The Application of Natural Phenolic Substances as Antimicrobial Agents in Agriculture and Food Industry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40509420
PubMed Central
PMC12155485
DOI
10.3390/foods14111893
PII: foods14111893
Knihovny.cz E-zdroje
- Klíčová slova
- agriculture, antimicrobial agents, food preservation, food safety, natural phenolic compounds,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Natural phenolic substances have emerged as promising alternatives to synthetic antimicrobials in both agriculture and the food industry, where concerns over microbial resistance and chemical residues are rising. This review provides a comprehensive overview of the current literature, highlighting the potential of these compounds as effective antimicrobial agents. A systematic evaluation of in vitro and in vivo studies was conducted, focusing on the efficacy of various phenolic compounds against a range of pathogens. The analysis revealed that natural phenolics not only inhibit microbial growth but also enhance the shelf life and safety of food products and protect crops from disease. Moreover, although laboratory results are promising, the translation of these findings into practical applications requires further investigation. Overall, the evidence supports the potential for natural phenolic substances to serve as integral components in sustainable agriculture and food preservation strategies.
Zobrazit více v PubMed
Firmino D.F., Cavalcante T.T.A., Gomes G.A., Firmino N.C.S., Rosa L.D., De Carvalho M.G., Catunda F.E.A., Jr. Antibacterial and Antibiofilm Activities of Cinnamomum sp. Essential Oil and Cinnamaldehyde: Antimicrobial Activities. Sci. World J. 2018;2018:1–9. doi: 10.1155/2018/7405736. PubMed DOI PMC
Vuolo M.M., Lima V.S., Maróstica Junior M.R. Chapter 2—Phenolic Compounds: Structure, Classification, and Antioxidant Power. In: Campos M.R.S., editor. Bioactive Compounds. Woodhead Publishing; Cambridge, UK: 2019. pp. 33–50. DOI
Ginter A. Plant Protection within the European Green Deal on the Example Starch Potato Cultivation. Prog. Plant Prot. 2022;62:208–215. doi: 10.14199/ppp-2022-023. DOI
Kannan M., Bojan N., Swaminathan J., Zicarelli G., Hemalatha D., Zhang Y., Ramesh M., Faggio C. Nanopesticides in Agricultural Pest Management and Their Environmental Risks: A Review. Int. J. Environ. Sci. Technol. 2023;20:10507–10532. doi: 10.1007/s13762-023-04795-y. DOI
Li X., Chen Y., Xu J., Lynch I., Guo Z., Xie C., Zhang P. Advanced Nanopesticides: Advantage and Action Mechanisms. Plant Physiol. Biochem. 2023;203:108051. doi: 10.1016/j.plaphy.2023.108051. PubMed DOI
Santra H.K., Banerjee D. Natural Products as Fungicide and Their Role in Crop Protection. In: Singh J., Yadav A., editors. Natural Bioactive Products in Sustainable Agriculture. Springer; Singapore: 2020. pp. 131–219. DOI
Bangar S.P., Chaudhary V., Thakur N., Kajla P., Kumar M., Trif M. Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods. 2021;10:2282. doi: 10.3390/foods10102282. PubMed DOI PMC
Chalker-Scott L., Fuchigami L.H. Low Temperature Stress Physiology in Crops. CRC Press; Boca Raton, FL, USA: 2018. The Role of Phenolic Compounds in Plant Stress Responses; pp. 67–80.
Bento C., Gonçalves A.C., Jesus F., Simões M., Silva L.R. Phenolic compounds: Sources, properties and applications. In: Porter R., Parker N., editors. Bioactive Compounds: Sources, Properties and Applications. Nova Science Publishers; New York, NY, USA: 2017. pp. 271–299.
Zinn S., Betz T., Medcraft C., Schnell M. Structure Determination of Trans-Cinnamaldehyde by Broadband Microwave Spectroscopy. Phys. Chem. Chem. Phys. 2015;17:16080–16085. doi: 10.1039/C5CP02582F. PubMed DOI
Doyle A.A., Stephens J.C. A Review of Cinnamaldehyde and Its Derivatives as Antibacterial Agents. Fitoterapia. 2019;139:104405. doi: 10.1016/j.fitote.2019.104405. PubMed DOI
Ruwizhi N., Aderibigbe B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020;21:5712. doi: 10.3390/ijms21165712. PubMed DOI PMC
Nostro N.A., Papalia N.T. Antimicrobial Activity of Carvacrol: Current Progress and Future Prospectives. Recent Pat. Anti-Infect. Drug Discov. 2012;7:28–35. doi: 10.2174/157489112799829684. PubMed DOI
Mączka W., Twardawska M., Grabarczyk M., Wińska K. Carvacrol—A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics. 2023;12:824. doi: 10.3390/antibiotics12050824. PubMed DOI PMC
Karthikeyan S., Prasad N.R., Ganamani A., Balamurugan E. Anticancer Activity of Resveratrol-Loaded Gelatin Nanoparticles on NCI-H460 Non-Small Cell Lung Cancer Cells. Biomed. Prev. Nutr. 2012;3:64–73. doi: 10.1016/j.bionut.2012.10.009. DOI
Pei K., Ou J., Huang J., Ou S. p-Coumaric Acid and Its Conjugates: Dietary Sources, Pharmacokinetic Properties and Biological Activities. J. Sci. Food Agric. 2015;96:2952–2962. doi: 10.1002/jsfa.7578. PubMed DOI
Tsioptsias C., Tsivintzelis I. Insights on Thermodynamic Thermal Properties and Infrared Spectroscopic Band Assignments of Gallic Acid. J. Pharm. Biomed. Anal. 2022;221:115065. doi: 10.1016/j.jpba.2022.115065. PubMed DOI
