 1H NMR spectroscopy at 7 T. NMR Biomed 23(3):227–232 PubMed PMC

Marjańska M et al (2012) Localized 1H NMR spectroscopy in different regions of human brain in vivo at 7 T: T2 relaxation times and concentrations of cerebral metabolites. NMR Biomed 25(2):332–339 PubMed PMC

Giapitzakis IA et al (2018) Metabolite-cycled STEAM and semi-LASER localization for MR spectroscopy of the human brain at 9.4T. Magn Reson Med 79(4):1841–1850 PubMed

Wyss PO et al (2018) In vivo estimation of transverse relaxation time constant (T2) of 17 human brain metabolites at 3T. Magn Reson Med 80(2):452–461 PubMed

Bulanov P et al (2023) Improvement of aspartate-signal fitting accuracy in asp-edited MEGA-PRESS spectra. Appl Magn Reson 54(9):793–806

Mangia S et al (2013) Neurochemical profile of patients with type 1 diabetes measured by 1H-MRS at 4 T. J Cereb Blood Flow Metab 33(5):754–759 PubMed PMC

Miller CB et al (2017) An objective short-sleep insomnia disorder subtype is associated with reduced brain metabolite concentrations in vivo: a preliminary magnetic resonance spectroscopy assessment. Sleep 40:zsx148 PubMed

Petroff OAC, Pleban LA, Spencer DD (1995) Symbiosis between in vivo and in vitro NMR spectroscopy - the creatine, N-acetylaspartate, glutamate and GABA content of the epileptic human brain. Magn Reson Imaging 13(8):1197–1211 PubMed

Ljungberg M et al (2017) 1 H magnetic resonance spectroscopy evidence for occipital involvement in treatment-naive paediatric obsessive–compulsive disorder. Acta Neuropsychiatrica 29(3):179–190 PubMed

Klunk WE et al (1996) Quantitative 1H and 31P MRS of PCA extracts of postmortem Alzheimer’s disease brain. Neurobiol Aging 17(3):349–357 PubMed

Adanyeguh IM et al (2018) Expanded neurochemical profile in the early stage of Huntington disease using proton magnetic resonance spectroscopy. NMR Biomed 31(3):e3880 PubMed PMC

Yu M et al (2023) Changes in aspartate metabolism in the medial-prefrontal cortex of nicotine addicts based on J-edited magnetic resonance spectroscopy. Hum Brain Mapp 44(18):6429–6438 PubMed PMC

Fonnum F (1968) The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain. Biochemical Journal 106(2):401–412 PubMed PMC

Creagan R et al (1973) Assignment of the genes for human peptidase A to chromosome 18 and cytoplasmic glutamic oxaloacetate transaminase to chromosome 10 using somatic-cell hybrids. Cytogenet Genome Res 12(3):187–198 PubMed

Chern C, Mellman W, Croce CM (1976) Assignment of the gene for cytoplasmic glutamic-oxaloacetic transaminase to the region q24-qter of human chromosome 10. Somatic Cell Genetics 2(2):177–182 PubMed

Tolley E et al (1980) Assignment to chromosome 16 of a gene necessary for the expression of human mitochondrial glutamate oxaloacetate transaminase (aspartate aminotransferase)(EC 2.6. 1.1.). Biochem Genet 18(9–10):947–954 PubMed

Jeremiah S et al (1982) Mapping studies on human mitochondrial glutamate oxaloacetate transaminase. Ann Hum Genet 46(2):145–152 PubMed

Han Q et al (2011) Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV. Biosci Rep 31(5):323–332 PubMed PMC

Guidetti P et al (2007) Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 102(1):103–111 PubMed

Shen H et al (2011) Genome-wide association study identifies genetic variants in GOT1 determining serum aspartate aminotransferase levels. J Hum Genet 56(11):801–805 PubMed PMC

Kulecka M et al (2017) A heterozygous mutation in GOT1 is associated with familial macro-aspartate aminotransferase. J Hepatol 67(5):1026–1030 PubMed

Tarailo-Graovac M et al (2016) Exome sequencing and the management of neurometabolic disorders. N Engl J Med 374(23):2246–2255 PubMed PMC

van Karnebeek CD et al (2019) Bi-allelic GOT2 mutations cause a treatable malate-aspartate shuttle-related encephalopathy. Am J Human Genet 105(3):534–548 PubMed PMC

Chen TR et al (1973) Assignment of the genes for malate oxidoreductase decarboxylating to chromosome 6 and peptidase B and lactate dehydrogenase B to chromosome 12 in man. Am J Hum Genet 25(2):200–207 PubMed PMC

Yanaihara N et al (2001) Physical and transcriptional map of a 311-kb segment of chromosome 18q21, a candidate lung tumor suppressor locus. Genomics 72(2):169–179 PubMed

Loeber G, Maurer-Fogy I, Schwendenwein R (1994) Purification, cDNA cloning and heterologous expression of the human mitochondrial NADP(+)-dependent malic enzyme. Biochem J 304(Pt 3):687–692 PubMed PMC

Frenkel R (1972) Isolation and some properties of a cytosol and a mitochondrial malic enzyme from bovine brain. Arch Biochem Biophys 152(1):136–143 PubMed

McKenna MC et al (1995) Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem Res 20(12):1491–1501 PubMed

Vogel R, Hamprecht B, Wiesinger H (1998) Malic enzyme isoforms in astrocytes: comparative study on activities in rat brain tissue and astroglia-rich primary cultures. Neurosci Lett 247(2–3):123–126 PubMed

Bukato G, Kochan Z, Świerczyński J (1995) Different regulatory properties of the cytosolic and mitochondrial forms of malic enzyme isolated from human brain. Int J Biochem Cell Biol 27(10):1003–1008 PubMed

Hsieh J-Y et al (2023) Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration. Commun Biol 6(1):548 PubMed PMC

McKenna MC et al (2000) Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells. Neurochem Int 36(4–5):451–459 PubMed

Hassel B, Bråthe A (2000) Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J Neurosci 20(4):1342 PubMed PMC

Greenberg DA et al (2005) Malic enzyme 2 May underlie susceptibility to adolescent-onset idiopathic generalized epilepsy. Am J Human Genet 76(1):139–146 PubMed PMC

Lee BD et al (2007) Malic enzyme 2 and susceptibility to psychosis and mania. Psychiatry Res 150(1):1–11 PubMed

Das A et al (2020) l-Aspartate, L-ornithine and L-ornithine-l-Aspartate (LOLA) and their impact on brain energy metabolism. Neurochem Res 45:1438–1450 PubMed

Veech R, Raijman L, Krebs H (1970) Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide–adenine nucleotide system in rat liver. Biochem J 117(3):499–503 PubMed PMC

Howse D, Duffy T (1975) Control of the redox state of the pyridine nucleotides in the rat cerebral cortex. Effect of electroshock-induced seizures. J Neurochem 24(5):935–940 PubMed

Broeks MH et al (2023) The malate-aspartate shuttle is important for de novo serine biosynthesis. Cell Rep 42(9):113043 PubMed

Hertz L et al (2000) Neuronal-astrocytic and cytosolic-mitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation. Neurochem Int 37(2–3):83–102 PubMed

Palaiologos G, Hertz L, Schousboe A (1988) Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J Neurochem 51(1):317–320 PubMed

Sibson NR et al (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95:316–321 PubMed PMC

Rothman DL, Behar KL, Dienel GA (2024) Mechanistic stoichiometric relationship between the rates of neurotransmission and neuronal glucose oxidation: reevaluation of and alternatives to the pseudo-malate-aspartate shuttle model. J Neurochem 168(5):555–591 PubMed

Erecinska M et al (1993) Cerebral aspartate utilization—near-equilibrium relationships in aspartate-aminotransferase reaction. J Neurochem 60:1696–1706 PubMed

