The species, density, and intra-plant distribution of mites on red raspberry (Rubus idaeus L.)

. 2024 Aug ; 93 (2) : 317-337. [epub] 20240627

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38937376

Grantová podpora
TO01000295 Technology Agency of the Czech Republic

Odkazy

PubMed 38937376
PubMed Central PMC11269358
DOI 10.1007/s10493-024-00930-7
PII: 10.1007/s10493-024-00930-7
Knihovny.cz E-zdroje

The adoption of the European Green Deal will limit acaricide use in high value crops like raspberry, to be replaced by biological control and other alternative strategies. More basic knowledge on mites in such crops is then necessary, like species, density, and their role as vectors of plant diseases. This study had four aims, focusing on raspberry leaves at northern altitude: (1) identify mite species; (2) study mite population densities; (3) investigate mite intra-plant distribution; (4) investigate co-occurrence of phytophagous mites, raspberry leaf blotch disorder and raspberry leaf blotch virus (RLBV). Four sites in south-eastern Norway were sampled five times. Floricanes from different parts of the sites were collected, taking one leaf from each of the upper, middle, and bottom zones of the cane. Mites were extracted with a washing technique and processed for species identification and RLBV detection. Mites and leaves were tested for RLBV by reverse transcription polymerase chain reaction (RT-PCR) with virus-specific primers. Phytophagous mites, Phyllocoptes gracilis, Tetranychus urticae, and Neotetranychus rubi, and predatory mites, Anystis baccarum and Typhlodromus (Typhlodromus) pyri were identified. All phytophagous mites in cultivated raspberry preferred the upper zone of floricanes, while in non-cultivated raspberry, they preferred the middle zone. The presence of phytophagous mites did not lead to raspberry leaf blotch disorder during this study. RLBV was detected in 1.3% of the sampled plants, none of them with leaf blotch symptoms, and in 4.3% of P. gracilis samples, and in some spider mite samples, implying that Tetranychids could also be vectors of RLBV.

Zobrazit více v PubMed

Alford DV (2014) Pests of fruit crops: a Color Handbook, 2nd edn. Boca Raton, Florida, CRC

Assouguem A, Kara M, Mechchate H, Korkmaz YB, Benmessaoud S, Ramzi A, Abdullah KR, Noman OM, Farah A, Lazraq A (2022) Current situation of DOI

Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. 10.18637/jss.v067.i01 10.18637/jss.v067.i01 DOI

Ben-David T, Ueckermann EA, Gerson U (2013) An annotated list of spider mites (Acari: Prostigmata: Tetranychidae) of Israel. Isr J Entomol 43:125–148

Bi Y, Artola K, Kurokura T, Hytönen T, Valkonen JPT (2012) First report of PubMed DOI

Bonafos R, Serrano E, Auger P, Kreiter S (2007) Resistance to deltamethrin, lambda-cyhalothrin and chlorpyriphos-ethyl in some populations of DOI

Buckwell A, Wachter ED, Nadeu E, Williams A (2020) Crop Protection & the EU Food System: Where are they going? Brussels, Belgium, RISE Foundation

CABI (2021) CABI Compendium. In: CABI International. https://www.cabidigitallibrary.org/journal/cabicompendium Accessed 22 August 2023

Caldwell E, Read J, Sanson GD (2016) Which leaf mechanical traits correlate with insect herbivory among feeding guilds? Ann Bot 117:349–361. 10.1093/aob/mcv178 10.1093/aob/mcv178 PubMed DOI PMC

Cuthbertson AGS, Murchie AK (2005) Techniques for environmental monitoring of predatory fauna on branches of Bramley apple trees in Northern Ireland. Int J Environ Sci Technol (Tehran) 2:1–6. 10.1007/BF03325851 10.1007/BF03325851 DOI

Cuthbertson AGS, Murchie AK (2010) Ecological benefits of DOI

Cuthbertson AGS, Bell AC, Murchie AK (2003) Impact of the predatory mite DOI

Cuthbertson AGS, Qiu B-L, Murchie AK (2014) PubMed DOI PMC

Devi M, Challa N (2019) Impact of weather parameters on seasonality of phytophagous mites. J Entomol Zool Stud 7:1095–1100