Hadidi M., Liñán-Atero R., Tarahi M., Christodoulou M.C., Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants. 2024;13:1001. doi: 10.3390/antiox13081001. PubMed DOI PMC
Zhen L., Lange H., Crestini C. An Analytical Toolbox for Fast and Straightforward Structural Characterisation of Commercially Available Tannins. Molecules. 2021;26:2532. doi: 10.3390/molecules26092532. PubMed DOI PMC
Kumar N., Pruthi V. Potential Applications of Ferulic Acid from Natural Sources. Biotechnol. Rep. 2014;4:86–93. doi: 10.1016/j.btre.2014.09.002. PubMed DOI PMC
Meenu M., Khandare K., Singh M., Kenyanya S., Sharma K.P., Garg M. Salicylic Acid: Food, Functions, and Future. In: Faizan M., Hayat S., editors. Plant Growth Regulators: Resilience for Sustainable Agriculture. Springer; Singapore: 2024. pp. 21–39. DOI
Ulanowska M., Olas B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021;22:3671. doi: 10.3390/ijms22073671. PubMed DOI PMC
Liu B., Chen B., Zhang J., Wang P., Feng G. The Environmental Fate of Thymol, a Novel Botanical Pesticide, in Tropical Agricultural Soil and Water. Toxicol. Environ. Chem. Rev. 2016;99:223–232. doi: 10.1080/02772248.2016.1198907. DOI
Di Pasqua R., Betts G., Hoskins N., Edwards M., Ercolini D., Mauriello G. Membrane Toxicity of Antimicrobial Compounds from Essential Oils. J. Agric. Food Chem. 2007;55:4863–4870. doi: 10.1021/jf0636465. PubMed DOI
Cushnie T.P.T., Lamb A.J. Recent Advances in Understanding the Antibacterial Properties of Flavonoids. Int. J. Antimicrob. Agents. 2011;38:99–107. doi: 10.1016/j.ijantimicag.2011.02.014. PubMed DOI
Qu S., Yang K., Chen L., Liu M., Geng Q., He X., Li Y., Liu Y., Tian J. Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus flavus. Front. Microbiol. 2019;10:2895. doi: 10.3389/fmicb.2019.02895. PubMed DOI PMC
Hossain M.A., Lee S.-J., Park N.-H., Mechesso A.F., Birhanu B.T., Kang J., Reza M.A., Suh J.-W., Park S.-C. Impact of Phenolic Compounds in the Acyl Homoserine Lactone-Mediated Quorum Sensing Regulatory Pathways. Sci. Rep. 2017;7:10618. doi: 10.1038/s41598-017-10997-5. PubMed DOI PMC
De Rossi L., Rocchetti G., Lucini L., Rebecchi A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses—A Narrative Review. Antioxidants. 2025;14:200. doi: 10.3390/antiox14020200. PubMed DOI PMC
OuYang Q., Okwong R.O., Chen Y., Tao N. Synergistic Activity of Cinnamaldehyde and Citronellal against Green Mold in Citrus Fruit. Postharvest Biol. Technol. 2019;162:111095. doi: 10.1016/j.postharvbio.2019.111095. DOI
Farhadi K., Rajabi E., Varpaei H.A., Iranzadasl M., Khodaparast S., Salehi M. Thymol and carvacrol against Klebsiella: Anti-bacterial, anti-biofilm, and synergistic activities—A systematic review. Front. Pharmacol. 2024;15:1487083. doi: 10.3389/fphar.2024.1487083. PubMed DOI PMC
Assadpour E., Jafari S.M., Esfanjani A.F. Protection of phenolic compounds within nanocarriers. CABI Rev. 2017;12:1–8. doi: 10.1079/PAVSNNR201712057. DOI
Pasquet P.L., Julien-David D., Zhao M., Villain-Gambier M., Trébouet D. Stability and preservation of phenolic compounds and related antioxidant capacity from agro-food matrix: Effect of pH and atmosphere. Food Biosci. 2024;57:103586. doi: 10.1016/j.fbio.2024.103586. DOI
Saarniit K., Lang H., Kuldjärv R., Laaksonen O., Rosenvald S. The stability of phenolic compounds in fruit, berry, and vegetable purees based on accelerated shelf-life testing methodology. Foods. 2023;12:1777. doi: 10.3390/foods12091777. PubMed DOI PMC
Pinarli B., Simge Karliga E., Ozkan G., Capanoglu E. Interaction of phenolics with food matrix: In vitro and in vivo approaches. Mediterr. J. Nutr. Metab. 2020;13:63–74. doi: 10.3233/MNM-190362. DOI
Fisher M.C., Gurr S.J., Cuomo C.A., Blehert D.S., Jin H., Stukenbrock E.H., Stajich J.E., Kahmann R., Boone C., Denning D.W., et al. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio. 2020;11:10–1128. doi: 10.1128/mBio.00449-20. PubMed DOI PMC
Bi K., Liang Y., Mengiste T., Sharon A. Killing softly: A roadmap of Botrytis cinerea pathogenicity. Trends Plant Sci. 2023;28:211–222. doi: 10.1016/j.tplants.2022.08.024. PubMed DOI
Zhou J., Zhang X., Qu Z., Zhang C., Wang F., Gao T., Liang J. Progress in Research on Prevention and Control of Crop Fungal Diseases in the Context of Climate Change. Agriculture. 2024;14:1108. doi: 10.3390/agriculture14071108. DOI
Matan N. Growth Inhibition of Aspergillus Niger by Cinnamaldehyde and Eugenol. Walailak J. Sci. Technol. (WJST) 2011;4:41–51.
Sun Q., Shang B., Wang L., Lu Z., Liu Y. Cinnamaldehyde Inhibits Fungal Growth and Aflatoxin B1 Biosynthesis by Modulating the Oxidative Stress Response of Aspergillus flavus. Appl. Microbiol. Biotechnol. 2015;100:1355–1364. doi: 10.1007/s00253-015-7159-z. PubMed DOI
Niu A., Wu H., Ma F., Tan S., Wang G., Qiu W. The Antifungal Activity of Cinnamaldehyde in Vapor Phase against Aspergillus niger Isolated from Spoiled Paddy. LWT. 2022;159:113181. doi: 10.1016/j.lwt.2022.113181. DOI
