Known and Potential Invertebrate Vectors of Raspberry Viruses

. 2022 Mar 10 ; 14 (3) : . [epub] 20220310

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35336978

The estimated global production of raspberry from year 2016 to 2020 averaged 846,515 tons. The most common cultivated Rubus spp. is European red raspberry (Rubus idaeus L. subsp. idaeus). Often cultivated for its high nutritional value, the red raspberry (Rubus idaeus) is susceptible to multiple viruses that lead to yield loss. These viruses are transmitted through different mechanisms, of which one is invertebrate vectors. Aphids and nematodes are known to be vectors of specific raspberry viruses. However, there are still other potential raspberry virus vectors that are not well-studied. This review aimed to provide an overview of studies related to this topic. All the known invertebrates feeding on raspberry were summarized. Eight species of aphids and seven species of plant-parasitic nematodes were the only proven raspberry virus vectors. In addition, the eriophyid mite, Phyllocoptes gracilis, has been suggested as the natural vector of raspberry leaf blotch virus based on the current available evidence. Interactions between vector and non-vector herbivore may promote the spread of raspberry viruses. As a conclusion, there are still multiple aspects of this topic that require further studies to get a better understanding of the interactions among the viral pathogens, invertebrate vectors, and non-vectors in the raspberry agroecosystem. Eventually, this will assist in development of better pest management strategies.

Zobrazit více v PubMed

Dietzgen R.G., Mann K.S., Johnson K.N. Plant virus-Insect vector interactions: Current and potential future research directions. Viruses. 2016;8:303. doi: 10.3390/v8110303. PubMed DOI PMC

Koch K.G., Jones T.-K.L., Badillo-Vargas I.E. Anthropod vectors of plant viruses. In: Awasthi L.P., editor. Applied Plant Virology. Academic Press; Cambridge, MA, USA: 2020. pp. 349–379.

Butter N.S. Insect Vectors and Plant Pathogens. CRC Press; Boca Raton, FL, USA: 2018.

Sarwar M. Insects as transport devices of plant viruses. In: Awasthi L.P., editor. Applied Plant Virology. Academic Press; Cambridge, MA, USA: 2020. pp. 381–402.

Singh S., Awasthi L.P., Jangre A. Transmission of plant viruses in fields through various vectors. In: Awasthi L.P., editor. Applied Plant Virology. Academic Press; Cambridge, MA, USA: 2020. pp. 313–334.

Adams M.J., Antoniw J.F., Kreuze J. Virgaviridae: A new family of rod-shaped plant viruses. Arch. Virol. 2009;154:1967–1972. doi: 10.1007/s00705-009-0506-6. PubMed DOI

Sanfaçon H., Wellink J., Gall O.L., Karasev A., Vlugt R.v.d., Wetzel T. Secoviridae: A proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch. Virol. 2009;154:899–907. doi: 10.1007/s00705-009-0367-z. PubMed DOI

Thompson J.R., Dasgupta I., Fuchs M., Iwanami T., Karasev A.V., Petrzik K., Sanfaçon H., Tzanetakis I., Vlugt R.v.d., Wetzel T., et al. ICTV virus taxonomy profile: Secoviridae. J. Gen. Virol. 2017;98:529–531. doi: 10.1099/jgv.0.000779. PubMed DOI PMC

Roberts A.G. eLS. John Wiley & Sons, Ltd.; Chichester, UK: 2014. Plant viruses: Soil-borne.

Andret-Link P., Fuchs M. Transmission specificity of plant viruses by vectors. J. Plant Pathol. 2005;87:153–165.

Singh S., Awasthi L.P., Jangre A., Nirmalkar V.K. Transmission of plant viruses through soil-inhabiting nematode vectors. In: Awasthi L.P., editor. Applied Plant Virology. Academic Press; Cambridge, MA, USA: 2020. pp. 292–300.

MacFarlane S.A., Robinson D.J. Transmission of plant viruses by nematodes. In: Gillespie S.H., Smith G.L., Osbourn A., editors. SGM Symposium 63: Microbe-Vector Interactions in Vector-Borne Diseases. Cambridge University Press; Cambridge, UK: 2004. pp. 263–285.

Food and Agriculture Organization FAOSTAT—Crops and Livestock Products. [(accessed on 25 January 2022)]. Available online: https://www.fao.org/faostat/en/#data/QCL.

Padmanabhan P., Correa-Betanzo J., Paliyath G. Berries and related fruits. In: Caballero B., Finglas P.M., Toldrá F., editors. Encyclopedia of Food and Health. Academic Press; Cambridge, MA, USA: 2016. pp. 364–371.

Raudone L., Bobinaite R., Janulis V., Viskelis P., Trumbeckaite S. Effects of raspberry fruit extracts and ellagic acid on respiratory burst in murine macrophages. Food Funct. 2014;5:1167–1174. doi: 10.1039/C3FO60593K. PubMed DOI

Bobinaite R., Viskelis P., Venskutonis P.R. Chemical composition of raspberry (Rubus spp.) cultivars. In: Simmonds M.S.J., Preedy V.R., editors. Nutritional Composition of Fruit Cultivars. Academic Press; Cambridge, MA, USA: 2016. pp. 713–731.

Albuquerque T.G., Silva M.A., Oliveira M.B.P.P., Costa H.S. Analysis, identification, and quantification of anthocyanins in fruit juices. In: Rajauria G., Tiwari B.K., editors. Fruit Juices. Academic Press; Cambridge, MA, USA: 2018. pp. 693–737.

Heide O.M., Sønsteby A. Physiology of flowering and dormancy regulation in annual- and biennial-fruiting red raspberry (Rubus idaeus L.)—A review. J. Hortic. Sci. Biotechnol. 2011;85:433–442. doi: 10.1080/14620316.2011.11512785. DOI

Sønsteby A., Heide O.M. Environmental control of growth and flowering of Rubus idaeus L. cv. Glen Ample. Sci. Hortic. 2008;117:249–256. doi: 10.1016/j.scienta.2008.05.003. DOI

Carew J.G., Gillespie T., White J., Wainwright H., Brennan R., Battey N.H. The control of the annual growth cycle in raspberry. J. Hortic. Sci. Biotechnol. 2000;75:495–503. doi: 10.1080/14620316.2000.11511275. DOI

Sønsteby A., Heide O.M. Earliness and fruit yield and quality of annual-fruiting red raspberry (Rubus idaeus L.): Effects of temperature and genotype. J. Hortic. Sci. Biotechnol. 2010;85:341–349. doi: 10.1080/14620316.2010.11512678. DOI

Garcia A.V., Perez S.E.M., Butsko M., Moya M.S.P., Sanahuja A.B. Authentication of “Adelita” raspberry cultivar based on physical properties, antioxidant activity and volatile profile. Antioxidants. 2020;9:593. doi: 10.3390/antiox9070593. PubMed DOI PMC

Knight V.H. Rubus breeding worldwide and the raspberry breeding programme at Horticultural Research International. East Malling. Jugosl. Voćarstvo. 2004;38:23–38.