McKenna MC et al (2006) Aspartate aminotransferase in synaptic and nonsynaptic mitochondria: differential effect of compounds that influence transient hetero-enzyme complex (metabolon) formation. Neurochem Int 48(6–7):629–636 PubMed

Griffin JL et al (1998) Excitatory amino acid synthesis in hypoxic brain slices: does alanine act as a substrate for glutamate production in hypoxia? J Neurochem 71:2477–2486 PubMed

Griffin JL et al (2003) Compartmentation of metabolism probed by [2- PubMed

Shank RP et al (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329(1–2):364–367 PubMed

Gondáš E et al (2023) The presence of pyruvate carboxylase in the human brain and its role in the survival of cultured human astrocytes. Physiol Res 72(3):403 PubMed PMC

Agardh CD, Folbergrovaa J, Siesjou BK (1978) Cerebral metabolic changes in profound, insulin-induced hypoglycaemia, and in the recovery period following glucose administration. J Neurochem 31(5):1135–1142 PubMed

Auer RN (2004) Hypoglycemic brain damage. Forensic Sci Int 146(2):105–110 PubMed

Lo ASY et al (1999) Radiation hybrid mapping of human cytosolic malate dehydrogenase (hcMDH) to the short arm of chromosome 2. Somat Cell Mol Genet 25(2):109–113 PubMed

Heyningen VV et al (1975) Chromosome assignment of some human enzyme loci: mitochondrial malate dehydrogenase to 7, mannosephosphate isomerase and pyruvate kinase to 15 and probably, esterase D to 13. Ann Human Genet 38(3):295–303 PubMed

Kelly DP et al (1989) The tissue-specific expression and developmental regulation of two nuclear genes encoding rat mitochondrial proteins. Medium chain acyl-CoA dehydrogenase and mitochondrial malate dehydrogenase. J Biol Chem 264(32):18921–18925 PubMed

Leong SF et al (1984) The activities of some energy-metabolising enzymes in nonsynaptic (Free) and synaptic mitochondria derived from selected brain regions. J Neurochem 42(5):1306–1312 PubMed

Guynn RW, Gelberg HJ, Veech RL (1973) Equilibrium constants of the malate dehydrogenase, citrate synthase, citrate lyase, and acetyl coenzyme a hydrolysis reactions under physiological conditions. J Biol Chem 248(20):6957–6965 PubMed

Mullinax TR et al (1982) Regulation of mitochondrial malate dehydrogenase. Evidence for an allosteric citrate-binding site. J Biol Chem 257(22):13233–13239 PubMed

Crow KE et al (1982) Rat liver cytosolic malate dehydrogenase: purification, kinetic properties, role in control of free cytosolic NADH concentration. Analysis of control of ethanol metabolism using computer simulation. J Biol Chem 257(23):14217–14225 PubMed

Yang J, Shen J (2007) Relayed (13)C magnetization transfer. Detection of malate dehydrogenase reaction in vivo. J Mag Reson (San Diego, Calif .: 1997) 184(2):344–349 PubMed PMC

Wu F, Minteer S (2015) Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angew Chem Int Ed 54(6):1851–1854 PubMed

Backman L, Johansson G (1976) Enzyme—enzyme complexes between aspartate aminotransferase and malate dehydrogenase from pig heart muscle. FEBS Lett 65(1):39–43 PubMed

Yang H et al (2015) SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J 34(8):1110–1125 PubMed PMC

Borst P (2020) The malate–aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life 72(11):2241–2259 PubMed PMC

Teller JK, Fahien L, Valdivia E (1990) Interactions among mitochondrial aspartate aminotransferase, malate dehydrogenase, and the inner mitochondrial membrane from heart, hepatoma, and liver. J Biol Chem 265(32):19486–19494 PubMed

Halper LA, Srere PA (1977) Interaction between citrate synthase and mitochondrial malate dehydrogenase in the presence of polyethylene glycol. Arch Biochem Biophys 184(2):529–534 PubMed

Datta A, Merz JM, Spivey HO (1985) Substrate channeling of oxalacetate in solid-state complexes of malate dehydrogenase and citrate synthase. J Biol Chem 260(28):15008–15012 PubMed

Crackower M et al (1999) Assignment1 of the SLC25A12 gene coding for the human calcium-binding mitochondrial solute carrier protein aralar to human chromosome 2q24. Cytogenet Genome Res 87(3–4):197–198 PubMed

Kobayashi K et al (1999) The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22(2):159–163 PubMed

Brand M, Chappell J (1974) Glutamate and aspartate transport in rat brain mitochondria. Biochem J 140(2):205–210 PubMed PMC

Azzi A, Chappell JB, Robinson BH (1967) Penetration of the mitochondrial membrane by glutamate and aspartate. Biochem Biophys Res Commun 29(1):148–152 PubMed

LaNoue KF, Meijer AJ, Brouwer A (1974) Evidence for electrogenic aspartate transport in rat liver mitochondria. Arch Biochem Biophys 161(2):544–550 PubMed

Palmieri L et al (2001) Citrin and aralar1 are Ca 2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20(18):5060–5069 PubMed PMC

del Arco A et al (2002) Expression of the aspartate/glutamate mitochondrial carriers aralar1 and citrin during development and in adult rat tissues. FEBS J 269(13):3313–3320 PubMed

Contreras L et al (2007) Ca2+ Activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin. Role in the heart malate-aspartate NADH shuttle. J Biol Chem 282(10):7098–7106 PubMed

Ramos M et al (2003) Developmental changes in the Ca 2+-regulated mitochondrial aspartate–glutamate carrier aralar1 in brain and prominent expression in the spinal cord. Dev Brain Res 143(1):33–46 PubMed

Lovatt D et al (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27(45):12255–12266 PubMed PMC

Li B, Hertz L, Peng L (2012) Aralar mRNA and protein levels in neurons and astrocytes freshly isolated from young and adult mouse brain and in maturing cultured astrocytes. Neurochem Int 61(8):1325–1332 PubMed

Peng L et al (2013) Methodological limitations in determining astrocytic gene expression. Front Endocrinol 4:176 PubMed PMC

Hertz L, Chen Y, Song D (2017) Astrocyte cultures mimicking brain astrocytes in gene expression, signaling, metabolism and K+ uptake and showing astrocytic gene expression overlooked by immunohistochemistry and in situ hybridization. Neurochem Res 42(1):254–271 PubMed

Contreras L et al (2010) Low levels of citrin (SLC25A13) expression in adult mouse brain restricted to neuronal clusters. J Neurosci Res 88(5):1009–1016 PubMed

Wibom R et al (2009) AGC1 deficiency associated with global cerebral hypomyelination. N Engl J Med 361(5):489–495 PubMed

Falk MJ et al (2014) AGC1 deficiency causes infantile epilepsy, abnormal myelination, and reduced N-acetylaspartate. In: Zschocke J et al (eds) JIMD Reports, vol 14. Springer, Berlin, pp 77–85 PubMed PMC

Sakurai T et al (2010) Slc25a12 disruption alters myelination and neurofilaments: a model for a hypomyelination syndrome and childhood neurodevelopmental disorders. Biol Psychiat 67(9):887–894 PubMed PMC

Pardo B et al (2022) AGC1 deficiency: pathology and molecular and cellular mechanisms of the disease. Int J Mol Sci 23(1):528 PubMed PMC

Profilo E et al (2017) Down-regulation of the mitochondrial aspartate-glutamate carrier isoform 1 AGC1 inhibits proliferation and N-acetylaspartate synthesis in Neuro2A cells. Biochimica et Biophysica Acta (BBA) – Mol Basis Dis 1863(6):1422–1435 PubMed

Juaristi I et al (2017) ARALAR/AGC1 deficiency, a neurodevelopmental disorder with severe impairment of neuronal mitochondrial respiration, does not produce a primary increase in brain lactate. J Neurochem 142(1):132–139 PubMed

Sonnewald U, Rae C (2010) Pyruvate carboxylation in different model systems studied by C-13 MRS. Neurochem Res 35(12):1916–1921 PubMed PMC