Xie Y., Huang Q., Wang Z., Cao H., Zhang D. Structure-Activity Relationships of Cinnamaldehyde and Eugenol Derivatives against Plant Pathogenic Fungi. Ind. Crop. Prod. 2017;97:388–394. doi: 10.1016/j.indcrop.2016.12.043. DOI
Zhou L.-R., Hu H.-J., Wang J., Zhu Y.-X., Zhu X.-D., Ma J.-W., Liu Y.-Q. Cinnamaldehyde Acts as a Fungistat by Disrupting the Integrity of Fusarium oxysporum Fox-1 Cell Membranes. Horticulturae. 2024;10:48. doi: 10.3390/horticulturae10010048. DOI
Xing F., Hua H., Selvaraj J.N., Zhao Y., Zhou L., Liu X., Liu Y. Growth Inhibition and Morphological Alterations of Fusarium verticillioides by Cinnamon Oil and Cinnamaldehyde. Food Control. 2014;46:343–350. doi: 10.1016/j.foodcont.2014.04.037. DOI
Yang R., Miao J., Shen Y., Cai N., Wan C., Zou L., Chen C., Chen J. Antifungal Effect of Cinnamaldehyde, Eugenol and Carvacrol Nanoemulsion against Penicillium digitatum and Application in Postharvest Preservation of Citrus Fruit. LWT. 2021;141:110924. doi: 10.1016/j.lwt.2021.110924. DOI
Wang Y., Wang M., Li M., Zhao T., Zhou L. Cinnamaldehyde Inhibits the Growth of Phytophthora capsici through Disturbing Metabolic Homoeostasis. PeerJ. 2021;9:e11339. doi: 10.7717/peerj.11339. PubMed DOI PMC
Ibi A.A., Kyuka C.K. Sources, Extraction and Biological Activities of Cinnamaldehyde. Trends Pharm. Sci. 2022;8:263–282. doi: 10.30476/tips.2022.96263.1160. DOI
Shen Y., Kahramanoğlu İ., Chen C., Chen J., Okatan V., Wan C. Application of Cinnamaldehyde for the Postharvest Storage of Fresh Horticultural Products. Hortic. Int. J. 2021;5:103–105. doi: 10.15406/hij.2021.05.00212. DOI
Yossa N., Patel J., Millner P., Lo M. Inactivation ofSalmonellain Organic Soil by Cinnamaldehyde, Eugenol, Ecotrol, and Sporan. Foodborne Pathog. Dis. 2010;8:311–317. doi: 10.1089/fpd.2010.0685. PubMed DOI
Song Y.-R., Choi M.-S., Choi G.-W., Park I.-K., Oh C.-S. Antibacterial Activity of Cinnamaldehyde and Estragole Extracted from Plant Essential Oils against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit. Plant Pathol. J. 2016;32:363–370. doi: 10.5423/ppj.nt.01.2016.0006. PubMed DOI PMC
Lee J.-E., Jung M., Lee S.-C., Huh M.-J., Seo S.-M., Park I.-K. Antibacterial Mode of Action of Trans-Cinnamaldehyde Derived from Cinnamon Bark (Cinnamomum Verum) Essential Oil against Agrobacterium tumefaciens. Pestic. Biochem. Physiol. 2020;165:104546. doi: 10.1016/j.pestbp.2020.02.012. PubMed DOI
Mohammed T.G.M., Rahman A.F.A.E. Eco-Friendly Cinnamaldehyde Based Emulsion for Phytopathogenic Bacterial Growth Inhibitor. J. Adv. Microbiol. 2020;20:1–12. doi: 10.9734/jamb/2020/v20i1030285. DOI
Friedman M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. J. Agric. Food Chem. 2017;65:10406–10423. doi: 10.1021/acs.jafc.7b04344. PubMed DOI
Wei C., Fan C., Xie D., Zhou S., Zhang H., Du Q., Jin P. Fabrication of cinnamaldehyde-entrapped ethosome nanoparticles as antimicrobial agent. LWT. 2023;181:114760. doi: 10.1016/j.lwt.2023.114760. DOI
Wang Y., Sun Y., Wang J., Zhou M., Wang M., Feng J. Antifungal Activity and Action Mechanism of the Natural Product Cinnamic Acid Against Sclerotinia sclerotiorum. Plant Dis. 2019;103:944–950. doi: 10.1094/PDIS-08-18-1355-RE. PubMed DOI
Liu H., Cai C., Zhang X., Li W., Ma Z., Feng J., Liu X., Lei P. Discovery of Novel Cinnamic Acid Derivatives as Fungicide Candidates. J. Agric. Food Chem. 2024;72:2492–2500. doi: 10.1021/acs.jafc.3c05655. PubMed DOI
Yang B., Li Z., Liu S., Yang J., Wang P., Liu H., Zhou X., Liu L., Wu Z., Yang S. Novel Cinnamic Acid Derivatives as a Versatile Tool for Developing Agrochemicals for Controlling Plant Virus and Bacterial Diseases by Enhancing Plant Defense Responses. Pest Manag. Sci. 2023;79:2556–2570. doi: 10.1002/ps.7433. PubMed DOI
Yang C., Zhou Y., Zheng Y., Li C., Sheng S., Wang J., Wu F. Enzymatic Modification of Chitosan by Cinnamic Acids: Antibacterial Activity against Ralstonia solanacearum. Int. J. Biol. Macromol. 2016;87:577–585. doi: 10.1016/j.ijbiomac.2016.03.023. PubMed DOI
Abbaszadeh S., Sharifzadeh A., Shokri H., Khosravi A.R., Abbaszadeh A. Antifungal Efficacy of Thymol, Carvacrol, Eugenol and Menthol as Alternative Agents to Control the Growth of Food-Relevant Fungi. J. Mycol. Médicale. 2014;24:e51–e56. doi: 10.1016/j.mycmed.2014.01.063. PubMed DOI
Saghrouchni H., Barnossi A.E., Salamatullah A.M., Bourhia M., Alzahrani A., Alkaltham M.S., Alyahya H.K., Tahiri N.E.H., Imtara H., Var I. Carvacrol: A Promising Environmentally Friendly Agent to Fight Seeds Damping-Off Diseases Induced by Fungal Species. Agronomy. 2021;11:985. doi: 10.3390/agronomy11050985. DOI
Babalık Z., Onursal C., Erbaş D., Koyuncu M. Use of Carvacrol Helps Maintain Postharvest Quality of Red Globe Table Grape. J. Anim. Plant Sci. 2020;30:655–662. doi: 10.36899/japs.2020.3.0078. DOI
Kotan R., Dadasoglu F., Kordali S., Cakir A., Dikbas N., Cakmakci R. Antibacterial activity of essential oils extracted from some medicinal plants, carvacrol and thymol on Xanthomonas axonopodis pv. vesicatoria (Doidge) Dye causes bacterial spot disease on pepper and tomato. J. Agric. Technol. 2007;3:299–306.