Demchak K. Small fruit production in high tunnels. HortTechnology. 2009;19:44–49. doi: 10.21273/HORTSCI.19.1.44. DOI

Hanson E., Weihe M.V., Schilder A.C., Chanon A.M., Scheerens J.C. High tunnel and open field production of floricane- and primocane-fruiting raspberry cultivars. HortTechnology. 2011;21:412–418. doi: 10.21273/HORTTECH.21.4.412. DOI

Leach H., Isaacs R. Seasonal occurence of key arthropod pests and beneficial insects in Michigan high tunnel and field grown raspberries. Environ. Entomol. 2018;47:567–574. doi: 10.1093/ee/nvy030. PubMed DOI

Lefeuvre P., Martin D.P., Elena S.F., Shepherd D.N., Roumagnac P., Varsani A. Evolution and ecology of plant viruses. Nat. Rev. Microbiol. 2019;17:632–644. doi: 10.1038/s41579-019-0232-3. PubMed DOI

Baumann G., Casper R., Converse R.H. Apple Mosaic Virus in Rubus. In: Converse R.H., editor. Virus Diseases of Small Fruits. U.S. Government Printing Office; Washington, DC, USA: 1987. pp. 246–248.

Medina C., Matus J.T., Zúñiga M., San-Martín C., Arce-Johnson P. Occurrence and distribution of viruses in commercial plantings of Rubus, Ribes and Vaccinium species in Chile. Cienc. E Investig. Agrar. 2006;33:23–28. doi: 10.7764/rcia.v33i1.324. DOI

Martin R.R., MacFarlane S., Sabanadzovic S., Quito D., Poudel B., Tzanetakis I.E. Viruses and virus diseases of Rubus. Plant Dis. 2013;97:168–182. doi: 10.1094/PDIS-04-12-0362-FE. PubMed DOI

Jones A.T., Wood G.A. The virus status of raspberries (Rubus idaeus L.) in New Zealand. N. Z. J. Agric. Res. 1979;22:173–182. doi: 10.1080/00288233.1979.10420857. DOI

Jevremović D., Leposavić A., Paunović S.A. Molecular and biological characterization of Black Raspberry Necrosis Virus on red raspberry in Serbia; Proceedings of the AgriConf 2019: 30th Scientific-Experts Conference of Agriculture and Food Industry; Sarajevo, Bosnia and Herzegovina. 26–27 September 2020; pp. 82–87.

Sanfaçon H., Iwanami T., Karasev A.V., van der Vlugt R., Wellink J., Wetzel T., Yoshikawa N. Family—Secoviridae. In: King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J., editors. Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press; San Diego, CA, USA: 2012. pp. 881–899.

Jones A.T., McElroy F.D., Brown D.J.F. Tests for transmission of cherry leaf roll virus using Longidorus, Paralongidorus and Xiphinema nematodes. Ann. Appl. Biol. 1981;99:143–150. doi: 10.1111/j.1744-7348.1981.tb05141.x. DOI

Jones A.T., Mayo M.A., Henderson S.J. Biological and biochemical properties of an isolate of cherry rasp leaf virus from red raspberry. Ann. Appl. Biol. 1985;106:101–110. doi: 10.1111/j.1744-7348.1985.tb03099.x. DOI

Bragard C., Dehnen-Schmutz K., Gonthier P., Jacques M.-A., Miret J.A.J., Justesen A.F., MacLeod A., Magnusson C.S., Milonas P., Navas-Cortes J.A., et al. Pest categorisation of non-EU viruses of Rubus L. EFSA J. 2020;18:e05853. doi: 10.2903/j.efsa.2020.5928. PubMed DOI PMC

Li N., Yu C., Yin Y., Gao S., Wang F., Jiao C., Yao M. Pepper crop improvement against cucumber mosaic virus (CMV): A review. Front. Plant Sci. 2020;11:598798. doi: 10.3389/fpls.2020.598798. PubMed DOI PMC

Arogundade O., Balogun O.S., Kumar P.L. Seed transmissibility of Cucumber mosaic virus in Capsicum species. Int. J. Veg. Sci. 2019;25:146–153. doi: 10.1080/19315260.2018.1487498. DOI

Quito-Avila D.F., Lightle D., Lee J., Martin R.R. Transmission biology of raspberry latent virus, the first aphid-borne reovirus. Phytopathology. 2012;102:547–553. doi: 10.1094/PHYTO-12-11-0331. PubMed DOI

Lightle D.M., Quito-Avila D., Martin R.R., Lee J.C. Seasonal phenology of Amphorophora agathonica (Hemiptera: Aphididae) and spread of viruses in red raspberry in Washington. Environ. Entomol. 2014;43:467–473. doi: 10.1603/EN13213. PubMed DOI

Dong L., Lemmetty A., Latvala S., Samuilova O., Valkonen J.P.T. Occurrence and genetic diversity of Raspberry leaf blotch virus (RLBV) infecting cultivated and wild Rubus species in Finland. Ann. Appl. Biol. 2015;168:122–132. doi: 10.1111/aab.12247. DOI

Zindović J., Marn M.V., Plesko I.M. First report of Raspberry leaf blotch virus in red raspberry in Montenegro. J. Plant Pathol. 2015;92:398. doi: 10.4454/JPP.V97I2.024. DOI

Converse R.H. Diseases caused by viruses and viruslike agents. In: Ellis M.A., Converse R.H., Williams R.N., Williamson B., editors. Compendium of Raspberry and Blackberry Diseases and Insects. APS Press; St. Paul, MN, USA: 1991. pp. 42–58.

Xu Y.-M., Zhao Z.-Q. Longidoridae and Trichodoridae (Nematoda: Dorylaimida and Triplonchida) Landcare Research; Lincoln, New Zealand: 2019.

Esnard J., Zuckerman B.M. Small Fruits. In: Barker K.R., Pederson G.A., Windham G.L., Bartels J.M., editors. Plant and Nematode Interactions. Volume 36. The American Society of Agronomy; Madison, WI, USA: 1998. pp. 685–725.

