The Application of Natural Phenolic Substances as Antimicrobial Agents in Agriculture and Food Industry

. 2025 May 26 ; 14 (11) : . [epub] 20250526

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40509420

Natural phenolic substances have emerged as promising alternatives to synthetic antimicrobials in both agriculture and the food industry, where concerns over microbial resistance and chemical residues are rising. This review provides a comprehensive overview of the current literature, highlighting the potential of these compounds as effective antimicrobial agents. A systematic evaluation of in vitro and in vivo studies was conducted, focusing on the efficacy of various phenolic compounds against a range of pathogens. The analysis revealed that natural phenolics not only inhibit microbial growth but also enhance the shelf life and safety of food products and protect crops from disease. Moreover, although laboratory results are promising, the translation of these findings into practical applications requires further investigation. Overall, the evidence supports the potential for natural phenolic substances to serve as integral components in sustainable agriculture and food preservation strategies.

Zobrazit více v PubMed

Firmino D.F., Cavalcante T.T.A., Gomes G.A., Firmino N.C.S., Rosa L.D., De Carvalho M.G., Catunda F.E.A., Jr. Antibacterial and Antibiofilm Activities of Cinnamomum sp. Essential Oil and Cinnamaldehyde: Antimicrobial Activities. Sci. World J. 2018;2018:1–9. doi: 10.1155/2018/7405736. PubMed DOI PMC

Vuolo M.M., Lima V.S., Maróstica Junior M.R. Chapter 2—Phenolic Compounds: Structure, Classification, and Antioxidant Power. In: Campos M.R.S., editor. Bioactive Compounds. Woodhead Publishing; Cambridge, UK: 2019. pp. 33–50. DOI

Ginter A. Plant Protection within the European Green Deal on the Example Starch Potato Cultivation. Prog. Plant Prot. 2022;62:208–215. doi: 10.14199/ppp-2022-023. DOI

Kannan M., Bojan N., Swaminathan J., Zicarelli G., Hemalatha D., Zhang Y., Ramesh M., Faggio C. Nanopesticides in Agricultural Pest Management and Their Environmental Risks: A Review. Int. J. Environ. Sci. Technol. 2023;20:10507–10532. doi: 10.1007/s13762-023-04795-y. DOI

Li X., Chen Y., Xu J., Lynch I., Guo Z., Xie C., Zhang P. Advanced Nanopesticides: Advantage and Action Mechanisms. Plant Physiol. Biochem. 2023;203:108051. doi: 10.1016/j.plaphy.2023.108051. PubMed DOI

Santra H.K., Banerjee D. Natural Products as Fungicide and Their Role in Crop Protection. In: Singh J., Yadav A., editors. Natural Bioactive Products in Sustainable Agriculture. Springer; Singapore: 2020. pp. 131–219. DOI

Bangar S.P., Chaudhary V., Thakur N., Kajla P., Kumar M., Trif M. Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods. 2021;10:2282. doi: 10.3390/foods10102282. PubMed DOI PMC

Chalker-Scott L., Fuchigami L.H. Low Temperature Stress Physiology in Crops. CRC Press; Boca Raton, FL, USA: 2018. The Role of Phenolic Compounds in Plant Stress Responses; pp. 67–80.

Bento C., Gonçalves A.C., Jesus F., Simões M., Silva L.R. Phenolic compounds: Sources, properties and applications. In: Porter R., Parker N., editors. Bioactive Compounds: Sources, Properties and Applications. Nova Science Publishers; New York, NY, USA: 2017. pp. 271–299.

Zinn S., Betz T., Medcraft C., Schnell M. Structure Determination of Trans-Cinnamaldehyde by Broadband Microwave Spectroscopy. Phys. Chem. Chem. Phys. 2015;17:16080–16085. doi: 10.1039/C5CP02582F. PubMed DOI

Doyle A.A., Stephens J.C. A Review of Cinnamaldehyde and Its Derivatives as Antibacterial Agents. Fitoterapia. 2019;139:104405. doi: 10.1016/j.fitote.2019.104405. PubMed DOI

Ruwizhi N., Aderibigbe B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020;21:5712. doi: 10.3390/ijms21165712. PubMed DOI PMC

Nostro N.A., Papalia N.T. Antimicrobial Activity of Carvacrol: Current Progress and Future Prospectives. Recent Pat. Anti-Infect. Drug Discov. 2012;7:28–35. doi: 10.2174/157489112799829684. PubMed DOI

Mączka W., Twardawska M., Grabarczyk M., Wińska K. Carvacrol—A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics. 2023;12:824. doi: 10.3390/antibiotics12050824. PubMed DOI PMC

Karthikeyan S., Prasad N.R., Ganamani A., Balamurugan E. Anticancer Activity of Resveratrol-Loaded Gelatin Nanoparticles on NCI-H460 Non-Small Cell Lung Cancer Cells. Biomed. Prev. Nutr. 2012;3:64–73. doi: 10.1016/j.bionut.2012.10.009. DOI

Pei K., Ou J., Huang J., Ou S. p-Coumaric Acid and Its Conjugates: Dietary Sources, Pharmacokinetic Properties and Biological Activities. J. Sci. Food Agric. 2015;96:2952–2962. doi: 10.1002/jsfa.7578. PubMed DOI

Tsioptsias C., Tsivintzelis I. Insights on Thermodynamic Thermal Properties and Infrared Spectroscopic Band Assignments of Gallic Acid. J. Pharm. Biomed. Anal. 2022;221:115065. doi: 10.1016/j.jpba.2022.115065. PubMed DOI

Hadidi M., Liñán-Atero R., Tarahi M., Christodoulou M.C., Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants. 2024;13:1001. doi: 10.3390/antiox13081001. PubMed DOI PMC

Zhen L., Lange H., Crestini C. An Analytical Toolbox for Fast and Straightforward Structural Characterisation of Commercially Available Tannins. Molecules. 2021;26:2532. doi: 10.3390/molecules26092532. PubMed DOI PMC

Kumar N., Pruthi V. Potential Applications of Ferulic Acid from Natural Sources. Biotechnol. Rep. 2014;4:86–93. doi: 10.1016/j.btre.2014.09.002. PubMed DOI PMC

Meenu M., Khandare K., Singh M., Kenyanya S., Sharma K.P., Garg M. Salicylic Acid: Food, Functions, and Future. In: Faizan M., Hayat S., editors. Plant Growth Regulators: Resilience for Sustainable Agriculture. Springer; Singapore: 2024. pp. 21–39. DOI

Ulanowska M., Olas B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021;22:3671. doi: 10.3390/ijms22073671. PubMed DOI PMC

Liu B., Chen B., Zhang J., Wang P., Feng G. The Environmental Fate of Thymol, a Novel Botanical Pesticide, in Tropical Agricultural Soil and Water. Toxicol. Environ. Chem. Rev. 2016;99:223–232. doi: 10.1080/02772248.2016.1198907. DOI