Qiao K., Liu Q., Huang Y., Xia Y., Zhang S. Management of Bacterial Spot of Tomato Caused by Copper-Resistant Xanthomonas perforans Using a Small Molecule Compound Carvacrol. Crop Prot. 2020;132:105114. doi: 10.1016/j.cropro.2020.105114. PubMed DOI
Kmoch M., Loubová V., Veselská M., Jílková B., Víchová J. Antifungal Activity of Essential Oils on Helminthosporium solani Causing Potato Silver Scurf under In Vitro and In Vivo Conditions. Agriculture. 2023;14:66. doi: 10.3390/agriculture14010066. DOI
Thiele-Bruhn S., Shikuku V., Dittrich F., Torjir D.N., Saini M., Getenga Z. Soil sorption and effects on soil microorganisms of thymol and carvacrol monoterpenes from essential oils of aromatic plants. Front. Environ. Sci. 2024;12:1379018. doi: 10.3389/fenvs.2024.1379018. DOI
Chen J., Yu Y., Li S., Ding W. Resveratrol and Coumarin: Novel Agricultural Antibacterial Agent against Ralstonia solanacearum In Vitro and In Vivo. Molecules. 2016;21:1501. doi: 10.3390/molecules21111501. PubMed DOI PMC
Luo H.-Z., Guan Y., Yang R., Qian G.-L., Yang X.-H., Wang J.-S., Jia A.-Q. Growth Inhibition and Metabolomic Analysis of Xanthomonas oryzae pv. oryzae Treated with Resveratrol. BMC Microbiol. 2020;20:117. doi: 10.1186/s12866-020-01803-w. PubMed DOI PMC
El Khawand T., Gabaston J., Taillis D., Iglesias M.-L., Pedrot E., Pinto A.P., Fonayet J.V., Merillon J.M., Decendit A., Cluzet S., et al. A Dimeric Stilbene Extract Produced by Oxidative Coupling of Resveratrol Active against Plasmopara viticola and Botrytis cinerea for Vine Treatments. OENO One. 2020;54:157–164. doi: 10.20870/oeno-one.2020.54.1.2529. DOI
Sohn S.I., Oh Y.J., Kim B.Y., Kweon S.J., Cho H.S., Ryu T.H. Effect of genetically modified rice producing resveratrol on the soil microbial communities. J. Korean Soc. Appl. Biol. Chem. 2015;58:795–805. doi: 10.1007/s13765-015-0106-y. DOI
Liu X., Ji D., Cui X., Zhang Z., Li B., Xu Y., Chen T., Tian S. P-Coumaric Acid Induces Antioxidant Capacity and Defense Responses of Sweet Cherry Fruit to Fungal Pathogens. Postharvest Biol. Technol. 2020;169:111297. doi: 10.1016/j.postharvbio.2020.111297. DOI
Tzintzun-Camacho O., Hernández-Jiménez V., González-Mendoza D., Pérez-Pérez J.P., Troncoso-Rojas R., Durán-Hernández D., Ceceña-Durán C., Moreno-Cruz C.F. Characterization of Grape Marc Hydrolysates and Their Antifungal Effect against Phytopathogenic Fungi of Agricultural Importance. Chil. J. Agric. Res. 2021;81:151–160. doi: 10.4067/S0718-58392021000200151. DOI
Kalwasińska A., Tarnawska P., Latos M., Pałubicka K., Janik A., Brzezinska M.S. New P-Coumaric Acid Formulation in Sustainable Pest Management; Impact on Soil Bacterial Diversity and N-Cycle. Appl. Soil Ecol. 2022;180:104634. doi: 10.1016/j.apsoil.2022.104634. DOI
Swiontek Brzezinska M., Pałubicka K., Latos M., Janik A., Tarnawska P., Krajnik K., Burkowska-But A., Świątczak J., Jedziniak P., Pietruszka K., et al. Natural compounds derived from Brassicaceae plants as an alternative to synthetic fungicides and their influence on soil fungus diversity. J. Sci. Food Agric. 2023;103:317–327. doi: 10.1002/jsfa.12143. PubMed DOI
Jia M., Wang X., Zhu X., Du Y., Zhou P., Wang G., Bai Y. Accumulation of coumaric acid is a key factor in tobacco continuous cropping obstacles. Front. Plant Sci. 2024;15:1477324. doi: 10.3389/fpls.2024.1477324. PubMed DOI PMC
El-Nagar A., Elzaawely A.A., Taha N.A., Nehela Y. The Antifungal Activity of Gallic Acid and Its Derivatives against Alternaria solani, the Causal Agent of Tomato Early Blight. Agronomy. 2020;10:1402. doi: 10.3390/agronomy10091402. DOI
Karpova N., Shagdarova B., Lunkov A., Il’ina A., Varlamov V. Antifungal Action of Chitosan in Combination with Fungicides in Vitro and Chitosan Conjugate with Gallic Acid on Tomatoes against Botrytis cinerea. Biotechnol. Lett. 2021;43:1565–1574. doi: 10.1007/s10529-021-03138-6. PubMed DOI
Sobhy S., Al-Askar A.A., Bakhiet E.K., Elsharkawy M.M., Arishi A.A., Behiry S.I., Abdelkhalek A. Phytochemical Characterization and Antifungal Efficacy of Camphor (Cinnamomum camphora L.) Extract against Phytopathogenic Fungi. Separations. 2023;10:189. doi: 10.3390/separations10030189. DOI
Francesconi S., Tagliavento V., Ciarroni S., Sestili F., Balestra G.M. Chitosan- and Gallic Acid-based (NPF) Displayed Antibacterial Activity against Three Pseudomonas spp. Plant Pathogens and Boosted Systemic Acquired Resistance in Kiwifruit and Olive Plants. Pest Manag. Sci. 2023;80:1300–1313. doi: 10.1002/ps.7861. PubMed DOI
Forrer H.-R., Musa T., Schwab F., Jenny E., Bucheli T., Wettstein F., Vogelgsang S. Fusarium Head Blight Control and Prevention of Mycotoxin Contamination in Wheat with Botanicals and Tannic Acid. Toxins. 2014;6:830–849. doi: 10.3390/toxins6030830. PubMed DOI PMC
Zhu C., Lei M., Andargie M., Zeng J., Li J. Antifungal Activity and Mechanism of Action of Tannic Acid against Penicillium digitatum. Physiol. Mol. Plant Pathol. 2019;107:46–50. doi: 10.1016/j.pmpp.2019.04.009. DOI
Yao J., Zhi H., Shi Q., Zhang Y., Feng J., Liu J., Huang H., Xie X. Tannic Acid Interfacial Modification of Prochloraz Ethyl Cellulose Nanoparticles for Enhancing the Antimicrobial Effect and Biosafety of Fungicides. ACS Appl. Mater. Interfaces. 2023;15:41324–41336. doi: 10.1021/acsami.3c07761. PubMed DOI
Han X., Gu S., Xu R., Kong Y., Lou Y., Wang Q., Gao Y., Shang S., Song Z., Song J., et al. Efficient Control of Rhizoctonia solani Using Environmentally Friendly pH-Responsive Tannic Acid–Rosin Nano-Microcapsules. ACS Appl. Mater. Interfaces. 2024 doi: 10.1021/acsami.4c02790. Online ahead of print . PubMed DOI