McGavin W.J., Cock P.J.A., MacFarlane S.A. Partial sequence and RT-PCR diagnostic test for the plant rhabdovirus Raspberry vein chlorosis virus. Plant Pathol. 2011;60:462–467. doi: 10.1111/j.1365-3059.2010.02387.x. DOI

Diaz-Lara A., Mosier N.J., Stevens K., Keller K.E., Martin R.R. Evidence of Rubus yellow net virus integration into the red raspberry genome. Cytogenet. Genome Res. 2020;160:329–334. doi: 10.1159/000509845. PubMed DOI

Kalischuk M.L., Kawchuk L.M., Leggett F. First report of Rubus yellow net virus on Rubus idaeus in Alberta, Canada. Plant Dis. 2008;92:974. doi: 10.1094/PDIS-92-6-0974A. PubMed DOI

McGavin W.J., MacFarlane S.A. Rubus chlorotic mottle virus, a new sobemovirus infecting raspberry and bramble. Virus Res. 2009;139:10–13. doi: 10.1016/j.virusres.2008.09.004. PubMed DOI

Truve E., Fargette D. Sobemovirus. In: King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J., editors. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press; San Diego, CA, USA: 2012. pp. 1185–1189.

Dullemans A.M., Botermans M., Kock M.J.D.d., Krom C.E.d., Lee T.A.J.v.d., Roenhorst J.W., Stulemeijer I.J.E., Verbeek M., Westenberg M., Vlugt R.A.A.v.d. Creation of a new genus in the family Secoviridae substantiated by sequence variation of newly identified strawberry latent ringspot virus isolates. Arch. Virol. 2020;165:21–31. doi: 10.1007/s00705-019-04437-0. PubMed DOI PMC

Brown D.J.F. The transmission of two strains of Strawberry latent ringspot virus by populations of Xiphinema diversicaudatum (Nematode: Dorylaimoidea) Nematol. Mediterr. 1985;13:217–223.

Tzanetakis I.E., Mackey I.C., Martin R.R. Strawberry necrotic shock virus is a distinct virus and not a strain of Tobacco streak virus. Arch. Virol. 2004;149:2001–2011. doi: 10.1007/s00705-004-0330-y. PubMed DOI

Šubíková V., Kollerová E., Slováková L. Occurrence of nepoviruses in small fruits and fruit trees in Slovakia. Plant Prot. Sci. 2002;38:367–369. doi: 10.17221/10493-PPS. DOI

European and Mediterranean Plant Protection Organisation PM 7/2 (2) Tobacco ringspot virus. Bull. OEPP/EPPO Bull. 2017;47:135–145. doi: 10.1111/epp.12376. DOI

Martin R.R. Raspberry viruses in Oregon, Washington and British Columbia. Acta Hortic. 1999;505:259–262. doi: 10.17660/ActaHortic.1999.505.33. DOI

Eastwell K.C. Ilarvirus. In: Mahy B.W.J., Van Regenmortel M.H.V., editors. Encyclopedia of Virology. 3rd ed. Academic Press; Cambridge, MA, USA: 2008. pp. 46–56.

Zarzyńska-Nowak A., Hasiów-Jaroszewska B., Budzyńska D., Trzmiel K. Genetic variability of Polish tomato black ring virus isolates and their satellite RNAs. Plant Pathol. 2020;69:1034–1041. doi: 10.1111/ppa.13188. DOI

Pinkerton J.N., Kraus J., Martin R.R., Schreiner R.P. Epidemiology of Xiphinema americanum and Tomato ringspot virus on red raspberry, Rubus idaeus. Plant Dis. 2008;92:364–371. doi: 10.1094/PDIS-92-3-0364. PubMed DOI

Sarwar M. Mite (Acari Acarina) vectors involved in transmission of plant viruses. In: Awasthi L.P., editor. Applied Plant Virology. Academic Press; Cambridge, MA, USA: 2020. pp. 257–273.

Alford D.V. Pests of Fruit Crops: A Color Handbook. 2nd ed. CRC Press; Boca Raton, FL, USA: 2014.

Baker E., Dransfield R.D., Brightwell R. Aphids on Berries (Rubus) [(accessed on 28 June 2021)]. Available online: https://influentialpoints.com/Gallery/Aphids_on_berries_Rubus.htm.

Martin R.R., Ellis M.A., Williamson B., Williams R.N. Compendium of Raspberry and Blackberry Diseases and Pests. APS Press; St. Paul, MN, USA: 2017.

Converse R.H., Stace-Smith R., Jones A.T. Aphid-borne disease: Raspberry mosaic. In: Converse R.H., editor. Virus Disease of Small Fruits. Faculty Publication in the Biological Sciences; Lincoln, NE, USA: 1987. pp. 168–174.

Lightle D.M., Dosett M., Backus E.A., Lee J.C. Location of the mechanism of resistance to Amphorophora agathonica (Hemiptera: Aphididae) in red raspberry. Plant Resist. 2012;105:1465–1470. doi: 10.1603/EC11405. PubMed DOI

Converse R.H. Aphid-transmitted diseases: Raspberry mosaic disease complex. In: Ellis M.A., Converse R.H., Williams R.N., Williamson B., editors. Compendium of Raspberry and Blackberry Diseases and Insects. APS Press; St. Paul, MN, USA: 1991. pp. 43–45.

McGavin W.J., Mitchell C., Cock P.J.A., Wright K.M., MacFarlane S.A. Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. J. Gen. Virol. 2012;93:430–437. doi: 10.1099/vir.0.037937-0. PubMed DOI

Iwaki M., Komuro Y. Viruses isolated from Narcissus (Narcissus spp.) in Japan V. Arabis mosaic virus. Jpn. J. Phytopathol. 1974;40:344–353. doi: 10.3186/jjphytopath.40.344. DOI

Bhat A.I., Rao G.P. Characterization of Plant Viruses: Methods and Protocols. Humana Press; New York, NY, USA: 2020.

McMenemy L.S., Mitchell C., Johnson S.N. Biology of the European large raspberry aphid (Amphorophora idaei): Its role in virus transmission and resistance breakdown in red raspberry. Agric. For. Entomol. 2009;11:61–71. doi: 10.1111/j.1461-9563.2008.00409.x. DOI

McGavin M.J., MacFarlane S.A. Sequence similarities between Raspberry leaf mottle virus, Raspberry leaf spot virus and the closterovirus Raspberry mottle virus. Ann. Appl. Biol. 2010;156:439–448. doi: 10.1111/j.1744-7348.2010.00401.x. DOI

McMenemy L.S., Hartley S.E., MacFarlane S.A., Karley A.J., Shepherd T., Johnson S.N. Raspberry viruses manipulate the behaviour of their insect vectors. Entomol. Exp. Appl. 2012;144:56–68. doi: 10.1111/j.1570-7458.2012.01248.x. DOI

Blackman R.L., Eastop V.F., Hills M. Morphological and cytological separation of Amphorophora Buckton (Homoptera: Aphididae) feeding on European raspberry and blackberry (Rubus spp.) Bull. Entomol. Res. 1977;67:285–296. doi: 10.1017/S000748530001110X. DOI

Gordon S.C., Woodford J.A.T., Birch A.N.E. Arthropod pests of Rubus in Europe: Pest status, current and future control strategies. J. Hortic. Sci. 1997;76:831–862. doi: 10.1080/14620316.1997.11515577. DOI