Di Pasqua R., Betts G., Hoskins N., Edwards M., Ercolini D., Mauriello G. Membrane Toxicity of Antimicrobial Compounds from Essential Oils. J. Agric. Food Chem. 2007;55:4863–4870. doi: 10.1021/jf0636465. PubMed DOI

Cushnie T.P.T., Lamb A.J. Recent Advances in Understanding the Antibacterial Properties of Flavonoids. Int. J. Antimicrob. Agents. 2011;38:99–107. doi: 10.1016/j.ijantimicag.2011.02.014. PubMed DOI

Qu S., Yang K., Chen L., Liu M., Geng Q., He X., Li Y., Liu Y., Tian J. Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Front. Microbiol. 2019;10:2895. doi: 10.3389/fmicb.2019.02895. PubMed DOI PMC

Hossain M.A., Lee S.-J., Park N.-H., Mechesso A.F., Birhanu B.T., Kang J., Reza M.A., Suh J.-W., Park S.-C. Impact of Phenolic Compounds in the Acyl Homoserine Lactone-Mediated Quorum Sensing Regulatory Pathways. Sci. Rep. 2017;7:10618. doi: 10.1038/s41598-017-10997-5. PubMed DOI PMC

De Rossi L., Rocchetti G., Lucini L., Rebecchi A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses—A Narrative Review. Antioxidants. 2025;14:200. doi: 10.3390/antiox14020200. PubMed DOI PMC

OuYang Q., Okwong R.O., Chen Y., Tao N. Synergistic Activity of Cinnamaldehyde and Citronellal against Green Mold in Citrus Fruit. Postharvest Biol. Technol. 2019;162:111095. doi: 10.1016/j.postharvbio.2019.111095. DOI

Farhadi K., Rajabi E., Varpaei H.A., Iranzadasl M., Khodaparast S., Salehi M. Thymol and carvacrol against Klebsiella: Anti-bacterial, anti-biofilm, and synergistic activities—A systematic review. Front. Pharmacol. 2024;15:1487083. doi: 10.3389/fphar.2024.1487083. PubMed DOI PMC

Assadpour E., Jafari S.M., Esfanjani A.F. Protection of phenolic compounds within nanocarriers. CABI Rev. 2017;12:1–8. doi: 10.1079/PAVSNNR201712057. DOI

Pasquet P.L., Julien-David D., Zhao M., Villain-Gambier M., Trébouet D. Stability and preservation of phenolic compounds and related antioxidant capacity from agro-food matrix: Effect of pH and atmosphere. Food Biosci. 2024;57:103586. doi: 10.1016/j.fbio.2024.103586. DOI

Saarniit K., Lang H., Kuldjärv R., Laaksonen O., Rosenvald S. The stability of phenolic compounds in fruit, berry, and vegetable purees based on accelerated shelf-life testing methodology. Foods. 2023;12:1777. doi: 10.3390/foods12091777. PubMed DOI PMC

Pinarli B., Simge Karliga E., Ozkan G., Capanoglu E. Interaction of phenolics with food matrix: In vitro and in vivo approaches. Mediterr. J. Nutr. Metab. 2020;13:63–74. doi: 10.3233/MNM-190362. DOI

Fisher M.C., Gurr S.J., Cuomo C.A., Blehert D.S., Jin H., Stukenbrock E.H., Stajich J.E., Kahmann R., Boone C., Denning D.W., et al. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio. 2020;11:10–1128. doi: 10.1128/mBio.00449-20. PubMed DOI PMC

Bi K., Liang Y., Mengiste T., Sharon A. Killing softly: A roadmap of Botrytis cinerea pathogenicity. Trends Plant Sci. 2023;28:211–222. doi: 10.1016/j.tplants.2022.08.024. PubMed DOI

Zhou J., Zhang X., Qu Z., Zhang C., Wang F., Gao T., Liang J. Progress in Research on Prevention and Control of Crop Fungal Diseases in the Context of Climate Change. Agriculture. 2024;14:1108. doi: 10.3390/agriculture14071108. DOI

Matan N. Growth Inhibition of Aspergillus Niger by Cinnamaldehyde and Eugenol. Walailak J. Sci. Technol. (WJST) 2011;4:41–51.

Sun Q., Shang B., Wang L., Lu Z., Liu Y. Cinnamaldehyde Inhibits Fungal Growth and Aflatoxin B1 Biosynthesis by Modulating the Oxidative Stress Response of Aspergillus flavus. Appl. Microbiol. Biotechnol. 2015;100:1355–1364. doi: 10.1007/s00253-015-7159-z. PubMed DOI

Niu A., Wu H., Ma F., Tan S., Wang G., Qiu W. The Antifungal Activity of Cinnamaldehyde in Vapor Phase against Aspergillus niger Isolated from Spoiled Paddy. LWT. 2022;159:113181. doi: 10.1016/j.lwt.2022.113181. DOI

Xie Y., Huang Q., Wang Z., Cao H., Zhang D. Structure-Activity Relationships of Cinnamaldehyde and Eugenol Derivatives against Plant Pathogenic Fungi. Ind. Crop. Prod. 2017;97:388–394. doi: 10.1016/j.indcrop.2016.12.043. DOI

Zhou L.-R., Hu H.-J., Wang J., Zhu Y.-X., Zhu X.-D., Ma J.-W., Liu Y.-Q. Cinnamaldehyde Acts as a Fungistat by Disrupting the Integrity of Fusarium oxysporum Fox-1 Cell Membranes. Horticulturae. 2024;10:48. doi: 10.3390/horticulturae10010048. DOI

Xing F., Hua H., Selvaraj J.N., Zhao Y., Zhou L., Liu X., Liu Y. Growth Inhibition and Morphological Alterations of Fusarium verticillioides by Cinnamon Oil and Cinnamaldehyde. Food Control. 2014;46:343–350. doi: 10.1016/j.foodcont.2014.04.037. DOI

Yang R., Miao J., Shen Y., Cai N., Wan C., Zou L., Chen C., Chen J. Antifungal Effect of Cinnamaldehyde, Eugenol and Carvacrol Nanoemulsion against Penicillium digitatum and Application in Postharvest Preservation of Citrus Fruit. LWT. 2021;141:110924. doi: 10.1016/j.lwt.2021.110924. DOI

Wang Y., Wang M., Li M., Zhao T., Zhou L. Cinnamaldehyde Inhibits the Growth of Phytophthora capsici through Disturbing Metabolic Homoeostasis. PeerJ. 2021;9:e11339. doi: 10.7717/peerj.11339. PubMed DOI PMC

Ibi A.A., Kyuka C.K. Sources, Extraction and Biological Activities of Cinnamaldehyde. Trends Pharm. Sci. 2022;8:263–282. doi: 10.30476/tips.2022.96263.1160. DOI