Gusiatin Z.M., Kaal J., Wasilewska A., Kumpiene J., Radziemska M. Short-term soil flushing with tannic acid and its effect on metal mobilization and selected properties of calcareous soil. Int. J. Environ. Res. Public Health. 2021;18:5698. doi: 10.3390/ijerph18115698. PubMed DOI PMC
Patzke H., Schieber A. Growth-Inhibitory Activity of Phenolic Compounds Applied in an Emulsifiable Concentrate—Ferulic Acid as a Natural Pesticide against Botrytis cinerea. Food Res. Int. 2018;113:18–23. doi: 10.1016/j.foodres.2018.06.062. PubMed DOI
Shu P., Li Y., Wang X., Yao L., Sheng J., Shen L. Exogenous Ferulic Acid Treatment Increases Resistance against Botrytis cinerea in Tomato Fruit by Regulating Nitric Oxide Signaling Pathway. Postharvest Biol. Technol. 2021;182:111678. doi: 10.1016/j.postharvbio.2021.111678. DOI
Shirai A., Tanaka A. Effects of Ferulic Acid Combined with Light Irradiation on Deoxynivalenol and Its Production in Fusarium graminearum. Fungal Biol. 2024;128:1684–1690. doi: 10.1016/j.funbio.2024.02.003. PubMed DOI
El-Khateeb A.Y., Elsherbiny E.A., Tadros L.K., Ali S.M., Hamed H.B. Phytochemical analysis and antifungal activity of fruit leaves extracts on the mycelial growth of fungal plant pathogens. J. Plant Pathol. Microbiol. 2013;4:1–6. doi: 10.4172/2157-7471.1000199. DOI
Dieryckx C., Gaudin V., Dupuy J.-W., Bonneu M., Girard V., Job D. Beyond Plant Defense: Insights on the Potential of Salicylic and Methylsalicylic Acid to Contain Growth of the Phytopathogen Botrytis cinerea. Front. Plant Sci. 2015;6:859. doi: 10.3389/fpls.2015.00859. PubMed DOI PMC
Ramos-Bell S., Hernandez-Montiel L.G., Estrada R.V., Moreno-Hernández C., Gutierrez-Martinez P. Chitosan and Salicylic Acid as Alternatives for the Control of Postharvest Fungal Diseases in Blueberries (Vaccinium Corymbosum) Int. Food Res. J. 2023;30:992–1000. doi: 10.47836/ifrj.30.4.16. DOI
Abdelaziz A.M., Hashem A.H., Okla M.K., Alwasel Y.A., Abdelgawad H., Attia M.S. Protective Role of Endophytic Fungi and Salicylic Acid as Therapeutic Nutrients to Improve Immune Responses of Tomato Plants against Fusarial Wilt Disease. Not. Bot. Horti Agrobot. Cluj-Napoca. 2024;52:13497. doi: 10.15835/nbha52113497. DOI
Amiri A., Dugas R., Pichot A., Bompeix G. In Vitro and in Vitro Activity of Eugenol Oil (Eugenia Caryophylata) against Four Important Postharvest Apple Pathogens. Int. J. Food Microbiol. 2008;126:13–19. doi: 10.1016/j.ijfoodmicro.2008.04.022. PubMed DOI
Campaniello D., Corbo M.R., Sinigaglia M. Antifungal Activity of Eugenol against Penicillium, Aspergillus, and Fusarium Species. J. Food Prot. 2010;73:1124–1128. doi: 10.4315/0362-028X-73.6.1124. PubMed DOI
Cui W., Du K.-Y., Ling Y.-X., Yang C.-J. Activity of Eugenol Derivatives against Fusarium graminearum Q1 Strain and Screening of Isoeugenol Mixtures. J. Plant Pathol. 2021;103:915–921. doi: 10.1007/s42161-021-00875-5. DOI
Jing C., Gou J., Han X., Wu Q., Zhang C. In Vitro and in Vivo Activities of Eugenol against Tobacco Black Shank Caused by Phytophthora nicotianae. Pestic. Biochem. Physiol. 2017;142:148–154. doi: 10.1016/j.pestbp.2017.07.001. PubMed DOI
Wang C., Fan Y. Eugenol Enhances the Resistance of Tomato against Tomato Yellow Leaf Curl Virus. J. Sci. Food Agric. 2013;94:677–682. doi: 10.1002/jsfa.6304. PubMed DOI
Yossa N., Patel J., Macarisin D., Millner P., Murphy C., Bauchan G., Lo Y.M. Antibacterial Activity of Cinnamaldehyde and Sporan against Escherichia coli O157:H7 and Salmonella. J. Food Process. Preserv. 2012;38:749–757. doi: 10.1111/jfpp.12026. DOI
Yang L., Ma X., Wang L., Yang G., Zhou L., Zhang Z., Li X. In Vitro Antifungal Activity and Mechanism of Action of Carvacrol against Sclerotinia sclerotiorum (Lib.) de Bary. Plant Prot. Sci. 2024;60:172–180. doi: 10.17221/121/2023-PPS. DOI
Oluoch G., Mamati E.G., Matiru V., Nyongesa M. Efficacy of thymol and eugenol against bacterial wilt bacterium Ralstonia solanacearum. Afr. J. Biotechnol. 2021;20:256–265. doi: 10.5897/AJB2021.17353. DOI
Ji P., Momol M.T., Olson S.M., Hong J., Pradhanang P., Anith K.N., Jones J.B. New tactics for bacterial wilt management on tomatoes in the Southern US. Acta Hortic. 2005;695:153. doi: 10.17660/ActaHortic.2005.695.17. DOI
Kumari S., Kumaraswamy R.V., Choudhary R.C., Sharma S.S., Pal A., Raliya R., Biswas P., Saharan V. Thymol Nanoemulsion Exhibits Potential Antibacterial Activity against Bacterial Pustule Disease and Growth Promotory Effect on Soybean. Sci. Rep. 2018;8:6650. doi: 10.1038/s41598-018-24871-5. PubMed DOI PMC
Sreelatha S., Kumar N., Yin T.S., Rajani S. Evaluating the Antibacterial Activity and Mode of Action of Thymol-Loaded Chitosan Nanoparticles Against Plant Bacterial Pathogen Xanthomonas campestris pv. campestris. Front. Microbiol. 2022;12:792737. doi: 10.3389/fmicb.2021.792737. PubMed DOI PMC
Gill T.A., Li J., Saenger M., Scofield S.R. Thymol-Based Submicron Emulsions Exhibit Antifungal Activity against Fusarium graminearum and Inhibit Fusarium Head Blight in Wheat. J. Appl. Microbiol. 2016;121:1103–1116. doi: 10.1111/jam.13195. PubMed DOI
Shcherbakova L., Mikityuk O., Arslanova L., Stakheev A., Erokhin D., Zavriev S., Dzhavakhiya V. Studying the Ability of Thymol to Improve Fungicidal Effects of Tebuconazole and Difenoconazole against Some Plant Pathogenic Fungi in Seed or Foliar Treatments. Front. Microbiol. 2021;12:629429. doi: 10.3389/fmicb.2021.629429. PubMed DOI PMC