Lightle D., Lee J. Raspberry viruses affect the behavior and performance of Amphorophora agathonica in single and mixed infections. Entomol. Exp. Appl. 2014;151:57–64. doi: 10.1111/eea.12170. DOI

Quito-Avila D.F., Lightle D., Martin R.R. Effect of Raspberry bushy dwarf virus, Raspberry leaf mottle virus, and Raspberry latent virus on plant growth and fruit crumbliness in ‘Meeker’ red raspberry. Plant Dis. 2014;98:176–183. doi: 10.1094/PDIS-05-13-0562-RE. PubMed DOI

Dossett M., Kempler C. Biotypic diversity and resistance to the raspberry aphid Amphorophora agathonica in Pacific Northwestern North America. J. Am. Soc. Hortic. Sci. 2012;137:445–451. doi: 10.21273/JASHS.137.6.445. DOI

MacFarlane S.A., McGavin W.J. Sequencing studies for the identification and characterization of new and old Rubus viruses; Proceedings of the The 21st International Conference on Virus and Other Graft Transmissible Diseases of Fruit Crops; Neustadt, Germany. 5–10 July 2010; pp. 39–40.

Stace-Smith R. Studies on Rubus virus disease in British Columbia: VII. Raspberry vein chlorosis. Can. J. Bot. 1961;39:559–565. doi: 10.1139/b61-045. DOI

CABI Invasive Species Compendium. [(accessed on 23 July 2021)]. Available online: https://www.cabi.org/isc/

Bolton A.T. Spread of Raspberry leaf curl virus. Can. J. Plant Sci. 1970;50:667–671. doi: 10.4141/cjps70-125. DOI

Dassonville N., Thiellemans T., Gosset V. FresaProtect and BerryProtect: Mixes of parasitoids to control all common aphid species on protected soft fruit crops. Product development and case studies from three years of experience. Asp. Appl. Biol. 2013;119:79–87.

Jones D.R. Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 2003;109:195–219. doi: 10.1023/A:1022846630513. DOI

Fiallo-Olive E., Pan L.-L., Liu S.-S., Navas-Castillo J. Transmission of begomoviruses and other whitefly-borne viruses: Dependence on the vector species. Phytopathology. 2020;110:10–17. doi: 10.1094/PHYTO-07-19-0273-FI. PubMed DOI

Soumia P.S., Pandi G.G.P., Krishna R., Ansari W.A., Jaiswal D.K., Verma J.P., Singh M. Whitefly-transmitted plant viruses and their management. In: Singh K.P., Jahagirdar S., Sarma B.K., editors. Emerging Trends in Plant Pathology. Springer; Singapore: 2021. pp. 175–196.

Susaimuthu J., Gergerich R.C., Bray M.M., Clay K.A., Clark J.R., Tzanetakis I.E., Martin R.R. Incidence and ecology of Blackberry yellow vein associated virus. Plant Dis. 2007;91:809–813. doi: 10.1094/PDIS-91-7-0809. PubMed DOI

Tzanetakis I.E., Martin R.R., Wintermantel W.M. Epidemiology of criniviruses: An emerging problem in world agriculture. Front. Microbiol. 2013;4:119. doi: 10.3389/fmicb.2013.00119. PubMed DOI PMC

Poudel B., Wintermantel W.M., Cortez A.A., Ho T., Khadgi A., Tzanetakis I.E. Epidemiology of Blackberry yellow vein associated virus. Plant Dis. 2013;97:1352–1357. doi: 10.1094/PDIS-01-13-0018-RE. PubMed DOI

Tzanetakis I.E., Wintermantel W.M., Cortez A.A., Barnes J.E., Barrett S.M., Bolda M.P., Martin R.R. Epidemiology of Strawberry pallidosis-associated virus and occurence of pallidosis disease in North America. Plant Dis. 2006;90:1343–1346. doi: 10.1094/PD-90-1343. PubMed DOI

Abrahamian P.E., Abou-Jawdah Y. Whitefly-transmitted criniviruses of cucurbits: Current status and future prospects. Virus Dis. 2014;25:26–38. doi: 10.1007/s13337-013-0173-9. PubMed DOI PMC

Bi J.L., Toscano N.C., Ballmer G.R. Greenhouse and field evaluation of six novel insecticices against the greenhouse whitefly Trialeurodes vaporariorum on strawberries. Crop Prot. 2002;21:49–55. doi: 10.1016/S0261-2194(01)00063-1. DOI

Mware B., Olubayo F., Narla R., Songa J., Amata R., Kyamanywa S., Ateka E.M. First record of spiraling whitefly in coastal Kenya: Emergence, host range, distribution and associatio with Cassava brown streak virus disease. Int. J. Agric. Biol. 2010;12:411–415.

Yin X.-G., Agyenim-Boateng K.G., Lu J.-N., Shi Y.-Z. Review of leafhopper (Empoasca flavescens): A major pest in castor (Ricinus communis) J. Genet. Genom. Sci. 2018;3:009. doi: 10.24966/GGS-2485/100009. DOI

Coutinho J., Amado C., Barateiro A., Quartau J., Rebelo T. First record of the leafhopper Asymmetrasca decedens (Homoptera: Cidadellidae) in mainland Portugal. Rev. Cienc. Agrar. 2015;38:213–219.

Linck H., Reineke A. Rubus stunt: A review of an important phytoplasma disease in Rubus spp. J. Plant Dis. Prot. 2019;126:393–399. doi: 10.1007/s41348-019-00247-3. DOI

Vindimian M.E., Grassi A., Ciccotti A., Pollini C.P., Terlizzi F. Epidemiological studies on Rubus stunt (RS) in blackberry orchards located near Trento (Italy) Acta Hortic. 2004;656:177–180. doi: 10.17660/ActaHortic.2004.656.28. DOI

Linck H., Reineke A. Preliminary survey on putative insect vectors for Rubus stunt phytoplasmas. J. Appl. Entomol. 2019;143:328–332. doi: 10.1111/jen.12605. DOI

Rotenberg D., Jacobson A.L., Schneweis D.J., Whitfield A.E. Thrips transmission of tospoviruses. Curr. Opin. Virol. 2015;15:80–89. doi: 10.1016/j.coviro.2015.08.003. PubMed DOI

Moritz G., Kumm S., Mound L. Tospovirus transmission depends on thrips ontogeny. Virus Res. 2004;100:143–149. doi: 10.1016/j.virusres.2003.12.022. PubMed DOI

Maris P.C., Joosten N.N., Goldbach R.W., Peters D. Tomato spotted wilt virus infection improves host suitability for its vector Frankliniella occidentalis. Virology. 2004;94:706–711. doi: 10.1094/PHYTO.2004.94.7.706. PubMed DOI

Jones D.R. Plant viruses transmitted by thrips. Eur. J. Plant Pathol. 2005;113:119–157. doi: 10.1007/s10658-005-2334-1. DOI

Mound L., Hoddle M., Hastings A. Thysanoptera Californica: Tenothrips Frici. [(accessed on 4 August 2021)]. Available online: https://keys.lucidcentral.org/keys/v3/thrips_of_california_2019/the_key/key/california_thysanoptera_2019/Media/Html/entities/tenothrips_frici.htm.