Dhooria MS (2016) Acarology and its Importance Fundamentals of Applied Acarology.(pp1-7). Springer, Singapore

Dong L, Lemmetty A, Latvala S, Samuilova O, Valkonen JPT (2016) Occurrence and genetic diversity of DOI

Edland T, Evans GO (1998) The genus

European Commission (2020) Farm to Fork Strategy. In: European Union. https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf Accessed 5 June 2023

Fathipour Y, Maleknia B (2016) Mite predators. In: Omkar (ed) Ecofriendly Pest Management for Food Security.(pp329-366). Academic, Cambridge, Massachusetts

Fatnassi H, Arnaoty SAE, Brun R, Pizzol J, Kortam M, Métay C, Poncet C (2015) Dispersal and maintenance of

Fisher GC (1991) Spider mites. In: Ellis MA, Converse RH, Williams RN, Williamson B (eds) Compendium of Raspberry and Blackberry Diseases and Insects.(pp69-70). APS, St. Paul, Minnesota

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplication of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299 PubMed

Gajek D (2003) Species composition of tetranychid mites (Tetranychidae) and predatory mites (Phytoseiidae) occuring on raspberry plantation in Poland. J Plant Prot Res 43:353–360

GBIF Secretariat (2022) GBIF Backbone Taxonomy:

Gerson U, Smiley RL, Ochoa R (2003a) Anystidae mites (Acari) for Pest Control.(pp78-83). Blackwell Science Ltd, Oxford, United Kingdom

Gerson U, Smiley RL, Ochoa R (2003b) Phytoseiidae mites (Acari) for Pest Control.(pp173-218). Blackwell Science Ltd, Oxford, United Kingdom

Godinho DP, Janssen A, Li D, Cruz C, Magalhães S (2020) The distribution of herbivores between leaves matches their performance only in the absence of competitors. Ecol Evol 10:8405–8415. 10.1002/ece3.6547 10.1002/ece3.6547 PubMed DOI PMC

Gordon SC, Taylor CE (1976) Some aspects of the biology of the raspberry leaf and bud mite ( DOI

Gutierrez J (1985) Systematics. In: Helle W, Sabelis MW (eds) World Crop Pests: Spider mites, their Biology, Natural enemies and Control. Vol 1A.(pp75-89). Elsevier Science Publishers B. V, Amsterdam, The Netherlands

International Committee on Taxonomy of Viruses (2023) Virus Taxonomy: 2022 Release (MSL #38). In: International Committee on Taxonomy of Viruses. https://ictv.global/news/vmr_release_0423 Accessed 25 November 2023

Jevremović D, Leposavić A, Miletić N, Vasilijević B, Popović B, Mitrović O, Milinković M (2022) Impact of raspberry leaf blotch emaravirus on red raspberry ‘Willamette’ fruits. Pesticidi i Fitomedicina 37:1–7. 10.2298/PIF2201001J 10.2298/PIF2201001J DOI

Koloniuk I, Fránová J, Přibylová J, Sarkisova T, Špak J, Tan JL, Zemek R, Čmejla R, Rejlová M, Valentová L, Sedlák J, Holub J, Skalík J, Blystad D-R, Sapkota B, Hamborg Z (2023) Molecular characterization of a novel PubMed DOI PMC

Laurin M-C, Bostanian NJ (2007) Laboratory studies to elucidate the residual toxicity of eight insecticides to PubMed DOI

Leeuwen TV, Tirry L, Yamamoto A, Nauen R, Dermauw W (2015) The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic Biochem Physiol 121:12–21. 10.1016/j.pestbp.2014.12.009 10.1016/j.pestbp.2014.12.009 PubMed DOI

Maric I, Marcic D, Petanovic R, Auger P (2018) Biodiversity of spider mites (Acari: Tetranychidae) in Serbia: a review, new records and key to all known species. Acarologia 58:3–14. 10.24349/acarologia/20184223 10.24349/acarologia/20184223 DOI

McGavin WJ, Mitchell C, Cock PJA, Wright KM, MacFarlane SA (2012) Raspberry leaf blotch virus, a putative new member of the genus PubMed DOI

Menzel W, Jelkmann W, Maiss E (2002) Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J Virol Methods 99:81–92 10.1016/S0166-0934(01)00381-0 PubMed DOI