Zhang J., Hao Y., Lu H., Li P., Chen J., Shi Z., Xie Y., Mo H., Hu L. Nano-Thymol Emulsion Inhibits Botrytis cinerea to Control Postharvest Gray Mold on Tomato Fruit. Agronomy. 2022;12:2973. doi: 10.3390/agronomy12122973. DOI
Song C., Guo N., Xue A., Jia C., Shi W., Liu M., Zhang M., Qin J. Self-Assembled Thymol-Betaine Co-Crystals with Controlled Release and Hygroscopic Properties as Green Preservatives for Aflatoxin Prevention. Food Chem. 2024;456:140037. doi: 10.1016/j.foodchem.2024.140037. PubMed DOI
Aladhadh M. A review of modern methods for the detection of foodborne pathogens. Microorganisms. 2023;11:1111. doi: 10.3390/microorganisms11051111. PubMed DOI PMC
Almasi H., Jahanbakhsh Oskouie M., Saleh A. A review on techniques utilized for design of controlled release food active packaging. Crit. Rev. Food Sci. Nutr. 2021;61:2601–2621. doi: 10.1080/10408398.2020.1783199. PubMed DOI
Honma M., Yamada M., Yasui M., Horibata K., Sugiyama K.I., Masumura K. In vivo and in vitro mutagenicity of perillaldehyde and cinnamaldehyde. Genes Environ. 2021;43:1–11. doi: 10.1186/s41021-021-00204-3. PubMed DOI PMC
Makwana S., Choudhary R., Dogra N., Kohli P., Haddock J. Nanoencapsulation and Immobilization of Cinnamaldehyde for Developing Antimicrobial Food Packaging Material. LWT. 2014;57:470–476. doi: 10.1016/j.lwt.2014.01.043. DOI
Balaguer M.P., Lopez-Carballo G., Catala R., Gavara R., Hernandez-Munoz P. Antifungal Properties of Gliadin Films Incorporating Cinnamaldehyde and Application in Active Food Packaging of Bread and Cheese Spread Foodstuffs. Int. J. Food Microbiol. 2013;166:369–377. doi: 10.1016/j.ijfoodmicro.2013.08.012. PubMed DOI
Srisa A., Harnkarnsujarit N. Antifungal Films from Trans-Cinnamaldehyde Incorporated Poly(Lactic Acid) and Poly(Butylene Adipate-Co-Terephthalate) for Bread Packaging. Food Chem. 2020;333:127537. doi: 10.1016/j.foodchem.2020.127537. PubMed DOI
Zhang J., Guo Z., Chen S., Dong H., Zhang X., Qin Y., Yao C., Xu F. High-Barrier, Strong, and Antibacterial Paper Fabricated by Coating Acetylated Cellulose and Cinnamaldehyde for Food Packaging. Cellulose. 2021;28:4371–4384. doi: 10.1007/s10570-021-03778-x. DOI
Wan S., Liu Q., Yang D., Guo P., Gao Y., Mo R., Zhang Y. Characterization of High Amylose Corn Starch-Cinnamaldehyde Inclusion Films for Food Packaging. Food Chem. 2022;403:134219. doi: 10.1016/j.foodchem.2022.134219. PubMed DOI
Api A.M., Belsito D., Botelho D., Bruze M., Burton Jr G., Cancellieri M., Tokura Y. RIFM fragrance ingredient safety assessment, cinnamic acid, CAS Registry Number 621-82-9. Food Chem. Toxicol. 2022;167:113232. doi: 10.1016/j.fct.2022.113232. PubMed DOI
Tong W.Y., Rafiee A.R.A., Leong C.R., Tan W.-N., Dailin D.J., Almarhoon Z.M., Shelkh M., Nawaz A., Chuah L.F. Development of Sodium Alginate-Pectin Biodegradable Active Food Packaging Film Containing Cinnamic Acid. Chemosphere. 2023;336:139212. doi: 10.1016/j.chemosphere.2023.139212. PubMed DOI
Ordoñez R., Atarés L., Chiralt A. Multilayer Antimicrobial Films Based on Starch and PLA with Superficially Incorporated Ferulic or Cinnamic Acids for Active Food Packaging Purposes. Food Chem. Adv. 2023;2:100250. doi: 10.1016/j.focha.2023.100250. DOI
Ordoñez R., Atarés L., Chiralt A. Physicochemical and Antimicrobial Properties of Cassava Starch Films with Ferulic or Cinnamic Acid. LWT. 2021;144:111242. doi: 10.1016/j.lwt.2021.111242. DOI
Letsididi K.S., Lou Z., Letsididi R., Mohammed K., Maguy B.L. Antimicrobial and Antibiofilm Effects of Trans-Cinnamic Acid Nanoemulsion and Its Potential Application on Lettuce. LWT. 2018;94:25–32. doi: 10.1016/j.lwt.2018.04.018. DOI
Ghorani V., Alavinezhad A., Rajabi O., Mohammadpour A.H., Boskabady M.H. Safety and tolerability of carvacrol in healthy subjects: A phase I clinical study. Drug Chem. Toxicol. 2021;44:177–189. doi: 10.1080/01480545.2018.1538233. PubMed DOI
López-Mata M., Ruiz-Cruz S., Silva-Beltrán N., Ornelas-Paz J., Zamudio-Flores P., Burruel-Ibarra S. Physicochemical, Antimicrobial and Antioxidant Properties of Chitosan Films Incorporated with Carvacrol. Molecules. 2013;18:13735–13753. doi: 10.3390/molecules181113735. PubMed DOI PMC
Fernández-Pan I., Maté J.I., Gardrat C., Coma V. Effect of Chitosan Molecular Weight on the Antimicrobial Activity and Release Rate of Carvacrol-Enriched Films. Food Hydrocoll. 2015;51:60–68. doi: 10.1016/j.foodhyd.2015.04.033. DOI
Yuan G., Lv H., Yang B., Chen X., Sun H. Physical Properties, Antioxidant and Antimicrobial Activity of Chitosan Films Containing Carvacrol and Pomegranate Peel Extract. Molecules. 2015;20:11034–11045. doi: 10.3390/molecules200611034. PubMed DOI PMC
Tastan Ö., Ferrari G., Baysal T., Donsì F. Understanding the Effect of Formulation on Functionality of Modified Chitosan Films Containing Carvacrol Nanoemulsions. Food Hydrocoll. 2016;61:756–771. doi: 10.1016/j.foodhyd.2016.06.036. DOI
Kamdem D.P., Shen Z., Nabinejad O., Shu Z. Development of Biodegradable Composite Chitosan-Based Films Incorporated with Xylan and Carvacrol for Food Packaging Application. Food Packag. Shelf Life. 2019;21:100344. doi: 10.1016/j.fpsl.2019.100344. DOI
Higueras L., López-Carballo G., Hernández-Muñoz P., Catalá R., Gavara R. Antimicrobial Packaging of Chicken Fillets Based on the Release of Carvacrol from Chitosan/Cyclodextrin Films. Int. J. Food Microbiol. 2014;188:53–59. doi: 10.1016/j.ijfoodmicro.2014.07.018. PubMed DOI
Xiao L., Lapu M., Cui L., Li J., Wang X., Li X., Liu M., Liu D. Impacts of Chitosan/Pullulan/Carvacrol Film on the Quality and Microbial Diversity of Refrigerated Goat Meat. Meat Sci. 2024;220:109704. doi: 10.1016/j.meatsci.2024.109704. PubMed DOI