Mound L.A., Masumoto M. The genus Thrips (Thysanoptera, Thripidae) in Australia, New Caledonia and New Zealand. Zootaxa. 2005;1020:1–64. doi: 10.11646/zootaxa.1020.1.1. DOI

Nakahara S. The genus Thrips Linnaeus (Thysanoptera: Thripidae) of the New World. U. S. Dep. Agric. Tech. Bull. 1994;1822:1–183.

Ghotbi T., Baniameri V. Identification and determination of transmission ability of thrips species as vectors of two tospovirus, tomato spotted wilt virus (TSWV) and impatiens necrotic spot virus (INSV) on ornamental plants in Iran; Proceedings of the Integrated Control in Protected Crops, Mediterranean Climate; Murcia, Spain. 14–18 May 2006; p. 297.

Day M.F., Irzykiewicz H. Physiological studies on thrips in relation to transmission of tomato spotted wilt virus. Aust. J. Biol. Sci. 1954;7:274–281. doi: 10.1071/BI9540274. PubMed DOI

Hoddle M.S., Mound L.A., Paris D. Thrips of California: Thrips Imaginis. [(accessed on 20 January 2022)]. Available online: https://keys.lucidcentral.org/keys/v3/thrips_of_california/identify-thrips/key/california-thysanoptera-2012/Media/Html/browse_species/Thrips_imaginis.htm#:~:text=imaginis%20has%20not%20been%20found,setae%20on%20the%20abdominal%20sternites.

Riley D.G., Joseph S.V., Srinivasan R., Diffie S. Thrips vectors of tospoviruses. J. Integr. Pest Manag. 2011;2:1–10. doi: 10.1603/IPM10020. DOI

Milne J.R., Walter G.H. The coincidence of thrips and dispersed pollen in PNRSV-infected stonefruit orchards—A precondition for thrips-mediated transmission via infected pollen. Ann. Appl. Biol. 2003;142:291–298. doi: 10.1111/j.1744-7348.2003.tb00253.x. DOI

Converse R.H. Tobacco Streak. In: Ellis M.A., Converse R.H., Williams R.N., Williamson B., editors. Compendium of Raspberry and Blackberry Diseases and Insects. APS Press; St. Paul, MN, USA: 1991. pp. 54–55.

Morison G.D. A review of British glasshouse Thysanoptera. Trans. Entomol. Soc. Lond. 1957;109:467–520. doi: 10.1111/j.1365-2311.1957.tb00334.x. DOI

Lim J.-R., Choi S.-U., Kim J.-H., Lee K.-K., Cheong S.-S., Ryu J., Hwang C.-Y. Occurrence of insect pests in Rubus coreanus Miquel. Korean J. Appl. Entomol. 2010;49:97–103. doi: 10.5656/KSAE.2010.49.2.097. DOI

Totic I. Raspberry breeding and protection against disease and pests. Bulg. J. Agric. Sci. 2014;20:391–404.

Maric I., Marcic D., Petanovic R., Auger P. Biodiversity of spider mites (Acari: Tetranychidae) in Serbia: A review, new records and key to all known species. Acarologia. 2017;58:3–14. doi: 10.24349/acarologia/20184223. DOI

Gordon S.C., Taylor C.E. Biology of the raspberry leaf and bud mite (Phyllocoptes (Eriophyes) gracilis Nal.) Eriophyidae in Scotland. J. Hortic. Sci. 1976;51:501–508. doi: 10.1080/00221589.1976.11514719. DOI

Gordon S.C. Dryberry mite. In: Ellis M.A., Converse R.H., Williams R.N., Williamson B., editors. Compendium of Raspberry and Blackberry Diseases and Insects. APS Press; St. Paul, MN, USA: 1991. pp. 70–71.

Mohamedova M., Samaliev H. Phytonematodes associated with red raspberry (Rubus idaeus L.) in Bulgaria. J. Entomol. Zool. Stud. 2018;6:123–127.

Walters T.W., Pinkerton J.N., Riga E., Zasada I.A., Particka M., Yoshida H.A., Ishida C. Managing plant-parasitic nematodes in established red raspberry fields. HortTechnology. 2009;19:762–768. doi: 10.21273/HORTSCI.19.4.762. DOI

Taylor C.E., Thomas P.R., Converse R.H. An outbreak of Arabis Mosaic Virus and Xiphinema diversicaudatum (Micoletzky) in Scotland. Plant Pathol. 1966;15:170–174. doi: 10.1111/j.1365-3059.1966.tb00344.x. DOI

Brown D.J.F., MacFarlane S.A., Furlanetto C., Oliveira C.M.G. Transmissão de vírus por nematóides parasitos de plantas. In: Luz W.C., editor. Revisão Anual de Patologia de Plantas. Volume 12. Sociedade Brasileira de Fitopatologia; Brasília, Brazil: 2004. pp. 201–242.

Trudgill D.L., Brown D.J.F., McNamara D.G. Methods and criteria for assessing the transmission of plant viruses by longidorid nematodes. Rev. Nématol. 1983;6:133–141.

Brown D.J.F., Halbrendt M., Jones A.T., Taylor C.E., Lamberti F. An appraisal of some aspects of the ecology of nematode vectors of plant viruses. Nematol. Mediterr. 1994;22:253–263.

Sanny A. Response of blackberry cultivars to nematode transmission of Tobacco ringspot virus. Inq. Univ. Ark. Undergrad. Res. J. 2003;4:106–109.

Fuchs M., Abawi G.S., Marsella-Herrick P., Cox R., Cox K.D., Carroll J.E., Martin R.R. Occurence of Tomato ringspot virus and Tobacco ringspot virus in highbush blueberry in New York state. J. Plant Pathol. 2010;92:451–459.

Jones A.T. Cherry Rasp Leaf Virus in Rubus. In: Converse R.H., editor. Virus Disease of Small Fruits. United States Department of Agriculture; Corvallis, OR, USA: 1987. pp. 241–243.

Converse R.H. Nematode-Transmitted Diseases. In: Ellis M.A., Converse R.H., Williams R.N., Williamson B., editors. Compendium of Raspberry and Blackberry Diseases and Insects. APS Press; St. Paul, MN, USA: 1991. pp. 47–50.