Shen Y., Kahramanoğlu İ., Chen C., Chen J., Okatan V., Wan C. Application of Cinnamaldehyde for the Postharvest Storage of Fresh Horticultural Products. Hortic. Int. J. 2021;5:103–105. doi: 10.15406/hij.2021.05.00212. DOI

Yossa N., Patel J., Millner P., Lo M. Inactivation ofSalmonellain Organic Soil by Cinnamaldehyde, Eugenol, Ecotrol, and Sporan. Foodborne Pathog. Dis. 2010;8:311–317. doi: 10.1089/fpd.2010.0685. PubMed DOI

Song Y.-R., Choi M.-S., Choi G.-W., Park I.-K., Oh C.-S. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit. Plant Pathol. J. 2016;32:363–370. doi: 10.5423/ppj.nt.01.2016.0006. PubMed DOI PMC

Lee J.-E., Jung M., Lee S.-C., Huh M.-J., Seo S.-M., Park I.-K. Antibacterial Mode of Action of Trans-Cinnamaldehyde Derived from Cinnamon Bark (Cinnamomum Verum) Essential Oil against Agrobacterium tumefaciens. Pestic. Biochem. Physiol. 2020;165:104546. doi: 10.1016/j.pestbp.2020.02.012. PubMed DOI

Mohammed T.G.M., Rahman A.F.A.E. Eco-Friendly Cinnamaldehyde Based Emulsion for Phytopathogenic Bacterial Growth Inhibitor. J. Adv. Microbiol. 2020;20:1–12. doi: 10.9734/jamb/2020/v20i1030285. DOI

Friedman M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. J. Agric. Food Chem. 2017;65:10406–10423. doi: 10.1021/acs.jafc.7b04344. PubMed DOI

Wei C., Fan C., Xie D., Zhou S., Zhang H., Du Q., Jin P. Fabrication of cinnamaldehyde-entrapped ethosome nanoparticles as antimicrobial agent. LWT. 2023;181:114760. doi: 10.1016/j.lwt.2023.114760. DOI

Wang Y., Sun Y., Wang J., Zhou M., Wang M., Feng J. Antifungal Activity and Action Mechanism of the Natural Product Cinnamic Acid Against Sclerotinia sclerotiorum. Plant Dis. 2019;103:944–950. doi: 10.1094/PDIS-08-18-1355-RE. PubMed DOI

Liu H., Cai C., Zhang X., Li W., Ma Z., Feng J., Liu X., Lei P. Discovery of Novel Cinnamic Acid Derivatives as Fungicide Candidates. J. Agric. Food Chem. 2024;72:2492–2500. doi: 10.1021/acs.jafc.3c05655. PubMed DOI

Yang B., Li Z., Liu S., Yang J., Wang P., Liu H., Zhou X., Liu L., Wu Z., Yang S. Novel Cinnamic Acid Derivatives as a Versatile Tool for Developing Agrochemicals for Controlling Plant Virus and Bacterial Diseases by Enhancing Plant Defense Responses. Pest Manag. Sci. 2023;79:2556–2570. doi: 10.1002/ps.7433. PubMed DOI

Yang C., Zhou Y., Zheng Y., Li C., Sheng S., Wang J., Wu F. Enzymatic Modification of Chitosan by Cinnamic Acids: Antibacterial Activity against Ralstonia solanacearum. Int. J. Biol. Macromol. 2016;87:577–585. doi: 10.1016/j.ijbiomac.2016.03.023. PubMed DOI

Abbaszadeh S., Sharifzadeh A., Shokri H., Khosravi A.R., Abbaszadeh A. Antifungal Efficacy of Thymol, Carvacrol, Eugenol and Menthol as Alternative Agents to Control the Growth of Food-Relevant Fungi. J. Mycol. Médicale. 2014;24:e51–e56. doi: 10.1016/j.mycmed.2014.01.063. PubMed DOI

Saghrouchni H., Barnossi A.E., Salamatullah A.M., Bourhia M., Alzahrani A., Alkaltham M.S., Alyahya H.K., Tahiri N.E.H., Imtara H., Var I. Carvacrol: A Promising Environmentally Friendly Agent to Fight Seeds Damping-Off Diseases Induced by Fungal Species. Agronomy. 2021;11:985. doi: 10.3390/agronomy11050985. DOI

Babalık Z., Onursal C., Erbaş D., Koyuncu M. Use of Carvacrol Helps Maintain Postharvest Quality of Red Globe Table Grape. J. Anim. Plant Sci. 2020;30:655–662. doi: 10.36899/japs.2020.3.0078. DOI

Kotan R., Dadasoglu F., Kordali S., Cakir A., Dikbas N., Cakmakci R. Antibacterial activity of essential oils extracted from some medicinal plants, carvacrol and thymol on Xanthomonas axonopodis pv. vesicatoria (Doidge) Dye causes bacterial spot disease on pepper and tomato. J. Agric. Technol. 2007;3:299–306.

Qiao K., Liu Q., Huang Y., Xia Y., Zhang S. Management of Bacterial Spot of Tomato Caused by Copper-Resistant Xanthomonas perforans Using a Small Molecule Compound Carvacrol. Crop Prot. 2020;132:105114. doi: 10.1016/j.cropro.2020.105114. PubMed DOI

Kmoch M., Loubová V., Veselská M., Jílková B., Víchová J. Antifungal Activity of Essential Oils on Helminthosporium solani Causing Potato Silver Scurf under In Vitro and In Vivo Conditions. Agriculture. 2023;14:66. doi: 10.3390/agriculture14010066. DOI

Thiele-Bruhn S., Shikuku V., Dittrich F., Torjir D.N., Saini M., Getenga Z. Soil sorption and effects on soil microorganisms of thymol and carvacrol monoterpenes from essential oils of aromatic plants. Front. Environ. Sci. 2024;12:1379018. doi: 10.3389/fenvs.2024.1379018. DOI

Chen J., Yu Y., Li S., Ding W. Resveratrol and Coumarin: Novel Agricultural Antibacterial Agent against Ralstonia solanacearum In Vitro and In Vivo. Molecules. 2016;21:1501. doi: 10.3390/molecules21111501. PubMed DOI PMC

Luo H.-Z., Guan Y., Yang R., Qian G.-L., Yang X.-H., Wang J.-S., Jia A.-Q. Growth Inhibition and Metabolomic Analysis of Xanthomonas oryzae pv. oryzae Treated with Resveratrol. BMC Microbiol. 2020;20:117. doi: 10.1186/s12866-020-01803-w. PubMed DOI PMC

El Khawand T., Gabaston J., Taillis D., Iglesias M.-L., Pedrot E., Pinto A.P., Fonayet J.V., Merillon J.M., Decendit A., Cluzet S., et al. A Dimeric Stilbene Extract Produced by Oxidative Coupling of Resveratrol Active against Plasmopara viticola and Botrytis cinerea for Vine Treatments. OENO One. 2020;54:157–164. doi: 10.20870/oeno-one.2020.54.1.2529. DOI