Kim S.A. Rhee Highly Enhanced Bactericidal Effects of Medium Chain Fatty Acids (Caprylic, Capric, and Lauric Acid) Combined with Edible Plant Essential Oils (Carvacrol, Eugenol, β-Resorcylic Acid, Trans-Cinnamaldehyde, Thymol, and Vanillin) against Escherichia coli O157:H7. Food Control. 2015;60:447–454. doi: 10.1016/j.foodcont.2015.08.022. DOI
Laroque D.A., Jong N.R.D., Müller L., Paganini C.C., De Araújo P.H.H., De Aragão G.M.F., Carciofi B.A.M. Carvacrol Release Kinetics from Cellulose Acetate Films and Its Antibacterial Effect on the Shelf Life of Cooked Ham. J. Food Eng. 2023;358:111681. doi: 10.1016/j.jfoodeng.2023.111681. DOI
Krepker M., Prinz-Setter O., Shemesh R., Vaxman A., Alperstein D., Segal E. Antimicrobial Carvacrol-Containing Polypropylene Films: Composition, Structure and Function. Polymers. 2018;10:79. doi: 10.3390/polym10010079. PubMed DOI PMC
Lopresti F., Botta L., La Carrubba V., Di Pasquale L., Settanni L., Gaglio R. Combining Carvacrol and Nisin in Biodegradable Films for Antibacterial Packaging Applications. Int. J. Biol. Macromol. 2021;193:117–126. doi: 10.1016/j.ijbiomac.2021.10.118. PubMed DOI
Neira L.M., Martucci J.F., Stejskal N., Ruseckaite R.A. Time-Dependent Evolution of Properties of Fish Gelatin Edible Films Enriched with Carvacrol during Storage. Food Hydrocoll. 2019;94:304–310. doi: 10.1016/j.foodhyd.2019.03.020. DOI
Tao R., Sedman J., Ismail A. Characterization and in Vitro Antimicrobial Study of Soy Protein Isolate Films Incorporating Carvacrol. Food Hydrocoll. 2021;122:107091. doi: 10.1016/j.foodhyd.2021.107091. DOI
Tavares A.G., Andrade J., Silva R.R.A., Marques C.S., Da Silva J.O.R., Vanetti M.C.D., De Melo N.R., De Fátima Ferreira Soares N. Carvacrol-Loaded Liposome Suspension: Optimization, Characterization and Incorporation into Poly(Vinyl Alcohol) Films. Food Funct. 2021;12:6549–6557. doi: 10.1039/D1FO00479D. PubMed DOI
Altan A., Aytac Z., Uyar T. Carvacrol Loaded Electrospun Fibrous Films from Zein and Poly(Lactic Acid) for Active Food Packaging. Food Hydrocoll. 2018;81:48–59. doi: 10.1016/j.foodhyd.2018.02.028. DOI
Klinmalai P., Srisa A., Laorenza Y., Katekhong W., Harnkarnsujarit N. Antifungal and Plasticization Effects of Carvacrol in Biodegradable Poly(Lactic Acid) and Poly(Butylene Adipate Terephthalate) Blend Films for Bakery Packaging. LWT. 2021;152:112356. doi: 10.1016/j.lwt.2021.112356. DOI
Mao S., Li F., Zhou X., Lu C., Zhang T. Characterization and Sustained Release Study of Starch-Based Films Loaded with Carvacrol: A Promising UV-Shielding and Bioactive Nanocomposite Film. LWT. 2023;180:114719. doi: 10.1016/j.lwt.2023.114719. DOI
Requena R., Vargas M., Chiralt A. Obtaining Antimicrobial Bilayer Starch and Polyester-Blend Films with Carvacrol. Food Hydrocoll. 2018;83:118–133. doi: 10.1016/j.foodhyd.2018.04.045. DOI
Jahdkaran E., Hosseini S.E., Nafchi A.M., Nouri L. The Effects of Methylcellulose Coating Containing Carvacrol or Menthol on the Physicochemical, Mechanical, and Antimicrobial Activity of Polyethylene Films. Food Sci. Nutr. 2021;9:2768–2778. doi: 10.1002/fsn3.2240. PubMed DOI PMC
Busolo M.A., Lagaron J.M. Antioxidant Polyethylene Films Based on a Resveratrol Containing Clay of Interest in Food Packaging Applications. Food Packag. Shelf Life. 2015;6:30–41. doi: 10.1016/j.fpsl.2015.08.004. DOI
Li L., Wang H., Chen M., Jiang S., Cheng J., Li X., Zhang M., Jiang S. Gelatin/Zein Fiber Mats Encapsulated with Resveratrol: Kinetics, Antibacterial Activity and Application for Pork Preservation. Food Hydrocoll. 2019;101:105577. doi: 10.1016/j.foodhyd.2019.105577. DOI
Silva Â., Duarte A., Sousa S., Ramos A., Domingues F.C. Characterization and Antimicrobial Activity of Cellulose Derivatives Films Incorporated with a Resveratrol Inclusion Complex. LWT. 2016;73:481–489. doi: 10.1016/j.lwt.2016.06.043. DOI
Duarte A., Martinho A., Luís Â., Figueiras A., Oleastro M., Domingues F.C., Silva F. Resveratrol encapsulation with methyl-β-cyclodextrin for antibacterial and antioxidant delivery applications. LWT-Food Sci. Technol. 2015;63:1254–1260. doi: 10.1016/j.lwt.2015.04.004. DOI
Chatterjee N.S., Panda S.K., Navitha M., Asha K.K., Anandan R., Mathew S. Vanillic Acid and Coumaric Acid Grafted Chitosan Derivatives: Improved Grafting Ratio and Potential Application in Functional Food. J. Food Sci. Technol. 2015;52:7153–7162. doi: 10.1007/s13197-015-1874-4. DOI
Liu X., Sun X., Du H., Li Y., Wen Y., Zhu Z. A Transparent P-Coumaric Acid-Grafted-Chitosan Coating with Antimicrobial, Antioxidant and Antifogging Properties for Fruit Packaging Applications. Carbohydr. Polym. 2024;339:122238. doi: 10.1016/j.carbpol.2024.122238. PubMed DOI
Lee S., Zhang M., Wang G., Meng W., Zhang X., Wang D., Zhou Y., Wang Z. Characterization of Polyvinyl Alcohol/Starch Composite Films Incorporated with p-Coumaric Acid Modified Chitosan and Chitosan Nanoparticles: A Comparative Study. Carbohydr. Polym. 2021;262:117930. doi: 10.1016/j.carbpol.2021.117930. PubMed DOI
Noman R.R.A., Wong C.S., Law K.P., Neo Y.P. Fabrication and characterisation of electrospun zein-based fibres functionalised by caffeic and p-coumaric acid for potential active packaging applications. Int. J. Food Sci. Technol. 2024;59:7942–7951. doi: 10.1111/ijfs.17179. DOI