Petralla S et al (2019) Deficiency of mitochondrial aspartate-glutamate carrier 1 leads to oligodendrocyte precursor cell proliferation defects both in vitro and in vivo. Int J Mol Sci 20(18):4486 PubMed PMC

Balboni N et al (2024) Transcriptional and metabolic effects of aspartate-glutamate carrier isoform 1 (AGC1) downregulation in mouse oligodendrocyte precursor cells (OPCs). Cell Mol Biol Lett 29(1):44 PubMed PMC

von Jonquieres G et al (2018) Uncoupling N-acetylaspartate from brain pathology: implications for Canavan disease gene therapy. Acta Neuropathol 135(1):95–113 PubMed PMC

Dahlin M et al (2015) The ketogenic diet compensates for AGC1 deficiency and improves myelination. Epilepsia 56(11):e176 PubMed

Pfeiffer B et al (2020) Expanding phenotypic spectrum of cerebral aspartate-glutamate carrier isoform 1 (AGC1) deficiency. Neuropediatrics 51(02):160–163 PubMed

Pawlosky RJ et al (2017) Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer’s disease. J Neurochem 141(2):195–207 PubMed PMC

Achanta LB et al (2017) β-hydroxybutyrate boosts mitochondrial and neuronal metabolism but is not preferred over glucose under activated conditions. Neurochem Res 42(6):1710–1723 PubMed

Correia C et al (2006) Brief report: high frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. J Autism Dev Disord 36(8):1137–1140 PubMed

Napolioni V et al (2011) The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol Neurobiol 44(1):83–92 PubMed

Aoki Y, Cortese S (2016) Mitochondrial aspartate/glutamate carrier SLC25A12 and autism spectrum disorder: a meta-analysis. Mol Neurobiol 53(3):1579–1588 PubMed

Palmieri F, Quagliariello E, Klingenberg M (1972) Kinetics and specificity of the oxoglutarate carrier in rat-liver mitochondria. FEBS J 29(3):408–416 PubMed

Gellerich FN et al (2012) Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate–aspartate shuttle. Biochem J 443(3):747–755 PubMed

Contreras L, Satrústegui J (2009) Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways. J Biol Chem 284(11):7091–7099 PubMed PMC

Dienel GA, Cruz NF (2016) Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem 138(1):14–52 PubMed

Datta A et al (2013) Quantitative clinical proteomic study of autopsied human infarcted brain specimens to elucidate the deregulated pathways in ischemic stroke pathology. J Proteomics 91:556–568 PubMed

Easlon E et al (2008) The malate–aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev 22(7):931–944 PubMed PMC

Schantz P, Henriksson J (1987) Enzyme levels of the NADH shuttle systems: measurements in isolated muscle fibres from humans of differing physical activity. Acta Physiol 129(4):505–515 PubMed

Vondra K et al (1981) Effects of sleep deprivation on the activity of selected metabolic enzymes in skeletal muscle. Eur J Appl Physiol 47(1):41–46 PubMed

Berdanier CD, McNamara S (1980) Aging and mitochondrial activity in BHE and Wistar strains of rats. Exp Gerontol 15(6):519–525 PubMed

Yudkoff M et al (1994) Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem 269(44):27414–27420 PubMed

Fitzpatrick SM et al (1990) The flux from glucose to glutamate in the rat brain in vivo as determined by 1-observed, 13C-edited NMR spectroscopy. J Cereb Blood Flow Metab 10(2):170–179 PubMed

Pérez-Liébana I et al (2022) A Ca21-dependent mechanism boosting glycolysis and OXPHOS by activating aralar-malate-aspartate shuttle, upon neuronal stimulation. J Neurosci 42(19):3879–3895 PubMed PMC

Satrústegui J, Bak LK (2015) Fluctuations in cytosolic calcium regulate the neuronal malate-aspartate NADH shuttle: implications for neuronal energy metabolism. Neurochem Res 40(12):2425–2430 PubMed

Mangia S et al (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from H-1 NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27(5):1055–1063 PubMed

Lin Y et al (2012) Investigating the metabolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7 T. J Cereb Blood Flow Metab 32(8):1484–1495 PubMed PMC

Dienel GA, Wang RY, Cruz NF (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J Cereb Blood Flow Metab 22(12):1490–1502 PubMed

LaNoue KF, Bryła J, Bassett DJ (1974) Energy-driven aspartate efflux from heart and liver mitochondria. J Biol Chem 249(23):7514–7521 PubMed

Broeks MH et al (2021) Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 44(4):792–808 PubMed PMC

Fitzpatrick SM, Cooper AJL, Duffy TE (1983) Use of β-methylene-D,l-Aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism. J Neurochem 41(5):1370–1383 PubMed

Bender AS, Woodbury DM, Steve White H (1989) β-DL-methylene-aspartate, an inhibitor of aspartate aminotransferase, potently inhibits l-glutamate uptake into astrocytes. Neurochem Res 14:641–646 PubMed

Lai J et al (1989) Differential effects of ammonia and β-methylene-Dl-Aspartate on metabolism of glutamate and related amino acids by astrocytes and neurons in primary culture. Neurochem Res 14:377–389 PubMed

Kauppinen RA, Sihra TS, Nicholls DG (1987) Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochimica et Biophysica Acta (BBA) – Mol Cell Res 930(2):173–178 PubMed

Westergaard N et al (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C] glutamate. Glia 17(2):160–168 PubMed

Hertz L, Chen Y (2017) Integration between glycolysis and glutamate-glutamine cycle flux may explain preferential glycolytic increase during brain activation, requiring glutamate. Front Integr Neurosci 11:18 PubMed PMC

Hyder F, Rothman DL (2017) Advances in imaging brain metabolism. Annu Rev Biomed Eng 19(1):485–515 PubMed

Morken TS et al (2014) Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain. Neurochem Res 39(3):556–569 PubMed

Pardo B, Contreras L, Satrustegui J (2013) De novo synthesis of glial glutamate and glutamine in young mice requires aspartate provided by the neuronal mitochondrial aspartate-glutamate carrier aralar/AGC1. Front Endocrinol. 10.3389/fendo.2013.00149 PubMed PMC

Birsoy K et al (2015) An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162(3):540–551 PubMed PMC

Pardo B et al (2011) Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation. J Cereb Blood Flow Metab 31(1):90–101 PubMed PMC

Hertz L (2011) Brain glutamine synthesis requires neuronal aspartate: a commentary. J Cereb Blood Flow Metab 31(1):384–387 PubMed PMC

Westi EW et al (2022) Divergent cellular energetics, glutamate metabolism, and mitochondrial function between human and mouse cerebral cortex. Mol Neurobiol 59(12):7495–7512 PubMed

Chen Q et al (2018) Rewiring of glutamine metabolism is a bioenergetic adaptation of human cells with mitochondrial DNA mutations. Cell Metab 27(5):1007-1025.e5 PubMed PMC

Schechter PJ, Tranier Y, Grove J (1978) Effect of n-dipropylacetate on amino acid concentrations in mouse brain: correlations with anti-convulsant activity. J Neurochem 31(5):1325–1327 PubMed

Bates TE et al (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. NeuroReport 7:1397–1400 PubMed

Bhakoo KK et al (1996) Proton nuclear magnetic resonance spectroscopy of primary cells derived from nervous tissue. J Neurochem 66(3):1254–1263 PubMed

Tallan HH (1957) Studies on the distribution of N-acetyl-l-Aspartic acid in brain. J Biol Chem 224(1):41–45 PubMed

Jakobs C et al (1991) Stable isotope dilution analysis of N-acetylaspartic acid in CSF, blood, urine and amniotic fluid: accurate postnatal diagnosis and the potential for prenatal diagnosis of canavan disease. J Inherit Metab Dis 14(5):653–660 PubMed