Sohn S.I., Oh Y.J., Kim B.Y., Kweon S.J., Cho H.S., Ryu T.H. Effect of genetically modified rice producing resveratrol on the soil microbial communities. J. Korean Soc. Appl. Biol. Chem. 2015;58:795–805. doi: 10.1007/s13765-015-0106-y. DOI

Liu X., Ji D., Cui X., Zhang Z., Li B., Xu Y., Chen T., Tian S. P-Coumaric Acid Induces Antioxidant Capacity and Defense Responses of Sweet Cherry Fruit to Fungal Pathogens. Postharvest Biol. Technol. 2020;169:111297. doi: 10.1016/j.postharvbio.2020.111297. DOI

Tzintzun-Camacho O., Hernández-Jiménez V., González-Mendoza D., Pérez-Pérez J.P., Troncoso-Rojas R., Durán-Hernández D., Ceceña-Durán C., Moreno-Cruz C.F. Characterization of Grape Marc Hydrolysates and Their Antifungal Effect against Phytopathogenic Fungi of Agricultural Importance. Chil. J. Agric. Res. 2021;81:151–160. doi: 10.4067/S0718-58392021000200151. DOI

Kalwasińska A., Tarnawska P., Latos M., Pałubicka K., Janik A., Brzezinska M.S. New P-Coumaric Acid Formulation in Sustainable Pest Management; Impact on Soil Bacterial Diversity and N-Cycle. Appl. Soil Ecol. 2022;180:104634. doi: 10.1016/j.apsoil.2022.104634. DOI

Swiontek Brzezinska M., Pałubicka K., Latos M., Janik A., Tarnawska P., Krajnik K., Burkowska-But A., Świątczak J., Jedziniak P., Pietruszka K., et al. Natural compounds derived from Brassicaceae plants as an alternative to synthetic fungicides and their influence on soil fungus diversity. J. Sci. Food Agric. 2023;103:317–327. doi: 10.1002/jsfa.12143. PubMed DOI

Jia M., Wang X., Zhu X., Du Y., Zhou P., Wang G., Bai Y. Accumulation of coumaric acid is a key factor in tobacco continuous cropping obstacles. Front. Plant Sci. 2024;15:1477324. doi: 10.3389/fpls.2024.1477324. PubMed DOI PMC

El-Nagar A., Elzaawely A.A., Taha N.A., Nehela Y. The Antifungal Activity of Gallic Acid and Its Derivatives against Alternaria solani, the Causal Agent of Tomato Early Blight. Agronomy. 2020;10:1402. doi: 10.3390/agronomy10091402. DOI

Karpova N., Shagdarova B., Lunkov A., Il’ina A., Varlamov V. Antifungal Action of Chitosan in Combination with Fungicides in Vitro and Chitosan Conjugate with Gallic Acid on Tomatoes against Botrytis cinerea. Biotechnol. Lett. 2021;43:1565–1574. doi: 10.1007/s10529-021-03138-6. PubMed DOI

Sobhy S., Al-Askar A.A., Bakhiet E.K., Elsharkawy M.M., Arishi A.A., Behiry S.I., Abdelkhalek A. Phytochemical Characterization and Antifungal Efficacy of Camphor (Cinnamomum camphora L.) Extract against Phytopathogenic Fungi. Separations. 2023;10:189. doi: 10.3390/separations10030189. DOI

Francesconi S., Tagliavento V., Ciarroni S., Sestili F., Balestra G.M. Chitosan- and Gallic Acid-based (NPF) Displayed Antibacterial Activity against Three Pseudomonas spp. Plant Pathogens and Boosted Systemic Acquired Resistance in Kiwifruit and Olive Plants. Pest Manag. Sci. 2023;80:1300–1313. doi: 10.1002/ps.7861. PubMed DOI

Forrer H.-R., Musa T., Schwab F., Jenny E., Bucheli T., Wettstein F., Vogelgsang S. Fusarium Head Blight Control and Prevention of Mycotoxin Contamination in Wheat with Botanicals and Tannic Acid. Toxins. 2014;6:830–849. doi: 10.3390/toxins6030830. PubMed DOI PMC

Zhu C., Lei M., Andargie M., Zeng J., Li J. Antifungal Activity and Mechanism of Action of Tannic Acid against Penicillium digitatum. Physiol. Mol. Plant Pathol. 2019;107:46–50. doi: 10.1016/j.pmpp.2019.04.009. DOI

Yao J., Zhi H., Shi Q., Zhang Y., Feng J., Liu J., Huang H., Xie X. Tannic Acid Interfacial Modification of Prochloraz Ethyl Cellulose Nanoparticles for Enhancing the Antimicrobial Effect and Biosafety of Fungicides. ACS Appl. Mater. Interfaces. 2023;15:41324–41336. doi: 10.1021/acsami.3c07761. PubMed DOI

Han X., Gu S., Xu R., Kong Y., Lou Y., Wang Q., Gao Y., Shang S., Song Z., Song J., et al. Efficient Control of Rhizoctonia solani Using Environmentally Friendly pH-Responsive Tannic Acid–Rosin Nano-Microcapsules. ACS Appl. Mater. Interfaces. 2024 doi: 10.1021/acsami.4c02790. Online ahead of print . PubMed DOI

Gusiatin Z.M., Kaal J., Wasilewska A., Kumpiene J., Radziemska M. Short-term soil flushing with tannic acid and its effect on metal mobilization and selected properties of calcareous soil. Int. J. Environ. Res. Public Health. 2021;18:5698. doi: 10.3390/ijerph18115698. PubMed DOI PMC

Patzke H., Schieber A. Growth-Inhibitory Activity of Phenolic Compounds Applied in an Emulsifiable Concentrate—Ferulic Acid as a Natural Pesticide against Botrytis cinerea. Food Res. Int. 2018;113:18–23. doi: 10.1016/j.foodres.2018.06.062. PubMed DOI

Shu P., Li Y., Wang X., Yao L., Sheng J., Shen L. Exogenous Ferulic Acid Treatment Increases Resistance against Botrytis cinerea in Tomato Fruit by Regulating Nitric Oxide Signaling Pathway. Postharvest Biol. Technol. 2021;182:111678. doi: 10.1016/j.postharvbio.2021.111678. DOI

Shirai A., Tanaka A. Effects of Ferulic Acid Combined with Light Irradiation on Deoxynivalenol and Its Production in Fusarium graminearum. Fungal Biol. 2024;128:1684–1690. doi: 10.1016/j.funbio.2024.02.003. PubMed DOI