Zheng M., Zhang C., Zhou Y., Lu Z., Zhao H., Bie X., Lu F. Preparation of Gallic Acid-Grafted Chitosan Using Recombinant Bacterial Laccase and Its Application in Chilled Meat Preservation. Front. Microbiol. 2018;9:1729. doi: 10.3389/fmicb.2018.01729. PubMed DOI PMC
Borges A., Ferreira C., Saavedra M.J., Simões M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids against Pathogenic Bacteria. Microb. Drug Resist. 2013;19:256–265. doi: 10.1089/mdr.2012.0244. PubMed DOI
Li H., Liu C., Sun J., Lv S. Bioactive Edible Sodium Alginate Films Incorporated with Tannic Acid as Antimicrobial and Antioxidative Food Packaging. Foods. 2022;11:3044. doi: 10.3390/foods11193044. PubMed DOI PMC
Chen C., Yang H., Yang X., Ma Q. Tannic Acid: A Crosslinker Leading to Versatile Functional Polymeric Networks: A Review. RSC Adv. 2022;12:7689–7711. doi: 10.1039/D1RA07657D. PubMed DOI PMC
Zou J., Wong J., Lee C.-R., Nitin N., Wang L., Sun G. Protein-Based Rechargeable and Replaceable Antimicrobial and Antifouling Coatings on Hydrophobic Food-Contact Surfaces. ACS Appl. Bio Mater. 2024;7:1842–1851. doi: 10.1021/acsabm.3c01247. PubMed DOI PMC
Venkatesan R., Sivaprakash P., Kim I., Eldesoky G.E., Kim S.-C. Tannic Acid as a Crosslinking Agent in Poly(Butylene Adipate-Co-Terephthalate) Composite Films Enhanced with Carbon Nanoparticles: Processing, Characterization, and Antimicrobial Activities for Food Packaging. J. Environ. Chem. Eng. 2023;11:110194. doi: 10.1016/j.jece.2023.110194. DOI
Sharma S., Jaiswal A.K., Duffy B., Jaiswal S. Ferulic Acid Incorporated Active Films Based on Poly(Lactide)/Poly(Butylene Adipate-Co-Terephthalate) Blend for Food Packaging. Food Packag. Shelf Life. 2020;24:100491. doi: 10.1016/j.fpsl.2020.100491. DOI
Jin C., Zhang H., Ren F., Wang J., Yin S. Preparation and Characterization of Ferulic Acid Wheat Gluten Nanofiber Films with Excellent Antimicrobial Properties. Foods. 2023;12:2778. doi: 10.3390/foods12142778. PubMed DOI PMC
Ou S., Wang Y., Tang S., Huang C., Jackson M.G. Role of Ferulic Acid in Preparing Edible Films from Soy Protein Isolate. J. Food Eng. 2004;70:205–210. doi: 10.1016/j.jfoodeng.2004.09.025. DOI
Fang Y., Fu J., Tao C., Liu P., Cui B. Mechanical Properties and Antibacterial Activities of Novel Starch-Based Composite Films Incorporated with Salicylic Acid. Int. J. Biol. Macromol. 2019;155:1350–1358. doi: 10.1016/j.ijbiomac.2019.11.110. PubMed DOI
Hu F., Sun T., Xie J., Xue B., Li X., Gan J., Li L., Bian X., Shao Z. Functional Properties of Chitosan Films with Conjugated or Incorporated Salicylic Acid. J. Mol. Struct. 2020;1223:129237. doi: 10.1016/j.molstruc.2020.129237. PubMed DOI
Kurczewska J., Ratajczak M., Gajecka M. Alginate and pectin films covering halloysite with encapsulated salicylic acid as food packaging components. Appl. Clay Sci. 2021;214:106270. doi: 10.1016/j.clay.2021.106270. DOI
Sanla-Ead N., Jangchud A., Chonhenchob V., Suppakul P. Antimicrobial Activity of Cinnamaldehyde and Eugenol and Their Activity after Incorporation into Cellulose-based Packaging Films. Packag. Technol. Sci. 2011;25:7–17. doi: 10.1002/pts.952. DOI
Narayanan A., Neera N., Mallesha N., Ramana K.V. Synergized Antimicrobial Activity of Eugenol Incorporated Polyhydroxybutyrate Films Against Food Spoilage Microorganisms in Conjunction with Pediocin. Appl. Biochem. Biotechnol. 2013;170:1379–1388. doi: 10.1007/s12010-013-0267-2. PubMed DOI
Huang X., Ge X., Zhou L., Wang Y. Eugenol Embedded Zein and Poly(Lactic Acid) Film as Active Food Packaging: Formation, Characterization, and Antimicrobial Effects. Food Chem. 2022;384:132482. doi: 10.1016/j.foodchem.2022.132482. PubMed DOI
Cheng J., Wang H., Kang S., Xia L., Jiang S., Chen M., Jiang S. An Active Packaging Film Based on Yam Starch with Eugenol and Its Application for Pork Preservation. Food Hydrocoll. 2019;96:546–554. doi: 10.1016/j.foodhyd.2019.06.007. DOI
Sivaram S., Somanathan H., Kumaresan S.M., Muthuraman M.S. The Beneficial Role of Plant Based Thymol in Food Packaging Application: A Comprehensive Review. Appl. Food Res. 2022;2:100214. doi: 10.1016/j.afres.2022.100214. DOI
Michalska-Sionkowska M., Walczak M., Sionkowska A. Antimicrobial Activity of Collagen Material with Thymol Addition for Potential Application as Wound Dressing. Polym. Test. 2017;63:360–366. doi: 10.1016/j.polymertesting.2017.08.036. DOI
Ramos M., Jiménez A., Peltzer M., Garrigós M.C. Characterization and Antimicrobial Activity Studies of Polypropylene Films with Carvacrol and Thymol for Active Packaging. J. Food Eng. 2011;109:513–519. doi: 10.1016/j.jfoodeng.2011.10.031. DOI
Siddiqui M.N., Redhwi H.H., Tsagkalias I., Vouvoudi E.C., Achilias D.S. Development of Bio-Composites with Enhanced Antioxidant Activity Based on Poly(Lactic Acid) with Thymol, Carvacrol, Limonene, or Cinnamaldehyde for Active Food Packaging. Polymers. 2021;13:3652. doi: 10.3390/polym13213652. PubMed DOI PMC
Pleva P., Bartošová L., Máčalová D., Zálešáková L., Sedlaříková J., Janalíková M. Biofilm Formation Reduction by Eugenol and Thymol on Biodegradable Food Packaging Material. Foods. 2021;11:2. doi: 10.3390/foods11010002. PubMed DOI PMC
Zhou K., Chen D., Li B., Zhang B., Miao F., Zhou L. Bioactivity and Structure-Activity Relationship of Cinnamic Acid Esters and Their Derivatives as Potential Antifungal Agents for Plant Protection. PLoS ONE. 2017;12:e0176189. doi: 10.1371/journal.pone.0176189. PubMed DOI PMC
Chavan P.S., Tupe S.G. Antifungal Activity and Mechanism of Action of Carvacrol and Thymol against Vineyard and Wine Spoilage Yeasts. Food Control. 2014;46:115–120. doi: 10.1016/j.foodcont.2014.05.007. DOI