Patel TB, Clark JB (1979) Synthesis of N-acetyl-l-Aspartate by rat brain mitochondria and its involvement in mitochondrial cytosolic carbon transport. Biochem J 184(3):539–546 PubMed PMC

Ariyannur PS et al (2010) Nuclear-cytoplasmic localization of acetyl coenzyme a synthetase-1 in the rat brain. J Compar Neurol 518(15):2952–2977 PubMed PMC

Lu Z-H et al (2004) N-Acetylaspartate synthase is bimodally expressed in microsomes and mitochondria of brain. Mol Brain Res 122(1):71–78 PubMed

Bhakoo KK, Pearce D (2000) In vitro expression of N-acetylaspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 74:254–262 PubMed

Mattan NS et al (2010) Aspartoacylase deficiency affects early postnatal development of oligodendrocytes and myelination. Neurobiol Dis 40(2):432–443 PubMed PMC

Amaral AI et al (2017) Oligodendrocytes do not export NAA-derived aspartate in vitro. Neurochem Res 42(3):827–837 PubMed PMC

Canavan MM (1931) Schilder’s encephalitis Periaxialis diffusa: report of a case in a child aged sixteen and one-half months. Arch Neurol Psychiatry 25(2):299–308

Matalon R et al (1988) Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 29(2):463–471 PubMed

Ariyannur PS et al (2010) Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme a metabolism in the CNS. Brain Res 1335:1–13 PubMed

Bothwell JH et al (2001) Hypo-osmotic swelling activated release of organic osmolytes in brain slices—implications for brain oedema in vivo. J Neurochem 77:1632–1640 PubMed

Warepam M et al (2021) Brain metabolite, N-acetylaspartate is a potent protein aggregation inhibitor. Front Cell Neurosci 15:617308 PubMed PMC

Nakada T (2010) Conversion of brain cytosol profile from fetal to adult type during the perinatal period: Taurine-NAA exchange. Proc Japan Acad Ser B-Phys Biol Sci 86(6):630–642 PubMed PMC

Felice F et al (2024) N-acetylaspartate mitigates pro-inflammatory responses in microglial cells by intersecting lipid metabolism and acetylation processes. Cell Commun Signal 22(1):564 PubMed PMC

Dominicis A et al (2023) N-Acetylaspartate drives oligodendroglial differentiation via histone deacetylase activation. Cells 12(14):1861 PubMed PMC

Neale JH (2011) N-Acetylaspartylglutamate is an agonist at mGluR3 in vivo and in vitro. J Neurochem 119(5):891–895 PubMed PMC

Neale JH, Bzdega T, Wroblewska B (2000) N-acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 75:443–452 PubMed

Pliss L et al (2003) Morphology and ultrastructure of rat hippocampal formation after icv administration of N-acetyl-l-Aspartyl-l-glutamate. Neuroscience 122(1):93–101 PubMed

Ratner S, Morell H, Carvalho E (1960) Enzymes of arginine metabolism in brain. Arch Biochem Biophys 91(2):280–289 PubMed

Braissant O et al (1999) l-arginine uptake, the citrulline–NO cycle and arginase II in the rat brain: an in situ hybridization study. Mol Brain Res 70(2):231–241 PubMed

Bizzoco E, Faussone-Pellegrini MS, Vannucchi MG (2007) Activated microglia cells express argininosuccinate synthetase and argininosuccinate lyase in the rat brain after transient ischemia. Exp Neurol 208(1):100–109 PubMed

Bizzoco E, Vannucchi M-G, Faussone-Pellegrini M-S (2007) Transient ischemia increases neuronal nitric oxide synthase, argininosuccinate synthetase and argininosuccinate lyase co-expression in rat striatal neurons. Exp Neurol 204(1):252–259 PubMed

Schmidlin A, Wiesinger H (1998) Argininosuccinate synthetase: Localization in astrocytes and role in the production of glial nitric oxide. Glia 24(4):428–436 PubMed

Heneka MT et al (2001) Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J Neuropathol Exp Neurol 60(9):906–916 PubMed

Yudkoff M, Nissim I, Pleasure D (1987) [15N] aspartate metabolism in cultured astrocytes. Studies with gas chromatography-mass spectrometry. Biochem J 241(1):193–201 PubMed PMC

Nakamura H, Saheki T, Nakagawa S (1990) Differential cellular localization of enzymes ofl-arginine metabolism in the rat brain. Brain Res 530(1):108–112 PubMed

Gotoh T, Araki M, Mori M (1997) Chromosomal localization of the human arginase II gene and tissue distribution of its mRNA. Biochem Biophys Res Commun 233(2):487–491 PubMed

Sporn MB et al (1959) The synthesis of urea in the living rat brain. J Neurochem 5(1):62–67 PubMed

Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347(6295):768 PubMed

Dawson TM et al (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci 88(17):7797–7801 PubMed PMC

Braissant O et al (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Mol Brain Res 86:193–201 PubMed

Rae CD, Bröer S (2015) Creatine as a booster for human brain function. How might it work? Neurochem Int 89:249–259 PubMed

Roberg B, Torgner IA, Kvamme E (1995) The orientation of phosphate activated glutaminase in the inner mitochondrial membrane of synaptic and non-synaptic rat brain mitochondria. Neurochem Int 27(4–5):367–376 PubMed

Calabrese V et al (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8(10):766–775 PubMed

Yuste JE et al (2015) Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 9:322 PubMed PMC

Förstermann U, Sessa WC (2011) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837 PubMed PMC

Shank RP, Campbell GL (1983) Ornithine as a precursor of glutamate and GABA: uptake and metabolism by neuronal and glial enriched cellular material. J Neurosci Res 9(1):47–57 PubMed

Wroblewski JT, Blaker WD, Meek JL (1985) Ornithine as a precursor of neurotransmitter glutamate: effect of canaline on ornithine aminotransferase activity and glutamate content in the septum of rat brain. Brain Res 329(1):161–168 PubMed

Yoneda Y, Roberts E, Dietz GW (1982) A new synaptosomal biosynthetic pathway of glutamate and GABA from ornithine and its negative feedback inhibition by GABA. J Neurochem 38(6):1686–1694 PubMed

Dienel GA, Cruz NF (1984) Induction of brain ornithine decarboxylase during recovery from metabolic, mechanical, thermal, or chemical injury. J Neurochem 42(4):1053–1061 PubMed

Vauquelin L, Robiquet P (1806) La découverte d’un nouveau principe végétal dans le suc des asperges. Ann Chim 57:88–93

Milman HA, Cooney DA (1974) The distribution of l-Asparagine synthetase in the principal organs of several mammalian and avian species. Biochem J 142(1):27 PubMed PMC

Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447(5):784–795 PubMed

Lomelino CL et al (2017) Asparagine synthetase: function, structure, and role in disease. J Biol Chem 292(49):19952–19958 PubMed PMC

Ruzzo EK et al (2013) Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy. Neuron 80(2):429–441 PubMed PMC

Visel A, Thaller C, Eichele G (2004) GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res 32:D552–D556 PubMed PMC

Ayoub AE et al (2011) Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing. Proc Natl Acad Sci 108(36):14950 PubMed PMC

Palmer EE et al (2015) Asparagine synthetase deficiency causes reduced proliferation of cells under conditions of limited asparagine. Mol Genet Metab 116(3):178–186 PubMed PMC

Gataullina S et al (2016) Epileptic phenotype of two siblings with asparagine synthesis deficiency mimics neonatal pyridoxine-dependent epilepsy. Neuropediatrics 47(06):399–403 PubMed

Alrifai MT, Alfadhel M (2016) Worsening of seizures after asparagine supplementation in a child with asparagine synthetase deficiency. Pediatr Neurol 58:98–100 PubMed

Howard WJ, Kerson LA, Appel SH (1970) Synthesis de novo of purines in slices of rat brain and liver1. J Neurochem 17(1):121–123 PubMed