EFSA Panel on Plant Health Scientific opinion on the risk to plant health posed by Arabis mosaic virus, Raspberry ringspot virus, Strawberry latent ringspot virus and Tomato black ring virus to the EU territory with the identification and evaluation of risk reduction options. ESFA J. 2013;11:3377. doi: 10.2903/j.efsa.2013.3377. DOI

Crowder D.W., Li J., Borer E.T., Finke D.L., Sharon R., Pattemore D.E., Medlock J. Species interactions affect the spread of vector-borne plant pathogens independent of transmission mode. Ecology. 2019;100:e02782. doi: 10.1002/ecy.2782. PubMed DOI

Reitz S.R., Trumble J.T. Competitive displacement among insects and arachnids. Annu. Rev. Entomol. 2002;47:435–465. doi: 10.1146/annurev.ento.47.091201.145227. PubMed DOI

Chisholm P.J., Eigenbrode S.D., Clark R.E., Basu S., Crowder D.W. Plant-mediated interactions between a vector and a non-vector herbivore promote the spread of a plant virus. Proc. R. Soc. B. 2019;286:20191383. doi: 10.1098/rspb.2019.1383. PubMed DOI PMC

Su Q., Yang F., Yao Q., Peng Z., Tong H., Wang S., Xie W., Wu Q., Zhang Y. A non-vector herbivore indirectly increases the transmission of a vector-borne virus by reducing plant chemical defences. Funct. Ecol. 2020;34:1091–1101. doi: 10.1111/1365-2435.13535. DOI

McKenzie S.W., Vanbergen A.J., Hails R.S., Jones T.H., Johnson S.N. Reciprocal feeding facilitation between above- and below-ground herbivores. Biol. Lett. 2013;9:309–313. doi: 10.1098/rsbl.2013.0341. PubMed DOI PMC

Hoysted G.A., Lilley C.J., Field K.J., Dickinson M., Hartley S.E., Urwin P.E. A plant-feeding nematode indirectly increases the fitness of an aphid. Front. Plant Sci. 2017;8:1897. doi: 10.3389/fpls.2017.01897. PubMed DOI PMC

Kotzampigikis A., Hristova D., Tasheva-Terzieva E. Virus-vector relationship between potato virus Y—PVY and Myzus persicae Sulzer. Bulg. J. Agric. Sci. 2009;15:557–565.

Holman J. Host Plant Catalog of Aphids: Palaearctic Region. Springer; Berlin, Germany: 2009. The plants and their aphids; pp. 675–1140.

Malumphy C., Ostrauskas H., Pye D. New data on whiteflies (Hemiptera: Aleyrodidae) of Estonia, Latvia and Lithuania, including the first records of rhododendron whitefly Massilieurodes chittendeni (Laing) Zool. Ecol. 2013;23:1–4. doi: 10.1080/21658005.2013.774831. DOI

Somerfield K.G. Insects of economic significance recently recorded in New Zealand. N. Z. J. Agric. Res. 1977;20:421–428. doi: 10.1080/00288233.1977.10427354. DOI

Ossiannilsson F. The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Part 2: The Families Cicadidae, Cercopidae, Membracidae, and Cicadellidae (excl. Deltocephalinae) Volume 7 Brill; Leiden, The Netherlands: 1981.

Ossiannilsson F. The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Part 3: The Family Cicadellidae: Deltocephalinae, Catalogue, Literature and Index. Volume 7 Brill; Leiden, The Netherlands: 1983.

Hrncic S., Radonjic S. A survey of raspberry pests in Montenegro. Acta Hortic. 2011;946:243–246. doi: 10.17660/ActaHortic.2012.946.38. DOI

Blommers L.H.M., Vaal F.W.N.M., Helsen H.H.M. Life history, seasonal adaptations and monitoring of common green capsid Lygocoris pabulinus (L.) (Hem., Miridae) J. Appl. Entomol. 1997;121:389–398. doi: 10.1111/j.1439-0418.1997.tb01424.x. DOI

Wheeler A.G. Biology of the Plant Bugs (Hemiptera: Miridae): Pests, Predators, Opportunists. Comstock Publishing Associates; Ithaca, NY, USA: 2001. Blackberry and Raspberry; p. 249.

Coombs M., Khan S.A. Population levels and natural enemies of Plautia affinis Dallas (Hemiptera: Pentatomidae) on raspberry, Rubus idaeus L., in south-eastern Queensland. Aust. J. Entomol. 1998;37:125–129. doi: 10.1111/j.1440-6055.1998.tb01559.x. DOI

Masten Milek T., Simala M., Novak A. Species of genus Aulacaspis Cockerell, 1836 (Hemiptera: Coccoidae: Diaspididae) in Croatia, with emphasis on Aulacaspis yasumatsui Takagi, 1977. Entomol. Croat. 2008;12:55–64.

Mateus C. Os tripes na cultura de framboesa (Thrips in raspberry culture); Proceedings of the V Colóquio National da Produção de Pequenos Frutos; Oeiras, Portugal. 14–15 October 2016; pp. 177–182.

van Frankenhuyzen A. Schadelijke en Nuttige Insekten en Mijten in Aardbei en Houtig Kleinfruit. Nederlandse Fruittelers Organisatie; Zoetermeer, The Netherlands: 1996.

Malloch G., Fenton B., Goodrich M.A. Phylogeny of raspberry beetles and other Byturidae (Coleoptera) Insect Mol. Biol. 2001;10:281–291. doi: 10.1046/j.1365-2583.2001.00266.x. PubMed DOI

Clark K.E., Hartley S.E., Brennan R.M., MacKenzie K., Johnson S.N. Oviposition and feeding behaviour by the vine weevil Otiorhynchus sulcatus on red raspberry: Effects of cultivars and plant nutritional status. Agric. For. Entomol. 2011;14:157–163. doi: 10.1111/j.1461-9563.2011.00554.x. DOI

Gordon S.C., Woodford J.A.T., Grassi A., Zini M., Tuovinen T., Lindqvist I., McNicol J.W. Monitoring and importancce of wingless weevils (Otiorhynchus spp.) in European red raspberry production. IOBC/WPRS Bull.-Integr. Plant Prot. Orchard.-Soft Fruits. 2003;26:55–60.

Allen J., Pope T., Bennison J., ADAS. Birch N., Gordon S. Midge, Mite and Caterpillar Pests of Cane Fruit Crops. [(accessed on 9 December 2021)]. Available online: https://projectblue.blob.core.windows.net/media/Default/Horticulture/Publications/Midge,%20mite%20and%20caterpillar%20pests%20of%20cane%20fruit%20crops.pdf.

Fitzpatrick S.M., Troubridge J.T., Peterson B. Distribution of European winter moth, Operophtera brumata (L.), Bruce spanworm, O. bruceata (Hulst), in the lower Fraser Valley, British Columbia. J. Entomol. Soc. Br. Columbia. 1991;88:39–45.