El-Khateeb A.Y., Elsherbiny E.A., Tadros L.K., Ali S.M., Hamed H.B. Phytochemical analysis and antifungal activity of fruit leaves extracts on the mycelial growth of fungal plant pathogens. J. Plant Pathol. Microbiol. 2013;4:1–6. doi: 10.4172/2157-7471.1000199. DOI

Dieryckx C., Gaudin V., Dupuy J.-W., Bonneu M., Girard V., Job D. Beyond Plant Defense: Insights on the Potential of Salicylic and Methylsalicylic Acid to Contain Growth of the Phytopathogen Botrytis cinerea. Front. Plant Sci. 2015;6:859. doi: 10.3389/fpls.2015.00859. PubMed DOI PMC

Ramos-Bell S., Hernandez-Montiel L.G., Estrada R.V., Moreno-Hernández C., Gutierrez-Martinez P. Chitosan and Salicylic Acid as Alternatives for the Control of Postharvest Fungal Diseases in Blueberries (Vaccinium Corymbosum) Int. Food Res. J. 2023;30:992–1000. doi: 10.47836/ifrj.30.4.16. DOI

Abdelaziz A.M., Hashem A.H., Okla M.K., Alwasel Y.A., Abdelgawad H., Attia M.S. Protective Role of Endophytic Fungi and Salicylic Acid as Therapeutic Nutrients to Improve Immune Responses of Tomato Plants against Fusarial Wilt Disease. Not. Bot. Horti Agrobot. Cluj-Napoca. 2024;52:13497. doi: 10.15835/nbha52113497. DOI

Amiri A., Dugas R., Pichot A., Bompeix G. In Vitro and in Vitro Activity of Eugenol Oil (Eugenia Caryophylata) against Four Important Postharvest Apple Pathogens. Int. J. Food Microbiol. 2008;126:13–19. doi: 10.1016/j.ijfoodmicro.2008.04.022. PubMed DOI

Campaniello D., Corbo M.R., Sinigaglia M. Antifungal Activity of Eugenol against Penicillium, Aspergillus, and Fusarium Species. J. Food Prot. 2010;73:1124–1128. doi: 10.4315/0362-028X-73.6.1124. PubMed DOI

Cui W., Du K.-Y., Ling Y.-X., Yang C.-J. Activity of Eugenol Derivatives against Fusarium graminearum Q1 Strain and Screening of Isoeugenol Mixtures. J. Plant Pathol. 2021;103:915–921. doi: 10.1007/s42161-021-00875-5. DOI

Jing C., Gou J., Han X., Wu Q., Zhang C. In Vitro and in Vivo Activities of Eugenol against Tobacco Black Shank Caused by Phytophthora nicotianae. Pestic. Biochem. Physiol. 2017;142:148–154. doi: 10.1016/j.pestbp.2017.07.001. PubMed DOI

Wang C., Fan Y. Eugenol Enhances the Resistance of Tomato against Tomato Yellow Leaf Curl Virus. J. Sci. Food Agric. 2013;94:677–682. doi: 10.1002/jsfa.6304. PubMed DOI

Yossa N., Patel J., Macarisin D., Millner P., Murphy C., Bauchan G., Lo Y.M. Antibacterial Activity of Cinnamaldehyde and Sporan against Escherichia coli O157:H7 and Salmonella. J. Food Process. Preserv. 2012;38:749–757. doi: 10.1111/jfpp.12026. DOI

Yang L., Ma X., Wang L., Yang G., Zhou L., Zhang Z., Li X. In Vitro Antifungal Activity and Mechanism of Action of Carvacrol against Sclerotinia sclerotiorum (Lib.) de Bary. Plant Prot. Sci. 2024;60:172–180. doi: 10.17221/121/2023-PPS. DOI

Oluoch G., Mamati E.G., Matiru V., Nyongesa M. Efficacy of thymol and eugenol against bacterial wilt bacterium Ralstonia solanacearum. Afr. J. Biotechnol. 2021;20:256–265. doi: 10.5897/AJB2021.17353. DOI

Ji P., Momol M.T., Olson S.M., Hong J., Pradhanang P., Anith K.N., Jones J.B. New tactics for bacterial wilt management on tomatoes in the Southern US. Acta Hortic. 2005;695:153. doi: 10.17660/ActaHortic.2005.695.17. DOI

Kumari S., Kumaraswamy R.V., Choudhary R.C., Sharma S.S., Pal A., Raliya R., Biswas P., Saharan V. Thymol Nanoemulsion Exhibits Potential Antibacterial Activity against Bacterial Pustule Disease and Growth Promotory Effect on Soybean. Sci. Rep. 2018;8:6650. doi: 10.1038/s41598-018-24871-5. PubMed DOI PMC

Sreelatha S., Kumar N., Yin T.S., Rajani S. Evaluating the Antibacterial Activity and Mode of Action of Thymol-Loaded Chitosan Nanoparticles Against Plant Bacterial Pathogen Xanthomonas campestris pv. campestris. Front. Microbiol. 2022;12:792737. doi: 10.3389/fmicb.2021.792737. PubMed DOI PMC

Gill T.A., Li J., Saenger M., Scofield S.R. Thymol-Based Submicron Emulsions Exhibit Antifungal Activity against Fusarium graminearum and Inhibit Fusarium Head Blight in Wheat. J. Appl. Microbiol. 2016;121:1103–1116. doi: 10.1111/jam.13195. PubMed DOI

Shcherbakova L., Mikityuk O., Arslanova L., Stakheev A., Erokhin D., Zavriev S., Dzhavakhiya V. Studying the Ability of Thymol to Improve Fungicidal Effects of Tebuconazole and Difenoconazole against Some Plant Pathogenic Fungi in Seed or Foliar Treatments. Front. Microbiol. 2021;12:629429. doi: 10.3389/fmicb.2021.629429. PubMed DOI PMC

Zhang J., Hao Y., Lu H., Li P., Chen J., Shi Z., Xie Y., Mo H., Hu L. Nano-Thymol Emulsion Inhibits Botrytis cinerea to Control Postharvest Gray Mold on Tomato Fruit. Agronomy. 2022;12:2973. doi: 10.3390/agronomy12122973. DOI

Song C., Guo N., Xue A., Jia C., Shi W., Liu M., Zhang M., Qin J. Self-Assembled Thymol-Betaine Co-Crystals with Controlled Release and Hygroscopic Properties as Green Preservatives for Aflatoxin Prevention. Food Chem. 2024;456:140037. doi: 10.1016/j.foodchem.2024.140037. PubMed DOI

Aladhadh M. A review of modern methods for the detection of foodborne pathogens. Microorganisms. 2023;11:1111. doi: 10.3390/microorganisms11051111. PubMed DOI PMC

Almasi H., Jahanbakhsh Oskouie M., Saleh A. A review on techniques utilized for design of controlled release food active packaging. Crit. Rev. Food Sci. Nutr. 2021;61:2601–2621. doi: 10.1080/10408398.2020.1783199. PubMed DOI