Allsop J, Watts RW (1983) Purine de novo synthesis in liver and developing rat brain, and the effect of some inhibitors of purine nucleotide interconversion. Enzyme 30:172–180 PubMed

van Bon BWM et al (2008) Clinical and molecular characteristics of 1qter microdeletion syndrome: delineating a critical region for corpus callosum agenesis/hypogenesis. J Med Genet 45(6):346 PubMed

Fröhlich D et al (2018) Expression pattern of the aspartyl-tRNA synthetase DARS in the human brain. Front Mol Neurosci 11:81 PubMed PMC

Scheper GC et al (2007) Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39(4):534–539 PubMed

Taft RJ et al (2013) Mutations in DARS cause hypomyelination with brain stem and spinal cord involvement and leg spasticity. Am J Human Genet 92(5):774–780 PubMed PMC

Fröhlich D et al (2017) In vivo characterization of the aspartyl-tRNA synthetase DARS: homing in on the leukodystrophy HBSL. Neurobiol Dis 97(Part A):24–35 PubMed

Dogan SA et al (2014) Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab 19(3):458–469 PubMed

Wolf NI et al (2015) PubMed PMC

Thompson D et al (2007) Ammonium scanning in an enzyme active site the chiral specificity of aspartyl-tRNA synthetase. J Biol Chem 282(42):30856–30868 PubMed

Fisher GH et al (1992) Quantitfication of d-aspartate in normal and Alzheimer brains. Neurosci Lett 143(1):215–218 PubMed

Dyakin VV, Wisniewski TM, Lajtha A (2021) Racemization in post-translational modifications relevance to protein aging, aggregation and neurodegeneration: tip of the iceberg. Symmetry 13(3):455 PubMed PMC

Mathieson T et al (2018) Systematic analysis of protein turnover in primary cells. Nat Commun 9(1):689 PubMed PMC

Li Y et al (2018) Role of d-aspartate on biosynthesis, racemization, and potential functions: a mini-review. Animal Nutrition 4(3):311–315 PubMed PMC

Murtas G et al (2022) Biochemical properties and physiological functions of pLG72: twenty years of investigations. Biomolecules 12(6):858 PubMed PMC

Rabattoni V et al (2023) On the regulation of human d-aspartate oxidase. Protein Sci 32(11):e4802 PubMed PMC

Punzo D et al (2016) Age-related changes in d-aspartate oxidase promoter methylation control extracellular d-aspartate levels and prevent precocious cell death during brain aging. J Neurosci 36(10):3064–3078 PubMed PMC

Cheng Y-J, Lin C-H, Lane H-Y (2021) d-amino acids and pLG72 in Alzheimer’s disease and schizophrenia. Int J Mol Sci 22(20):10917 PubMed PMC

Lin C-H et al (2019) pLG72 levels increase in early phase of Alzheimer’s disease but decrease in late phase. Sci Rep 9(1):13221 PubMed PMC

Zhou Y, Danbolt N (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 121(8):799–817 PubMed PMC

Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 35:1–105 PubMed

Lee A, Pow DV (2010) Astrocytes: glutamate transport and alternate splicing of transporters. Int J Biochem Cell Biol 42(12):1901–1906 PubMed

Robinson MB (2002) Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem 80:1–11 PubMed

Lewerenz J, Maher P (2015) Chronic glutamate toxicity in neurodegenerative diseases—what is the evidence? Front Neurosci 9:469 PubMed PMC

Melendez RI et al (2005) Ethanol exposure decreases glutamate uptake in the nucleus accumbens. Alcohol Clin Exp Res 29(3):326–333 PubMed

Rimondini R et al (2002) Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J 16(1):27–35 PubMed

Flatscher-Bader T, Wilce PA (2008) Impact of alcohol abuse on protein expression of midkine and excitatory amino acid transporter 1 in the human prefrontal cortex. Alcohol: Clin Exp Res 32(10):1849–1858 PubMed

Ayers-Ringler JR et al (2016) Role of astrocytic glutamate transporter in alcohol use disorder. World J Psychiatry 6(1):31 PubMed PMC

Scott HL et al (2002) Aberrant expression of the glutamate transporter excitatory amino acid transporter 1 (EAAT1) in Alzheimer’s disease. J Neurosci 22(3):1–5 PubMed PMC

Karki P et al (2015) Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity. Neurochem Res 40(2):380–388 PubMed PMC

Karki P et al (2015) Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity. Neurochem Int 88:53–59 PubMed PMC

Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51(6–7):333–355 PubMed PMC

Howland DS et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci 99(3):1604–1609 PubMed PMC

Rothstein JD et al (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic-lateral-sclerosis. Ann Neurol 38:73–84 PubMed

O’Donovan S et al (2015) Glutamate transporter splice variant expression in an enriched pyramidal cell population in schizophrenia. Transl Psychiatry 5(6):e579 PubMed PMC

Matute C et al (2005) Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49:451–455 PubMed

Nanitsos EK et al (2005) Glutamatergic hypothesis of schizophrenia: involvement of Na+/K+-dependent glutamate transport. J Biomed Sci 12:975–984 PubMed

Woltjer RL et al (2010) Aberrant detergent-insoluble excitatory amino acid transporter 2 accumulates in Alzheimer disease. J Neuropathol Exp Neurol 69(7):667–676 PubMed PMC

Pow DV et al (2004) Loss of glial glutamate transporters and induction of neuronal expression of GLT-1B in the hypoxic neonatal pig brain. Dev Brain Res 153(1):1–11 PubMed

Duerson K et al (2009) Detergent-insoluble EAAC1/EAAT3 aberrantly accumulates in hippocampal neurons of Alzheimer’s disease patients. Brain Pathol 19(2):267–278 PubMed PMC

Lee A et al (2016) A novel splice variant of the excitatory amino acid transporter 5: cloning, immunolocalization and functional characterization of hEAAT5v in human retina. Neurochem Int 101:76–82 PubMed

Heckel T et al (2003) Asymmetry of glutamine transporters in cultured neural cells. Neurochem Int 43(4):289–298 PubMed

Cho Y, Bannai S (1990) Uptake of glutamate and cystine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55(6):2091–2097 PubMed

Flynn J, McBean GJ (2000) Kinetic and pharmacological analysis of L-[35 S] cystine transport into rat brain synaptosomes. Neurochem Int 36(6):513–521 PubMed

Tetsuka K et al (2003) The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood–brain barrier. J Neurochem 87(4):891–901 PubMed

Hosoya KI et al (1999) Blood-brain barrier produces significant efflux of l-Aspartic acid but not d-aspartic acid. J Neurochem 73(3):1206–1211 PubMed

Oppedisano F et al (2007) The glutamine/amino acid transporter (ASCT2) reconstituted in liposomes: Transport mechanism, regulation by ATP and characterization of the glutamine/glutamate antiport. Biochimica et Biophysica Acta (BBA) - Biomembranes 1768(2):291–298 PubMed

Bröer A et al (1999) The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux. J Neurochem 73:2184–2194 PubMed

Miyaji T et al (2008) Identification of a vesicular aspartate transporter. Proc Natl Acad Sci 105(33):11720–11724 PubMed PMC

Omote H et al (2016) Structure, function, and drug interactions of neurotransmitter transporters in the postgenomic era. Annu Rev Pharmacol Toxicol 56:385–402 PubMed

Morland C et al (2013) Vesicular uptake and exocytosis of l-Aspartate is independent of sialin. FASEB J 27(3):1264–1274 PubMed PMC

Suda I et al (1994) Sodium glutamate as a chemical initiating substance in the central nervous system (Japanese). Joken Hannsha 11(12):43–48

Hayashi T (1952) A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. Jpn J Physiol 3:46–64 PubMed

Takagaki G (1996) The dawn of excitatory amino acid research in Japan. The pioneering work by Professor Takashi Hayashi. Neurochem Int 29:225–229 PubMed

Curtis D, Phillis J, Watkins J (1960) The chemical excitation of spinal neurones by certain acidic amino acids. J Physiol 150(3):656–682 PubMed PMC