Kúti Z., Hirka A., Hufnagel L., Ladányi M. A population dynamical model of Operophtera brumata, L. extended by climatic factors. Appl. Ecol. Environ. Res. 2011;9:433–447. doi: 10.15666/aeer/0904_433447. DOI

Velcheva N.V. Externaly-feeding lepidopteran complex on untreated apple trees—Species composition, domination and occurrence. Plant Sci. 2011;48:475–483.

Leska W. Studies of the biology of the raspberry crown borer (clearwing)—Bembecia hylaeiformis Lasp. (Lepidoptera, Aegeriidae, syn. Sessidae) Pol. Pismo Entomol. 1970;40:841–855.

Johnson D.T., Kim S.-H.S. Biology, Identification and Management of Raspberry Crown Borer. [(accessed on 25 June 2021)]. Available online: https://www.uaex.edu/publications/PDF/FSA-7082.pdf.

Tartanus M., Malusa E., Labanowska B.H., Labanowski G. Survey of pests and beneficial fauna in organic small fruits plantations; Proceedings of the 8th International Conference on Organic Fruit Growing; Hohenheim, Germany. 19–21 February 2018; pp. 221–224.

Dang P.T., Duncan R.W., Fitzpatrick S. Occurrence of two palaearctic species of Clepsis Guenee, C. spectrana Treitschke and C. consimilana (Hubner) (Tortricidae), in British Columbia, Canada. J. Lepid. Soc. 1996;50:321–328.

Li S.Y., Fitzpatrick S.M. Monitoring obliquebanded leafroller (Lepidoptera: Tortricidae) larvae and adults of raspberries. Environ. Entomol. 1997;26:170–177. doi: 10.1093/ee/26.2.170. DOI

Vetek G., Thuroczy C., Penzes B. Interrelationship between the raspberry cane midge, Resseliella theobaldi (Diptera: Cecidomyiidae) and its parasitoid, Aprostocetus epicharmus (Hymenoptera: Eulophidae) Bull. Entomol. Res. 2006;96:367–372. doi: 10.1079/BER2006439. PubMed DOI

Yegorenkova E., Yefremova Z. Notes on Lasioptera rubi (Schrank) (Diptera: Cecidomyiidae) and its larval parasitoids (Hymenoptera) on raspberries in Russia. Entomol. Fenn. 2016;27:15–22. doi: 10.33338/ef.84655. DOI

Schoneberg T., Lewis M.T., Burrack H.J., Grieshop M., Isaacs R., Rendon D., Rogers M., Rothwell N., Sial A.A., Walton V.M., et al. Cultural control of Drosophilla suzukii in small fruit- current and pending tactics in the U.S. Insects. 2021;12:172. doi: 10.3390/insects12020172. PubMed DOI PMC

Bolda M.P., Bettiga L.J. Agriculture: Caneberries Pest Management Guidelines: Raspberry Horntail. [(accessed on 18 January 2022)]. Available online: https://www2.ipm.ucanr.edu/agriculture/caneberries/Raspberry-Horntail/

Cagle L.R. Biology of a red spider mite, Panonychus sp., on raspberry in Virginia. Ann. Entomol. Soc. Am. 1962;55:373–378. doi: 10.1093/aesa/55.4.373. DOI

Tjosvold S.A., Karlik J.F. Insects and other animals/Mites. In: Roberts A.V., editor. Encyclopedia of Rose Science. Academic Press; Cambridge, MA, USA: 2003. pp. 431–437.

Seeman O.D., Beard J.J. Identification of exotic pest and Australian native and naturalised species of Tetranychus (Acari: Tetranychidae) Zootaxa. 2011;2961:1–72. doi: 10.11646/zootaxa.2961.1.1. DOI

Bounfour M., Tanigoshi L.K. Effect of temperature on development and demographic parameters of Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae) Ann. Entomol. Soc. Am. 2001;94:400–404. doi: 10.1603/0013-8746(2001)094[0400:EOTODA]2.0.CO;2. DOI

Castro E.B., Mesa N.C., Feres R.J.F., Moraes G.J.d., Ochoa R., Beard J.J., Demite P.R. Tenuipalpidae Database. [(accessed on 11 November 2021)]. Available online: http://www.tenuipalpidae.ibilce.unesp.br.

Shi A. Eriophyoid mites of blackberries and raspberries (Rubus spp.) IOBC/WPRS Bull.-Integr. Plant Prot. Orchard.-Soft Fruits. 2000;23:63–65.

Mokrini F., Laasli S.-E., Iraqui D., Wifaya A., Mimuoni A., Erginbas-Orakci G., Imren M., Dababat A.A. Distribution and occurrence of plant-parasitic nematodes associated with raspberry (Rubus idaeus) in Souss-Massa region of Morocco: Relationship with soil-physico-chemical factors. Russ. J. Nematol. 2019;27:107–121. doi: 10.24411/0869-6918-2019-10011. DOI

Troccoli A., Fanelli E., Castillo P., Liébanas G., Cotroneo A., Luca F.D. Pratylenchus vovlasi sp. Nov. (Nematode: Pratylenchidae) on raspberries in North Italy with a morphometrical and molecular characterization. Plants. 2021;10:1068. doi: 10.3390/plants10061068. PubMed DOI PMC

Troubridge J.T., Fitzpatrick S.M. A revision of the North American Operophtera (Lepidoptera: Geometridae) Can. Entomol. 1993;125:379–397. doi: 10.4039/Ent125379-2. DOI

Wilson C.R. Applied Plant Virology. CABi; Wallingford, UK: 2014.

Sargent D.J., Fernandez-Fernandez F., Rys A., Knight V.H., Simpson D.W., Tobutt K.R. Mapping of A1 conferring resistance to the aphd Amphorophora idaei and dw (dwarfing habit) in red raspberry (Rubus idaeus L.) using AFLP and microsatellite markers. BMC Plant Biol. 2007;7:15. doi: 10.1186/1471-2229-7-15. PubMed DOI PMC

Birch A.N.E., Jones A.T., Fenton B., Malloch G., Geoghegan I., Gordon S.C., Hillier J., Begg G. Resistance-breaking raspberry aphid biotypes: Contraints to sustainable control through plant breeding. Acta Hortic. 2002;585:315–317. doi: 10.17660/ActaHortic.2002.585.51. DOI

Bouska C., Edmunds B. Blackberry and raspberry pests. In: Kaur N., editor. 2021 PNW Insect Management Handbook. Oregon State University Extension Service; Portland, OR, USA: 2021. pp. 9–22.

Isaacs R., Birch A.N.E., Martin R.R. IPM Case Studies: Berry Crops. In: van Emden H.F., Harrington R., editors. Aphids as Crop Pests. 2nd ed. CAB International; Wallingford, UK: 2017. pp. 620–631.