Honma M., Yamada M., Yasui M., Horibata K., Sugiyama K.I., Masumura K. In vivo and in vitro mutagenicity of perillaldehyde and cinnamaldehyde. Genes Environ. 2021;43:1–11. doi: 10.1186/s41021-021-00204-3. PubMed DOI PMC

Makwana S., Choudhary R., Dogra N., Kohli P., Haddock J. Nanoencapsulation and Immobilization of Cinnamaldehyde for Developing Antimicrobial Food Packaging Material. LWT. 2014;57:470–476. doi: 10.1016/j.lwt.2014.01.043. DOI

Balaguer M.P., Lopez-Carballo G., Catala R., Gavara R., Hernandez-Munoz P. Antifungal Properties of Gliadin Films Incorporating Cinnamaldehyde and Application in Active Food Packaging of Bread and Cheese Spread Foodstuffs. Int. J. Food Microbiol. 2013;166:369–377. doi: 10.1016/j.ijfoodmicro.2013.08.012. PubMed DOI

Srisa A., Harnkarnsujarit N. Antifungal Films from Trans-Cinnamaldehyde Incorporated Poly(Lactic Acid) and Poly(Butylene Adipate-Co-Terephthalate) for Bread Packaging. Food Chem. 2020;333:127537. doi: 10.1016/j.foodchem.2020.127537. PubMed DOI

Zhang J., Guo Z., Chen S., Dong H., Zhang X., Qin Y., Yao C., Xu F. High-Barrier, Strong, and Antibacterial Paper Fabricated by Coating Acetylated Cellulose and Cinnamaldehyde for Food Packaging. Cellulose. 2021;28:4371–4384. doi: 10.1007/s10570-021-03778-x. DOI

Wan S., Liu Q., Yang D., Guo P., Gao Y., Mo R., Zhang Y. Characterization of High Amylose Corn Starch-Cinnamaldehyde Inclusion Films for Food Packaging. Food Chem. 2022;403:134219. doi: 10.1016/j.foodchem.2022.134219. PubMed DOI

Api A.M., Belsito D., Botelho D., Bruze M., Burton Jr G., Cancellieri M., Tokura Y. RIFM fragrance ingredient safety assessment, cinnamic acid, CAS Registry Number 621-82-9. Food Chem. Toxicol. 2022;167:113232. doi: 10.1016/j.fct.2022.113232. PubMed DOI

Tong W.Y., Rafiee A.R.A., Leong C.R., Tan W.-N., Dailin D.J., Almarhoon Z.M., Shelkh M., Nawaz A., Chuah L.F. Development of Sodium Alginate-Pectin Biodegradable Active Food Packaging Film Containing Cinnamic Acid. Chemosphere. 2023;336:139212. doi: 10.1016/j.chemosphere.2023.139212. PubMed DOI

Ordoñez R., Atarés L., Chiralt A. Multilayer Antimicrobial Films Based on Starch and PLA with Superficially Incorporated Ferulic or Cinnamic Acids for Active Food Packaging Purposes. Food Chem. Adv. 2023;2:100250. doi: 10.1016/j.focha.2023.100250. DOI

Ordoñez R., Atarés L., Chiralt A. Physicochemical and Antimicrobial Properties of Cassava Starch Films with Ferulic or Cinnamic Acid. LWT. 2021;144:111242. doi: 10.1016/j.lwt.2021.111242. DOI

Letsididi K.S., Lou Z., Letsididi R., Mohammed K., Maguy B.L. Antimicrobial and Antibiofilm Effects of Trans-Cinnamic Acid Nanoemulsion and Its Potential Application on Lettuce. LWT. 2018;94:25–32. doi: 10.1016/j.lwt.2018.04.018. DOI

Ghorani V., Alavinezhad A., Rajabi O., Mohammadpour A.H., Boskabady M.H. Safety and tolerability of carvacrol in healthy subjects: A phase I clinical study. Drug Chem. Toxicol. 2021;44:177–189. doi: 10.1080/01480545.2018.1538233. PubMed DOI

López-Mata M., Ruiz-Cruz S., Silva-Beltrán N., Ornelas-Paz J., Zamudio-Flores P., Burruel-Ibarra S. Physicochemical, Antimicrobial and Antioxidant Properties of Chitosan Films Incorporated with Carvacrol. Molecules. 2013;18:13735–13753. doi: 10.3390/molecules181113735. PubMed DOI PMC

Fernández-Pan I., Maté J.I., Gardrat C., Coma V. Effect of Chitosan Molecular Weight on the Antimicrobial Activity and Release Rate of Carvacrol-Enriched Films. Food Hydrocoll. 2015;51:60–68. doi: 10.1016/j.foodhyd.2015.04.033. DOI

Yuan G., Lv H., Yang B., Chen X., Sun H. Physical Properties, Antioxidant and Antimicrobial Activity of Chitosan Films Containing Carvacrol and Pomegranate Peel Extract. Molecules. 2015;20:11034–11045. doi: 10.3390/molecules200611034. PubMed DOI PMC

Tastan Ö., Ferrari G., Baysal T., Donsì F. Understanding the Effect of Formulation on Functionality of Modified Chitosan Films Containing Carvacrol Nanoemulsions. Food Hydrocoll. 2016;61:756–771. doi: 10.1016/j.foodhyd.2016.06.036. DOI

Kamdem D.P., Shen Z., Nabinejad O., Shu Z. Development of Biodegradable Composite Chitosan-Based Films Incorporated with Xylan and Carvacrol for Food Packaging Application. Food Packag. Shelf Life. 2019;21:100344. doi: 10.1016/j.fpsl.2019.100344. DOI

Higueras L., López-Carballo G., Hernández-Muñoz P., Catalá R., Gavara R. Antimicrobial Packaging of Chicken Fillets Based on the Release of Carvacrol from Chitosan/Cyclodextrin Films. Int. J. Food Microbiol. 2014;188:53–59. doi: 10.1016/j.ijfoodmicro.2014.07.018. PubMed DOI

Xiao L., Lapu M., Cui L., Li J., Wang X., Li X., Liu M., Liu D. Impacts of Chitosan/Pullulan/Carvacrol Film on the Quality and Microbial Diversity of Refrigerated Goat Meat. Meat Sci. 2024;220:109704. doi: 10.1016/j.meatsci.2024.109704. PubMed DOI

Kim S.A. Rhee Highly Enhanced Bactericidal Effects of Medium Chain Fatty Acids (Caprylic, Capric, and Lauric Acid) Combined with Edible Plant Essential Oils (Carvacrol, Eugenol, β-Resorcylic Acid, Trans-Cinnamaldehyde, Thymol, and Vanillin) against Escherichia coli O157:H7. Food Control. 2015;60:447–454. doi: 10.1016/j.foodcont.2015.08.022. DOI