Curtis D, Watkins J (1960) The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem 6(2):117–141 PubMed

Curtis D, Phillis J, Watkins J (1959) Chemical excitation of spinal neurones. Nature 183(4661):611–612 PubMed

Bennett MR, Balcar VJ (1999) Forty years of amino acid transmission in the brain. Neurochem Int 35:269–280 PubMed

Graham L et al (1967) Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, γ-aminobutyric acid, glycine, and glutamine. J Neurochem 14(4):465–472 PubMed

Davidoff R et al (1967) Changes in amino acid concentrations associated with loss of spinal interneurons. J Neurochem 14(10):1025–1031 PubMed

Duggan A (1974) The differential sensitivity to l-glutamate and l-Aspartate of spinal interneurones and Renshaw cells. Exp Brain Res 19(5):522–528 PubMed

Olverman H, Jones A, Watkins J (1984) l-glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes. Nature 307(5950):460–462 PubMed

Stone TW (1979) Amino acids as neurotransmitters of corticofugal neurones in the rat: a comparison of glutamate and aspartate. Br J Pharmacol 67(4):545–551 PubMed PMC

Watkins JC, Jane DE (2006) The glutamate story. Brit J Pharmacol 147(S1):S100 PubMed PMC

Hicks T et al (1985) Aspartate and glutamate as synaptic transmitters of parallel visual cortical pathways. Exp Brain Res 58(2):421–425 PubMed

Canzek V et al (1981) In vivo release of glutamate and aspartate following optic nerve stimulation. Nature 293(5833):572–574 PubMed

Ikeda H, Sheardown M (1982) Aspartate may be an excitatory transmitter mediating visual excitation of ‘sustained’but not ‘transient’cells in the cat retina: iontophoretic studiesin vivo. Neuroscience 7(1):25–36 PubMed

Baughman RW, Gilbert CD (1981) Aspartate and glutamate as possible neurotransmitters in the visual cortex. J Neurosci 1(4):427–439 PubMed PMC

Nadler JV (2011) Aspartate release and signalling in the hippocampus. Neurochem Res 36(4):668–676 PubMed

Christie M et al (1985) Excitotoxin lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area. Brain Res 333(1):169–172 PubMed

Girault JA et al (1986) In vivo release of endogenous amino acids from the rat striatum: further evidence for a role of glutamate and aspartate in corticostriatal neurotransmission. J Neurochem 47(1):98–106 PubMed

Werman R (1966) A review — criteria for identification of a central nervous system transmitter. Comp Biochem Physiol 18(4):745–766 PubMed

Curtis DR, Johnston GA (1974) Amino acid transmitters in the mammalian central nervous system. Ergebnisse der Physiologie Rev Physiol 69:97–188 PubMed

Balcar VJ, Johnston G (1972) Glutamate uptake by brain slices and its relation to the depolarization of neurones by acidic amino acids. Dev Neurobiol 3(4):295–301 PubMed

Logan WJ, Snyder SH (1972) High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissues. Brain Res 42(2):413–431 PubMed

Wofsey AR, Kuhar MJ, Snyder SH (1971) A unique synaptosomal fraction, which accumulates glutamic and aspartic acids, in brain tissue. Proc Natl Acad Sci 68(6):1102–1106 PubMed PMC

Balcar VJ, Johnston GAR (1972) The structural specificity of the high affinity uptake of l-glutamate and l-Aspartate by rat brain slices. J Neurochem 19:2657–2666 PubMed

Fonnum F (1984) Glutamate - a neurotransmitter in mammalian brain. J Neurochem 42(1):1–11 PubMed

Balcar VJ, Borg J, Mandel P (1977) High affinity uptake of l-glutamate and l-Aspartate by glial cells. J Neurochem 28(1):87–93 PubMed

Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Int Rev Neurobiol 22:1–45 PubMed

Balcar VJ, Li Y (1992) Heterogeneity of high-affinity uptake of l-glutamate and l-Aspartate in the mammalian central nervous system. Life Sci 51(19):1467–1478 PubMed

Balcar VJ et al (1980) Uptake of l-glutamate and taurine in neuroblastoma cells with altered fatty acid composition of membrane phospholipids. J Neurochem 34(6):1678–1681 PubMed

Balcar VJ et al (1987) Differences between substrate specificities of l-glutamate uptake by neurons and glia, studied in cell lines and primary cultures. Neurochem Int 10(2):213–217 PubMed

Danbolt N, Furness D, Zhou Y (2016) Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem Int 98:29–45 PubMed

Šerý O et al (2015) GLAST but not least—distribution function genetics and epigenetics of l-glutamate transport in brain—focus on GLAST/EAAT1. Neurochem Res 40:1–12 PubMed

Davies LP, Johnston GAR (1976) Uptake and release of d-aspartate and l-Aspartate by rat brain slices. J Neurochem 26(5):1007–1014 PubMed

Scott HL, Tannenberg AE, Dodd PR (1995) Variant forms of neuronal glutamate transporter sites in Alzheimer’s disease cerebral cortex. J Neurochem 64(5):2193–2202 PubMed

Taxt T, Storm-Mathisen J (1984) Uptake of d-aspartate and l-glutamate in excitatory axon terminals in hippocampus: autoradiographic and biochemical comparison with γ-aminobutyrate and other amino acids in normal rats and in rats with lesions. Neuroscience 11(1):79–100 PubMed

Parsons B, Rainbow TC (1983) Quantitative autoradiography of sodium-dependent [3H]d-aspartate binding sites in rat brain. Neurosci Lett 36(1):9–12 PubMed

Balcar VJ (2002) Molecular pharmacology of the Na+-dependent transport of acidic amino acids in the mammalian central nervous system. Biol Pharm Bull 25(3):291–301 PubMed

Li Y, Balcar VJ (1994) The Na+-dependent binding of [3 H] l-Aspartate in thaw-mounted sections of rat forebrain. Exp Brain Res 97(3):415–422 PubMed

Anderson KJ, Sandler DL (1993) Autoradiography of L-[3H] aspartate binding sites. Life Sci 52(10):863–868 PubMed

Mitrovic AD, Johnston GA (1994) Regional differences in the inhibition of l-glutamate and l-Aspartate sodium-dependent high affinity uptake systems in rat CNS synaptosomes by L-trans-pyrrolidine-2, 4-dicarboxylate, threo-3-hydroxy-d-aspartate and d-aspartate. Neurochem Int 24(6):583–588 PubMed

Fletcher EJ, Johnston GA (1991) Regional heterogeneity of l-glutamate and l-Aspartate high-affinity uptake systems in the rat CNS. J Neurochem 57(3):911–914 PubMed

Anderson KJ, Vickroy TW (1990) Anatomical and pharmacological heterogeneity of D-[3H] aspartate binding sites. Eur J Pharmacol 185(1):119–121 PubMed

Ferkany J, Coyle J (1986) Heterogeneity of sodium-dependent excitatory amino uptake mechanisms in rat brain. J Neurosci Res 16(3):491–503 PubMed

Balcar VJ, Takamoto A, Yoneda Y (2001) Neurochemistry of l-glutamate transport in the CNS: a review of thirty years of progress. Collect Czech Chem Commun 66(9):1315–1340

Takamoto A et al (2002) Differences between D-and l-Aspartate binding to the Na+-dependent binding sites on glutamate transporters in frozen sections of rat brain. Life Sci 70(9):991–1001 PubMed

Lee A et al (2020) Human brain neurons express a novel splice variant of excitatory amino acid transporter 5 (hEAAT5v). J Compar Neurol 528(17):3134–3142 PubMed

Lee A et al (2022) Cloning of a new form of EAAT2/GLT-1 from human and rodent brains. Neurosci Lett 780:136637 PubMed

Bräuner-Osborne H et al (2000) Ligands for glutamate receptors: design and therapeutic prospects. J Med Chem 43(14):2609–2645 PubMed