Hillocks R.J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 2012;31:85–93. doi: 10.1016/j.cropro.2011.08.008. DOI

Union E. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. [(accessed on 22 November 2021)]. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:en:PDF.

Foster S.P., Devine G., Devonshire A.L. Insecticide Resistance. In: van Emden H.F., Harrington R., editors. Aphids as Crop Pests. CAB International; Wallingford, UK: 2017. pp. 426–447.

Jones A.T. Virus diseases of Ribes and Rubus in Europe and approaches to their control. IOBC/WPRS Bull.-Integr. Plant Prot. Fruit Crops Subgr. Soft Fruits. 2004;27:1–8.

Lightle D., Lee J. Large Raspberry Aphid, Amphorophora agathonica. [(accessed on 27 September 2021)]. Available online: https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw648.pdf.

Mitchell C., Johnson S.N., Gordon S.C., Birch A.N.E., Hubbard S.F. Combining plant resistance and a natural enemy to control Amphorophora idaei. BioControl. 2010;55:321–327. doi: 10.1007/s10526-009-9257-2. DOI

Elmekabaty M.R., Hussain M.A., Ansari M.A. Evaluation of commercial and non-commercial strains of entomopathogenic fungi against large raspberry aphid Amphorophora idaei. BioControl. 2019;65:91–99. doi: 10.1007/s10526-019-09981-x. DOI

Amorós-Jiménez R., Plaza M., Montserrat M., Marcos-García M.Á., Fereres A. Effect of UV-absorbing nets on the performance of the aphid predator Sphaerophoria rueppellii (Diptera: Syrphidae) Insects. 2020;11:166. doi: 10.3390/insects11030166. PubMed DOI PMC

Behrens N.S., Zhu J., Coats J.R. Pan trapping soybean aphids (Hemiptera: Aphididae) using attractants. J. Econ. Entomol. 2012;105:890–895. doi: 10.1603/EC11102. PubMed DOI

George D.R., Banfield-Zanin J.A., Collier R., Cross J., Birch A.N.E., Gwynn R., O’Neill T. Identification of novel pesticides for use against glasshouse invertebrate pests in UK tomatoes and peppers. Insects. 2015;6:464–477. doi: 10.3390/insects6020464. PubMed DOI PMC

Hardie J., Isaacs R., Pickett J.A., Wadhams L.J., Woodcock C.M. Methyl salicylate and (-)-(1R,5S)-myrtenal area plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae) J. Chem. Ecol. 1994;20:2847–2855. doi: 10.1007/BF02098393. PubMed DOI

Hooks C.R.R., Fereres A. Protecting crops from non-persistently aphid-transmitted viruses: A review on the use of barrier plants as a management tool. Virus Res. 2006;120:1–16. doi: 10.1016/j.virusres.2006.02.006. PubMed DOI

Milenković S.N., Marčić D. Raspberry leaf and bud mite (Phyllocoptes gracilis) in Serbia: The pest status and control options. Acta Hortic. 2012;946:253–256. doi: 10.17660/ActaHortic.2012.946.40. DOI

Linder C., Baroffio C., Mittaz C. Post harvest control of the eriophyoid mite Phyllocoptes gracilis on raspberries. IOBC/WPRS Bull.-Integr. Plant Prot. Fruit Crops Subgr. Soft Fruits. 2008;39:85–87.

Trandem N., Vereide R., Bøthun M. Late autumn treatment with sulphur or rapeseed oil as part of a management strategy for the raspberry leaf and bud mite Phyllocoptes gracilis in ‘Glen Ample’. IOBC/WPRS Bull.-Integr. Plant Prot. Fruit Crops Subgr. Soft Fruits. 2011;70:113–119.

Irving R., Bennison J., Umpelby R. Biocontrol in Soft Fruit. Horticultural Development Company; Warwickshire, UK: 2012.

Tixier M.-S. Predatory mites (Acari: Phytoseiidae) in agro-ecosystems and conservation biological control: A review and explorative approach for forecasting plant-predatory mite interactions and mite dispersal. Front. Ecol. Evol. 2018;6:192. doi: 10.3389/fevo.2018.00192. DOI

Sengonca C., Khan I.A., Blaeser P. The predatory mite Typhlodromus pyri (Acari: Phytoseiidae) causes feeding scars on leaves and fruits of apple. Exp. Appl. Acarol. 2004;33:45–53. doi: 10.1023/B:APPA.0000029965.47111.f3. PubMed DOI

Zemek R. The effect of powdery mildew on the number of prey consumed by Typhlodromus pyri (Acari: Phytoseiidae) J. Appl. Entomol. 2005;129:211–216. doi: 10.1111/j.1439-0418.2005.00947.x. DOI

Andika I.B., Wei S., Cao C., Salaipeth L., Kondo H., Sun L. Phytopathogenic fungus hosts a plant virus: A naturally occuring cross-kingdom viral infection. Proc. Natl. Acad. Sci. USA. 2017;114:12267–12272. doi: 10.1073/pnas.1714916114. PubMed DOI PMC

Minguely C., Norgrove L., Burren A., Christ B. Biological control of the raspberry eriophyoid mite Phyllocoptes gracilis using entomopathogenic fungi. Horticulturae. 2021;7:54. doi: 10.3390/horticulturae7030054. DOI

López-Aranda J.M., Domínguez P., Miranda L., Santos B.d.l., Talavera M., Daugovish O., Soria C., Chamorro M., Medina J.J. Fumigant use for strawberry production in Europe: The current landscape and solutions. Int. J. Fruit Sci. 2016;16:1–15. doi: 10.1080/15538362.2016.1199995. DOI

Bernard G.C., Egnin M., Bonsi C. The impact of plant-parasitic nematodes on agriculture and methods of control. In: Shah M.M., Mahamood M., editors. Nematology: Concepts, Diagnosis and Control. IntechOpen Limited; London, UK: 2017.

Sasanelli N., Konrat A., Migunova V., Toderas I., Iurcu-Straistaru E., Rusu S., Bivol A., Andoni C., Veronico P. Review on control methods against plant parasitic nematodes applied in southern member states (C zone) of the European Union. Agriculture. 2021;11:602. doi: 10.3390/agriculture11070602. DOI

Abd-Elgawad M. Biological control agents of plant-parasitic nematodes. Egypt. J. Biol. Pest Control. 2016;26:423–429.

Kanwar R.S., Patil J.A., Yadav S. Prospects of using predatory nematodes in biological control for plant parasitic nematodes—Review. Biol. Control. 2021;160:104668. doi: 10.1016/j.biocontrol.2021.104668. DOI

Khan A., Saifullah, Iqbal M., Hussain S. Organic control of phytonematodes with Pleurotus species. Pak. J. Nematol. 2014;32:155–161.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...