Laroque D.A., Jong N.R.D., Müller L., Paganini C.C., De Araújo P.H.H., De Aragão G.M.F., Carciofi B.A.M. Carvacrol Release Kinetics from Cellulose Acetate Films and Its Antibacterial Effect on the Shelf Life of Cooked Ham. J. Food Eng. 2023;358:111681. doi: 10.1016/j.jfoodeng.2023.111681. DOI

Krepker M., Prinz-Setter O., Shemesh R., Vaxman A., Alperstein D., Segal E. Antimicrobial Carvacrol-Containing Polypropylene Films: Composition, Structure and Function. Polymers. 2018;10:79. doi: 10.3390/polym10010079. PubMed DOI PMC

Lopresti F., Botta L., La Carrubba V., Di Pasquale L., Settanni L., Gaglio R. Combining Carvacrol and Nisin in Biodegradable Films for Antibacterial Packaging Applications. Int. J. Biol. Macromol. 2021;193:117–126. doi: 10.1016/j.ijbiomac.2021.10.118. PubMed DOI

Neira L.M., Martucci J.F., Stejskal N., Ruseckaite R.A. Time-Dependent Evolution of Properties of Fish Gelatin Edible Films Enriched with Carvacrol during Storage. Food Hydrocoll. 2019;94:304–310. doi: 10.1016/j.foodhyd.2019.03.020. DOI

Tao R., Sedman J., Ismail A. Characterization and in Vitro Antimicrobial Study of Soy Protein Isolate Films Incorporating Carvacrol. Food Hydrocoll. 2021;122:107091. doi: 10.1016/j.foodhyd.2021.107091. DOI

Tavares A.G., Andrade J., Silva R.R.A., Marques C.S., Da Silva J.O.R., Vanetti M.C.D., De Melo N.R., De Fátima Ferreira Soares N. Carvacrol-Loaded Liposome Suspension: Optimization, Characterization and Incorporation into Poly(Vinyl Alcohol) Films. Food Funct. 2021;12:6549–6557. doi: 10.1039/D1FO00479D. PubMed DOI

Altan A., Aytac Z., Uyar T. Carvacrol Loaded Electrospun Fibrous Films from Zein and Poly(Lactic Acid) for Active Food Packaging. Food Hydrocoll. 2018;81:48–59. doi: 10.1016/j.foodhyd.2018.02.028. DOI

Klinmalai P., Srisa A., Laorenza Y., Katekhong W., Harnkarnsujarit N. Antifungal and Plasticization Effects of Carvacrol in Biodegradable Poly(Lactic Acid) and Poly(Butylene Adipate Terephthalate) Blend Films for Bakery Packaging. LWT. 2021;152:112356. doi: 10.1016/j.lwt.2021.112356. DOI

Mao S., Li F., Zhou X., Lu C., Zhang T. Characterization and Sustained Release Study of Starch-Based Films Loaded with Carvacrol: A Promising UV-Shielding and Bioactive Nanocomposite Film. LWT. 2023;180:114719. doi: 10.1016/j.lwt.2023.114719. DOI

Requena R., Vargas M., Chiralt A. Obtaining Antimicrobial Bilayer Starch and Polyester-Blend Films with Carvacrol. Food Hydrocoll. 2018;83:118–133. doi: 10.1016/j.foodhyd.2018.04.045. DOI

Jahdkaran E., Hosseini S.E., Nafchi A.M., Nouri L. The Effects of Methylcellulose Coating Containing Carvacrol or Menthol on the Physicochemical, Mechanical, and Antimicrobial Activity of Polyethylene Films. Food Sci. Nutr. 2021;9:2768–2778. doi: 10.1002/fsn3.2240. PubMed DOI PMC

Busolo M.A., Lagaron J.M. Antioxidant Polyethylene Films Based on a Resveratrol Containing Clay of Interest in Food Packaging Applications. Food Packag. Shelf Life. 2015;6:30–41. doi: 10.1016/j.fpsl.2015.08.004. DOI

Li L., Wang H., Chen M., Jiang S., Cheng J., Li X., Zhang M., Jiang S. Gelatin/Zein Fiber Mats Encapsulated with Resveratrol: Kinetics, Antibacterial Activity and Application for Pork Preservation. Food Hydrocoll. 2019;101:105577. doi: 10.1016/j.foodhyd.2019.105577. DOI

Silva Â., Duarte A., Sousa S., Ramos A., Domingues F.C. Characterization and Antimicrobial Activity of Cellulose Derivatives Films Incorporated with a Resveratrol Inclusion Complex. LWT. 2016;73:481–489. doi: 10.1016/j.lwt.2016.06.043. DOI

Duarte A., Martinho A., Luís Â., Figueiras A., Oleastro M., Domingues F.C., Silva F. Resveratrol encapsulation with methyl-β-cyclodextrin for antibacterial and antioxidant delivery applications. LWT-Food Sci. Technol. 2015;63:1254–1260. doi: 10.1016/j.lwt.2015.04.004. DOI

Chatterjee N.S., Panda S.K., Navitha M., Asha K.K., Anandan R., Mathew S. Vanillic Acid and Coumaric Acid Grafted Chitosan Derivatives: Improved Grafting Ratio and Potential Application in Functional Food. J. Food Sci. Technol. 2015;52:7153–7162. doi: 10.1007/s13197-015-1874-4. DOI

Liu X., Sun X., Du H., Li Y., Wen Y., Zhu Z. A Transparent P-Coumaric Acid-Grafted-Chitosan Coating with Antimicrobial, Antioxidant and Antifogging Properties for Fruit Packaging Applications. Carbohydr. Polym. 2024;339:122238. doi: 10.1016/j.carbpol.2024.122238. PubMed DOI

Lee S., Zhang M., Wang G., Meng W., Zhang X., Wang D., Zhou Y., Wang Z. Characterization of Polyvinyl Alcohol/Starch Composite Films Incorporated with p-Coumaric Acid Modified Chitosan and Chitosan Nanoparticles: A Comparative Study. Carbohydr. Polym. 2021;262:117930. doi: 10.1016/j.carbpol.2021.117930. PubMed DOI

Noman R.R.A., Wong C.S., Law K.P., Neo Y.P. Fabrication and characterisation of electrospun zein-based fibres functionalised by caffeic and p-coumaric acid for potential active packaging applications. Int. J. Food Sci. Technol. 2024;59:7942–7951. doi: 10.1111/ijfs.17179. DOI

Zheng M., Zhang C., Zhou Y., Lu Z., Zhao H., Bie X., Lu F. Preparation of Gallic Acid-Grafted Chitosan Using Recombinant Bacterial Laccase and Its Application in Chilled Meat Preservation. Front. Microbiol. 2018;9:1729. doi: 10.3389/fmicb.2018.01729. PubMed DOI PMC