Bridges RJ, Kavanaugh MP, Chamberlin AR (1999) A pharmacological review of competitive inhibitors and substrates of high-affinity, sodium-dependent glutamate transport in the central nervous system. Curr Pharm Des 5:363–379 PubMed

Taberner PV, Pearce MJ, Watkins JC (1977) The inhibition of mouse brain glutamate decarboxylase by some structural analogues of l-glutamic acid. Biochem Pharmacol 26(4):345–349 PubMed

Johanson SO, Balcar VJ (1995) Glutamate decarboxylase solubilized from the rat cerebral cortex by two different concentrations of triton x–100: Effects of glutamate analogues and analysis by SDS-page/western blotting using GAD6 and K2 antibodies. Neurochem Int 26(2):179–185 PubMed

Vandenberg RJ, Mitrovic AD, Johnston GA (1998) Serine-O-sulphate transport by the human glutamate transporter, EAAT2. Br J Pharmacol 123(8):1593–1600 PubMed PMC

Scopelliti AJ, Ryan RM, Vandenberg RJ (2013) Molecular determinants for functional differences between alanine-serine-cysteine transporter 1 and other glutamate transporter family members. J Biol Chem 288(12):8250–8257 PubMed PMC

Lodge D (2009) The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology 56(1):6–21 PubMed

Récasens M et al (2007) Metabotropic glutamate receptors as drug targets. Curr Drug Targets 8(5):651–681 PubMed

Porter R, Roberts P (1993) Glutamate metabotropic receptor activation in neonatal rat cerebral cortex by sulphur-containing excitatory amino acids. Neurosci Lett 154(1):78–80 PubMed

Ormandy GC (1992) Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in rat hippocampus by l-Aspartate-β-hydroxamate. Brain Res 572(1):103–107 PubMed

Nicoletti F et al (1986) The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J Neurosci 6(7):1905–1911 PubMed PMC

Thomsen C, Hansen L, Suzdak PD (1994) l-glutamate uptake inhibitors may stimulate phosphoinositide hydrolysis in baby hamster kidney cells expressing mGluR1a via heteroexchange with l-glutamate without direct activation of mGluR1a. J Neurochem 63(6):2038–2047 PubMed

Kanumilli S, Toms NJ, Roberts PJ (2004) Novel metabotropic glutamate receptor negatively coupled to adenylyl cyclase in cultured rat cerebellar astrocytes. Glia 46(1):1–7 PubMed

Chung DS et al (1997) 4-Methylhomoibotenic acid activates a novel metabotropic glutamate receptor coupled to phosphoinositide hydrolysis. J Pharmacol Exp Ther 283(2):742–749 PubMed

Klein J et al (1997) Ontogenetic and pharmacological studies on metabotropic glutamate receptors coupled to phospholipase D activation. Neuropharmacology 36(3):305–311 PubMed

Lasztóczi B et al (2006) Suppression of neuronal network excitability and seizure-like events by 2-methyl-4-oxo-3H-quinazoline-3-acetyl piperidine in juvenile rat hippocampus: Involvement of a metabotropic glutamate receptor. Neurochem Int 49(1):41–54 PubMed

Ribeiro FM et al (2017) Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 115:179–191 PubMed

Bradford H (1970) Metabolic response of synaptosomes to electrical stimulation: release of amino acids. Brain Res 19(2):239–247 PubMed

Omote H et al (2011) Vesicular neurotransmitter transporter: bioenergetics and regulation of glutamate transport. Biochemistry 50(25):5558–5565 PubMed

Fykse EM, Iversen EG, Fonnum F (1992) Inhibition of l-glutamate uptake into synaptic vesicles. Neurosci Lett 135(1):125–128 PubMed

Naito S, Ueda T (1985) Characterization of glutamate uptake into synaptic vesicles. J Neurochem 44(1):99–109 PubMed

Clark RM, Collins G (1976) The release of endogenous amino acids from the rat visual cortex. J Physiol 262(2):383–400 PubMed PMC

Jasper HH, Koyama I (1969) Rate of release of amino acids from the cerebral cortex in the cat as affected by brainstem and thalamic stimulation. Can J Physiol Pharmacol 47(10):889–905 PubMed

Potashner S, Gerard D (1983) Kainate-enhanced release of d-[3H] aspartate from cerebral cortex and striatum: reversal by baclofen and pentobarbital. J Neurochem 40(6):1548–1557 PubMed

Levi G et al (1982) Putative acidic amino acid transmitters in the cerebellum I. Depolarization-induced release. Brain Res 239(2):425–445 PubMed

Sim AT et al (1993) Synaptosomal amino acid release: effect of inhibiting protein phosphatases with okadaic acid. Neurosci Lett 160(2):181–184 PubMed

Cavallero A, Marte A, Fedele E (2009) l-Aspartate as an amino acid neurotransmitter: mechanisms of the depolarization-induced release from cerebrocortical synaptosomes. J Neurochem 110(3):924–934 PubMed

Chaudhry FA et al (2008) Pharmacology of neurotransmitter transport into secretory vesicles. Pharmacology of neurotransmitter release. Springer, pp 77–106 PubMed

Herring BE et al (2015) Is aspartate an excitatory neurotransmitter? J Neurosci 35(28):10168–10171 PubMed PMC

Holten AT et al (2008) Vesicular release of l- and d-aspartate from hippocampal nerve terminals: immunogold evidence. Open Neurosci J 2:51–58

Gundersen V et al (1998) Synaptic vesicular localization and exocytosis of l-Aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J Neurosci 18(16):6059–6070 PubMed PMC

Mizushima S et al (1956) The determination of D-glutamic and d-aspartic acids content of malignant tumors and normal tissue by means of new oxidase. Gann 47(1):91–95 PubMed

de Marchi WJ, Johnston G (1969) The oxidation of glycine by D-amino acid oxidase in extracts of mammalian central nervous tissue. J Neurochem 16(3):355–361 PubMed

Yusko S, Neims A (1973) d-aspartate oxidase in mammalian brain and choroid plexus. J Neurochem 21(4):1037–1039 PubMed

Katane M, Homma H (2010) d-aspartate oxidase: the sole catabolic Enzyme acting on free d-aspartate in mammals. Chem Biodivers 7(6):1435–1449 PubMed

Christensen HN et al (1994) Special transport and neurological significance of two amino acids in a configuration conventionally designated as D. J Exp Biol 196(1):297–305 PubMed

Cooper B et al (1998) Structural selectivity and molecular nature ofl-glutamate transport in cultured human fibroblasts. Arch Biochem Biophys 353(2):356–364 PubMed

Cuenod M, et al (1982) Transmitter-specific retrograde labeling of neurons. In: Chan-Palay V, Palay S (ed) Cytochemical methods in neuroanatomy

Gundersen V, Ottersen OP, Storm-Mathisen J (1996) Selective excitatory amino acid uptake in glutamatergic nerve terminals and in glia in the rat striatum: quantitative electron microscopic immunocytochemistry of exogenous d-aspartate and endogenous glutamate and GABA. Eur J Neurosci 8(4):758–765 PubMed

Gundersen V et al (1993) Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognizing exogenous d-aspartate. Neuroscience 57(1):97–111 PubMed

Pow DV, Barnett NL, Penfold P (2000) Are neuronal transporters relevant in retinal glutamate homeostasis? Neurochem Int 37(2):191–198 PubMed

Furness DN et al (2008) A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2). Neuroscience 157(1):80–94 PubMed PMC

Dunlop DS et al (1986) The presence of free d-aspartic acid in rodents and man. Biochem Biophys Res Commun 141(1):27–32 PubMed

Hashimoto A, Oka T (1997) Free d-aspartate and D-serine in the mammalian brain and periphery. Prog Neurobiol 52(4):325–353 PubMed

Kiriyama Y, Nochi H (2016) D-amino acids in the nervous and endocrine systems. Scientifica 2016:6494621 PubMed PMC

