Functional response of Anystis baccarum (Acari: Anystidae) preying on two raspberry pests: Aphis idaei (Hemiptera: Aphididae) and Neotetranychus rubi (Acari: Tetranychidae)
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
GA JU 100/2022/P
Jiunn Luh Tan
PubMed
40512091
PubMed Central
PMC12397967
DOI
10.1093/jee/toaf112
PII: 8161594
Knihovny.cz E-zdroje
- Klíčová slova
- biological control of pests, integrated pest management, natural enemies, predatory mites, whirligig mites,
- MeSH
- biologická kontrola škůdců * MeSH
- nymfa růst a vývoj fyziologie MeSH
- potravní řetězec * MeSH
- predátorské chování * MeSH
- roztoči * fyziologie růst a vývoj MeSH
- Rubus * růst a vývoj MeSH
- Tetranychidae * fyziologie růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Raspberry is an increasingly economically important soft fruit worldwide. To adopt the approaching EU Green Deal, growers are required to seek alternative pest management strategies. The predatory mite, Anystis baccarum (L.), which was recently discovered in raspberry, could be a promising candidate. However, the biology and predation capacity of this species in raspberry are unknown. This study aimed to investigate the functional response of A. baccarum to two common raspberry pests, Aphis idaei van der Goot and Neotetranychus rubi Trägårdh. In controlled laboratory conditions, six densities of A. idaei nymphs (2, 4, 8, 12, 16, and 24) and adult N. rubi females (2, 4, 8, 16, 24, and 32) were introduced in separate functional response experiments. Furthermore, the prey preference of A. baccarum on the two species was investigated when 5 A. idaei nymphs and adult N. rubi females were offered simultaneously to the predator. Anystis baccarum exhibited type II functional response to both prey, with capture rate for A. idaei higher than N. rubi. In addition, A. idaei was more likely to be consumed by A. baccarum than N. rubi. While promising as a biocontrol agent, the searching behavior, cannibalistic nature, and long generation time of A. baccarum suggest that it should not be relied upon solely for pest management in raspberry. Further studies on synergistic interactions with other biocontrol agents are recommended.
Biology Centre CAS Institute of Entomology České Budějovice Czech Republic
Department of Zoology Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Al-Azzazy MM. 2021. Biological performance of the predatory mite Neoseiulus barkeri Hughes (Phytoseiidae): a candidate for controlling of three mite species infesting grape trees. VITIS - Journal of Grapevine Research 60:11–20. https://doi.org/ 10.5073/vitis.2021.60.11-20 DOI
Al-Azzazy MM, Alhewairini SS.. 2024. Effects of different diets on life table parameters of the predatory mite DOI
Aljetlawi AA, Sparrevik E, Leonardsson K.. 2004. Prey–predator size-dependent functional response: derivation and rescaling to the real world. J. Anim. Ecol. 73:239–252. https://doi.org/ 10.1111/j.0021-8790.2004.00800.x DOI
Bates D, Mächler M, Bolker BM, et al. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/ 10.18637/jss.v067.i01 DOI
Bazgir F, Shakarami J, Jafari S.. 2020. Functional response of the predatory mite DOI
Chen L-L, Yuan P, Pozsgai G, et al. 2019. The impact of cover crops on the predatory mite PubMed DOI
Cicero L, Chavarín-Gómez LE, Pérez-Ascencio D, et al. 2024. Influence of alternative prey on the functional response of a predator in two contexts: With and without intraguild predation. Insects 15:315. https://doi.org/ 10.3390/insects15050315 PubMed DOI PMC
Cuthbertson AGS. 2004. Unnecessary pesticide applications in Northern Ireland apple orchards due to mis-identification of a beneficial mite species. Res. J. Chem. Environ 8:77–78.
Cuthbertson AGS, Murchie AK.. 2004. The phenology, oviposition and feeding rate of PubMed DOI
Cuthbertson AGS, Murchie AK.. 2005a.
Cuthbertson AGS, Murchie AK.. 2005b. Techniques for environmental monitoring of predatory fauna on branches of Bramley apple trees in Northern Ireland. Int J Environ Sci Technol 2:1–6. https://doi.org/ 10.1007/bf03325851 DOI
Cuthbertson AGS, Murchie AK.. 2010. Ecological benefits of DOI
Cuthbertson AGS, Bell AC, Murchie AK.. 2003. Impact of the predatory mite DOI
Cuthbertson AGS, Qiu B-L, Murchie AK.. 2014. PubMed DOI PMC
El Banhawy EM, Carter N, Wynne IR.. 1993. Preliminary observations on the population development of anystid and free-living mesostigmatic mites in a cereal field in Southern England. Exp. Appl. Acarol 17:541–549. https://doi.org/ 10.1007/bf00058897 DOI
Fathipour Y, Maleknia B.. 2016. ‘11 Mite Predators’. In: Omkar ed. Cambridge, Massachusetts: Academic Press. 329–366.