Borges A., Ferreira C., Saavedra M.J., Simões M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids against Pathogenic Bacteria. Microb. Drug Resist. 2013;19:256–265. doi: 10.1089/mdr.2012.0244. PubMed DOI

Li H., Liu C., Sun J., Lv S. Bioactive Edible Sodium Alginate Films Incorporated with Tannic Acid as Antimicrobial and Antioxidative Food Packaging. Foods. 2022;11:3044. doi: 10.3390/foods11193044. PubMed DOI PMC

Chen C., Yang H., Yang X., Ma Q. Tannic Acid: A Crosslinker Leading to Versatile Functional Polymeric Networks: A Review. RSC Adv. 2022;12:7689–7711. doi: 10.1039/D1RA07657D. PubMed DOI PMC

Zou J., Wong J., Lee C.-R., Nitin N., Wang L., Sun G. Protein-Based Rechargeable and Replaceable Antimicrobial and Antifouling Coatings on Hydrophobic Food-Contact Surfaces. ACS Appl. Bio Mater. 2024;7:1842–1851. doi: 10.1021/acsabm.3c01247. PubMed DOI PMC

Venkatesan R., Sivaprakash P., Kim I., Eldesoky G.E., Kim S.-C. Tannic Acid as a Crosslinking Agent in Poly(Butylene Adipate-Co-Terephthalate) Composite Films Enhanced with Carbon Nanoparticles: Processing, Characterization, and Antimicrobial Activities for Food Packaging. J. Environ. Chem. Eng. 2023;11:110194. doi: 10.1016/j.jece.2023.110194. DOI

Sharma S., Jaiswal A.K., Duffy B., Jaiswal S. Ferulic Acid Incorporated Active Films Based on Poly(Lactide)/Poly(Butylene Adipate-Co-Terephthalate) Blend for Food Packaging. Food Packag. Shelf Life. 2020;24:100491. doi: 10.1016/j.fpsl.2020.100491. DOI

Jin C., Zhang H., Ren F., Wang J., Yin S. Preparation and Characterization of Ferulic Acid Wheat Gluten Nanofiber Films with Excellent Antimicrobial Properties. Foods. 2023;12:2778. doi: 10.3390/foods12142778. PubMed DOI PMC

Ou S., Wang Y., Tang S., Huang C., Jackson M.G. Role of Ferulic Acid in Preparing Edible Films from Soy Protein Isolate. J. Food Eng. 2004;70:205–210. doi: 10.1016/j.jfoodeng.2004.09.025. DOI

Fang Y., Fu J., Tao C., Liu P., Cui B. Mechanical Properties and Antibacterial Activities of Novel Starch-Based Composite Films Incorporated with Salicylic Acid. Int. J. Biol. Macromol. 2019;155:1350–1358. doi: 10.1016/j.ijbiomac.2019.11.110. PubMed DOI

Hu F., Sun T., Xie J., Xue B., Li X., Gan J., Li L., Bian X., Shao Z. Functional Properties of Chitosan Films with Conjugated or Incorporated Salicylic Acid. J. Mol. Struct. 2020;1223:129237. doi: 10.1016/j.molstruc.2020.129237. PubMed DOI

Kurczewska J., Ratajczak M., Gajecka M. Alginate and pectin films covering halloysite with encapsulated salicylic acid as food packaging components. Appl. Clay Sci. 2021;214:106270. doi: 10.1016/j.clay.2021.106270. DOI

Sanla-Ead N., Jangchud A., Chonhenchob V., Suppakul P. Antimicrobial Activity of Cinnamaldehyde and Eugenol and Their Activity after Incorporation into Cellulose-based Packaging Films. Packag. Technol. Sci. 2011;25:7–17. doi: 10.1002/pts.952. DOI

Narayanan A., Neera N., Mallesha N., Ramana K.V. Synergized Antimicrobial Activity of Eugenol Incorporated Polyhydroxybutyrate Films Against Food Spoilage Microorganisms in Conjunction with Pediocin. Appl. Biochem. Biotechnol. 2013;170:1379–1388. doi: 10.1007/s12010-013-0267-2. PubMed DOI

Huang X., Ge X., Zhou L., Wang Y. Eugenol Embedded Zein and Poly(Lactic Acid) Film as Active Food Packaging: Formation, Characterization, and Antimicrobial Effects. Food Chem. 2022;384:132482. doi: 10.1016/j.foodchem.2022.132482. PubMed DOI

Cheng J., Wang H., Kang S., Xia L., Jiang S., Chen M., Jiang S. An Active Packaging Film Based on Yam Starch with Eugenol and Its Application for Pork Preservation. Food Hydrocoll. 2019;96:546–554. doi: 10.1016/j.foodhyd.2019.06.007. DOI

Sivaram S., Somanathan H., Kumaresan S.M., Muthuraman M.S. The Beneficial Role of Plant Based Thymol in Food Packaging Application: A Comprehensive Review. Appl. Food Res. 2022;2:100214. doi: 10.1016/j.afres.2022.100214. DOI

Michalska-Sionkowska M., Walczak M., Sionkowska A. Antimicrobial Activity of Collagen Material with Thymol Addition for Potential Application as Wound Dressing. Polym. Test. 2017;63:360–366. doi: 10.1016/j.polymertesting.2017.08.036. DOI

Ramos M., Jiménez A., Peltzer M., Garrigós M.C. Characterization and Antimicrobial Activity Studies of Polypropylene Films with Carvacrol and Thymol for Active Packaging. J. Food Eng. 2011;109:513–519. doi: 10.1016/j.jfoodeng.2011.10.031. DOI

Siddiqui M.N., Redhwi H.H., Tsagkalias I., Vouvoudi E.C., Achilias D.S. Development of Bio-Composites with Enhanced Antioxidant Activity Based on Poly(Lactic Acid) with Thymol, Carvacrol, Limonene, or Cinnamaldehyde for Active Food Packaging. Polymers. 2021;13:3652. doi: 10.3390/polym13213652. PubMed DOI PMC

Pleva P., Bartošová L., Máčalová D., Zálešáková L., Sedlaříková J., Janalíková M. Biofilm Formation Reduction by Eugenol and Thymol on Biodegradable Food Packaging Material. Foods. 2021;11:2. doi: 10.3390/foods11010002. PubMed DOI PMC

Zhou K., Chen D., Li B., Zhang B., Miao F., Zhou L. Bioactivity and Structure-Activity Relationship of Cinnamic Acid Esters and Their Derivatives as Potential Antifungal Agents for Plant Protection. PLoS ONE. 2017;12:e0176189. doi: 10.1371/journal.pone.0176189. PubMed DOI PMC

Chavan P.S., Tupe S.G. Antifungal Activity and Mechanism of Action of Carvacrol and Thymol against Vineyard and Wine Spoilage Yeasts. Food Control. 2014;46:115–120. doi: 10.1016/j.foodcont.2014.05.007. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...