Schell MJ, Cooper OB, Snyder SH (1997) d-aspartate localizations imply neuronal and neuroendocrine roles. Proc Natl Acad Sci 94(5):2013–2018 PubMed PMC

Cristino L et al (2015) d-aspartate oxidase influences glutamatergic system homeostasis in mammalian brain. Neurobiol Aging 36(5):1890–1902 PubMed

Ota N, Shi T, Sweedler JV (2012) d-aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids 43(5):1873–1886 PubMed PMC

Errico F et al (2006) A physiological mechanism to regulate d-aspartic acid and NMDA levels in mammals revealed by d-aspartate oxidase deficient mice. Gene 374:50–57 PubMed

Errico F et al (2009) d-aspartate: an atypical amino acid with neuromodulatory activity in mammals. Rev Neurosci 20(5–6):429–440 PubMed

Wang H et al (2000) Regulation of rat magnocellular neurosecretory system by d-aspartate: evidence for biological role (s) of a naturally occurring free D-amino acid in mammals. J Endocrinol 167(2):247–252 PubMed

Wang H et al (2002) Naturally occurring free d-aspartate is a nuclear component of cells in the mammalian hypothalamo-neurohypophyseal system. Neuroscience 109(1):1–4 PubMed

Wolosker H, D’Aniello A, Snyder S (2000) d-aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100(1):183–189 PubMed

Kim PM et al (2010) Aspartate racemase, generating neuronal d-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA 107(7):3175–3179 PubMed PMC

Mothet J-P, Snyder SH (2012) Brain D-amino acids: a novel class of neuromodulators. Springer, Cham PubMed

D’Aniello A (2007) d-aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res Rev 53(2):215–234 PubMed

Errico F, Mothet J-P, Usiello A (2015) d-aspartate: an endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. J Pharm Biomed Anal 116:7–17 PubMed

D’Aniello S et al (2011) d-aspartic acid is a novel endogenous neurotransmitter. FASEB J 25(3):1014–1027 PubMed

Waagepetersen HS, Shimamoto K, Schousboe A (2001) Comparison of effects of DL-threo-β-benzyloxyaspartate (DL-TBOA) and L-trans-pyrrolidine-2, 4-dicarboxylate (t-2, 4-PDC) on uptake and release of [3h] d-aspartate in astrocytes and glutamatergic neurons. Neurochem Res 26(6):661–666 PubMed

Billard J-M (2012) D-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids 43(5):1851–1860 PubMed

Davies LP, Johnston GAR (1975) d-aspartate oxidase activity in extracts of mammalian central nervous tissue. J Neurochem 25(3):299–304 PubMed

Fagg GE, Matus A (1984) Selective association of N-methyl aspartate and quisqualate types of l-glutamate receptor with brain postsynaptic densities. Proc Natl Acad Sci 81(21):6876–6880 PubMed PMC

Foster AC, Fagg GE (1987) Comparison of L-[3H]glutamate, D-[3H]aspartate, DL-[3H]AP5 and [3H]NMDA as ligands for NMDA receptors in crude postsynaptic densities from rat brain. Eur J Pharmacol 133(3):291–300 PubMed

Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33(6):523–533 PubMed

Coyle JT, Tsai G (2004) NMDA receptor function, neuroplasticity, and the pathophysiology of schizophrenia. Int Rev Neurobiol 59:491–515 PubMed

Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40(5):881–884 PubMed

Errico F et al (2008) d-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28(41):10404–10414 PubMed PMC

Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669 PubMed

Nuzzo T et al (2017) Decreased free d-aspartate levels are linked to enhanced d-aspartate oxidase activity in the dorsolateral prefrontal cortex of schizophrenia patients. npj Schizophrenia 3(1):16 PubMed PMC

Garofalo M et al (2024) Decreased free d-aspartate levels in the blood serum of patients with schizophrenia. Front Psych 15:1408175 PubMed PMC

Rampino A et al (2024) Variations of blood D-serine and d-aspartate homeostasis track psychosis stages. Schizophrenia 10(1):115 PubMed PMC

Errico F et al (2013) Decreased levels of d-aspartate and NMDA in the prefrontal cortex and striatum of patients with schizophrenia. J Psychiatr Res 47(10):1432–1437 PubMed

Shibata K et al (2020) d-aspartate N-methyltransferase catalyzes biosynthesis of N-methyl-d-aspartate (NMDA), a well-known selective agonist of the NMDA receptor, in mice. Biochimica et Biophysica Acta (BBA)-Proteins Proteomics 1868(12):140527 PubMed

Skerritt J, Johnston G (1981) Uptake and release of N-methyl-d-aspartate by rat brain slices. J Neurochem 36(3):881–885 PubMed

Melone M et al (2001) The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Mol Psychiatry 6:380–386 PubMed

Di Fiore MM et al (2018) Sex hormone levels in the brain of d-aspartate-treated rats. CR Biol 341(1):9–15 PubMed

Sellers KJ et al (2015) Rapid modulation of synaptogenesis and spinogenesis by 17β-estradiol in primary cortical neurons. Front Cell Neurosci 9:137 PubMed PMC

Jones KJ (1988) Steroid hormones and neurotrophism: relationship to nerve injury. Metab Brain Dis 3(1):1–18 PubMed

Arai Y, Matsumoto A, Nishizuka M (1986) Synaptogenesis and neuronal plasticity to gonadal steroids: implications for the development of sexual dimorphism in the neuroendocrine brain. Morphology of hypothalamus and its connections. Springer, pp 291–307

Kitamura A et al (2018) Ingested d-aspartate facilitates the functional connectivity and modifies dendritic spine morphology in rat hippocampus. Cereb Cortex 29:2499 PubMed

Genchi G (2017) An overview on D-amino acids. Amino Acids 49(9):1521–1533 PubMed

Coveñas R et al (2017) Generation of specific antisera directed against D-amino acids: focus on the neuroanatomical distribution of D-glutamate and other D-amino acids. Folia Histochemica et Cytobiologica 55(4):177 PubMed

Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constant for brain metabolites. NMR Biomed 13:129–153 PubMed

Ordidge RJ et al (1985) In: Govid G, Khetrapal GL, Saran A (ed) Volume selection for in vivo biological spectroscopy. McGraw-Hill, New Delhi. pp 387–397

Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348 PubMed

Frahm J, Merboldt KD, Hanicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72(3):502–508 PubMed

Scheenen TW et al (2008) Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med 59(1):1–6 PubMed

Jensen JE et al (2017) Localized MRS reliability of in vivo glutamate at 3 T in shortened scan times: a feasibility study. NMR Biomed 30:3771 PubMed PMC

Cai K et al (2015) CEST MRI for Molecular Imaging of Brain Metabolites. Curr Mol Imaging 4(2):100–108

Mescher M et al (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11(6):266–272 PubMed

Murdoch JB, Whaeaton AJ, Anderson RM (2013) MEGA-PRESSing onward for more metabolites: aspartate, lactate and PE. Proc Int Soc Mag Reson Med 21:2026

Menshchikov PE, Akhadov TA, Semenova NA (2017) Quantification of cerebral aspartate concentration in vivo using proton magnetic resonance spectroscopy. Bull Lebedev Phys Inst 44(3):56–60

Henning A et al (2009) Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for 1H-MRSI of the human brain at 7 T with minimal signal loss. NMR Biomed Int J Devoted Develop Appl Mag Reson 22(7):683–696 PubMed

Rae C, Balcar VJ (2014) A chip off the old block: the brain slice as a model for metabolic studies of brain compartmentation and neuropharmacology. In: Hirrlinger J, Waagepetersen HS (eds) Brain energy metabolism. Springer, New York, pp 217–241

Nassirpour S, Chang P, Henning A (2018) High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4 T. Neuroimage 168:211–221 PubMed

Hingerl L et al (2025) Exploring in vivo human brain metabolism at 10.5 T: Initial insights from MR spectroscopic imaging. NeuroImage 307:121015 PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...