Fernández-arhex V, Corley JC.. 2003. The functional response of parasitoids and its implications for biological control. Biocontrol Sci. Technol. 13:403–413. https://doi.org/ 10.1080/0958315031000104523 DOI
Gerson U. 1992. Perspectives of non-phytoseiid predators for the biological control of plant pests. Exp. Appl. Acarol 14:383–391. https://doi.org/ 10.1007/BF01200575 DOI
Gerson U, Smiley RL, Ochoa R.. 2003. 6 Anystidae. Blackwell Science Ltd. 78–83.
Golovach GP. 1989. Characteristics of the phenology of the predatory mite Anystis and its rearing under laboratory conditions. (In Russian). Vestn. Zool. 3:84–86.
Holling CS. 1959. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist 91:385–398. https://doi.org/ 10.4039/ent91385-7 DOI
Holling CS. 1966. The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 98:5–86. https://doi.org/ 10.4039/entm9848fv DOI
Hullé M, Chaubet B, Turpeau E, et al. 2020. Encyclop’Aphid: a website on aphids and their natural enemies. Entomol. Gen. 40:97–101. https://doi.org/ 10.1127/entomologia/2019/0867 DOI
Ito K. 2020. Predators of the nest-making spider mite DOI
Khanjani J, Kamali K, Sahragard A.. 1999. Functional response of
Meyer MKPS, Ueckermann EA.. 1987. A taxonomic study of some Anystidae (Acari: Prostigmata). Entomology Memoir Department of Agriculture and Water Supply; Republic of South Africa: 68:1–37.
Packer K. 2022. ‘Chapter Bringing the Crazee Mite to the Canadian market’. Ontario, Canada: Fruit & Vegetable. 14–16.
Paull CA, Schellhorn NA, HilleRisLambers R, et al. 2012. Escape from parasitoids leave larvae vulnerable to predators and has unexpected outcomes for pest suppression. Basic Appl. Ecol. 13:542–550. https://doi.org/ 10.1016/j.baae.2012.08.003 DOI
Pehlivan S, Alinç T, Achiri TD, et al. 2020. Functional responses of two predatory bugs (Hemiptera: Anthocoridae) to changes in the abundance of DOI
Pritchard DW, Paterson RA, Bovy HC, et al. 2017. FRAIR: an R package for fitting and comparing consumer functional responses. Methods Ecol. Evol. 8:1528–1534. https://doi.org/ 10.1111/2041-210x.12784 DOI
Rogers D. 1972. Random search and insect population models. J. Anim. Ecol. 41:369–383. https://doi.org/ 10.2307/3474 DOI
Saito T, Brownbridge M.. 2017. From promising, to product: Developmental steps and challenges to bring a new predatory mite to market. IOBC-WPRS Bull; 124:195–199.
Saito T, Brownbridge M.. 2021. Efficacy of PubMed DOI PMC
Saito T, Brownbridge M.. 2022. The generalist predatory mite PubMed DOI
Saito T, Buitenhuis R, Brownbridge M.. 2023. Use of the generalist predator DOI
Solomon ME. 1949. The natural control of animal populations. J. Anim. Ecol. 18:1–35. https://doi.org/ 10.2307/1578 DOI
Sorensen JT, Kinn DN, Doutt RL, et al. 1976. Biology of the mite, DOI
Tan JL, Trandem N, Fránová J, et al. 2022. Known and potential invertebrate vectors of raspberry viruses. Viruses 14:571. https://doi.org/ 10.3390/v14030571 PubMed DOI PMC
Tan JL, Trandem N, Hamborg Z, et al. 2024a. Thrips species occurring in red raspberry, DOI
Tan JL, Trandem N, Hamborg Z, et al. 2024b. The species, density, and intra-plant distribution of mites on red raspberry ( PubMed DOI PMC
Vincent C, Lasnier J.. 2020. Sustainable arthrood management in Quebec Vineyards. Agriculture 10:91. https://doi.org/ 10.3390/agriculture10040091 DOI
Wu P, He J, Dong H, et al. 2023. Functional response and intraspecific competition of three ladybird species feeding on aphids on goji berry plants in laboratory and semi-field conditions. Insects 14:853. https://doi.org/ 10.3390/insects14110853 PubMed DOI PMC
Yiacoumi E, Kouloussis NA, Koveos DS.. 2024. Effect of sex, age and temperature on the functional response of PubMed DOI PMC
Zeng Z-h, Zhou Z, Wei Z-j, et al. 2007. Toxicity of five insecticides on predatory mite ( DOI
Zhang Z-Q. 2021. How long do whirligig mites live? A survey of lifespan in Anystidae (Acari: Trombidiformes). Zoosymposia 20:77–84. https://doi.org/ 10.11646/zoosymposia.20.1.8 DOI