Meyer MKPS, Ueckermann EA (1987) A taxonomic study of some Anystidae (Acari: Prostigmata). Entomol Mem 68:1–37

Miedema E (1987) Survey of phytoseiid mites (Acari: Phytoseiidae) in orchards and surrounding vegetation of northwestern Europe, especially in the Netherlands. Keys, descriptions and figures. Neth J Plant Pathol 93:1–63. 10.1007/BF01984462 10.1007/BF01984462 DOI

Migeon A, Dorkeld F (2023) Spider Mites Web: a comprehensive database for the Tetranychidae. In: National Research Institute for Agriculture, Food and Environment. https://www1.montpellier.inrae.fr/CBGP/spmweb/notespecies.php?id=449 Accessed 27 June 2023

Milenković SN, Marčić D (2012) Raspberry leaf and bud mite ( DOI

Nachman G, Zemek R (2002) Interactions in a tritrophic acarine predator-prey metapopulation system IV: effects of host plant condition on PubMed DOI

Nukenine EN, Hassan AT, Dixon AGO (2010) Influence of variety on the within-plant distribution of cassava green spider mite (Acari: Tetranychidae), and leaf anatomical characteristics and chemical components in relation to varietal resistance. Int J Pest Manage 46:177–186. 10.1080/096708700415508 10.1080/096708700415508 DOI

O’Connor BM (2009) Mites. In: Resh VH, Cardé RT (eds) Encyclopedia of Insects.(pp643-649). Academic, Cambridge, Massachusetts

Opit GP, Margolies DC, Nechols JR (2003) Within-plant distribution of twospotted spider mite, PubMed DOI

Ovalle TM, Vásquez-Ordóñez AA, Jimenez J, Parsa S, Cuellar WJ, Lopez-Lavalle LAB (2020) A simple PCR-based method for the rapid and accurate identification of spider mites (Tetranychidae) on cassava. Sci Rep 10:19496. 10.1038/s41598-020-75743-w 10.1038/s41598-020-75743-w PubMed DOI PMC

Pérez-Moreno I, Moraza-Zorrilla ML (1998) Population dynamics and hibernation shelters of DOI

Praslička J, Schlarmannová J, Matejovičová B, Tancík J (2011) The predatory mite DOI

Pritchard AE, Baker EW (1955) A Revision of the Spider Mite Family Tetranychidae. San Francisco, California, The Pacific Coast Entomological Society

Pye DRL, Lillo ED (2010) A review of the eriophyoid mites (Acari: Eriophyoidea) on DOI

Roy M, Brodeur J, Cloutier C (1999) Seasonal abundance of spider mites and their predators on red raspberry in Quebec, Canada. Entomol Soc Am 28:735–747. 10.1093/ee/28.4.735 10.1093/ee/28.4.735 DOI

Saito T, Brownbridge M (2021) Efficacy of PubMed DOI PMC

Saito T, Buitenhuis R, Brownbridge M (2023) Use of the generalist predator DOI

Sengonca C, Khan IA, Blaeser P (2004) The predatory mite PubMed DOI

Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38:3022–3027. 10.1093/molbev/msab120 10.1093/molbev/msab120 PubMed DOI PMC

Tan JL, Trandem N, Fránová J, Hamborg Z, Blystad D-R, Zemek R (2022) Known and potential invertebrate vectors of raspberry viruses. Viruses 14:571. 10.3390/v14030571 10.3390/v14030571 PubMed DOI PMC

The Norwegian Meteorological Institute (2023) Norsk KlimaServiceSenter. In: The Norwegian Meteorological Institute. https://klimaservicesenter.no/ Accessed 26 May 2023

Tixier M-S (2018) Predatory mites (Acari: Phytoseiidae) in agro-ecosystems and conservation biological control: a review and explorative approach for forecasting plant-predatory mite interactions and mite dispersal. Frontier Ecol Evol 6:192. 10.3389/fevo.2018.00192 10.3389/fevo.2018.00192 DOI

Trägardh I (1915) Bidrag till kännedomen om spinnkvalstren (Tetranychus Duf). Entomologiska Avdelningen 20:1–60

Trandem N, Vereide R, Bøthun M (2011) Late autumn treatment with sulphur or rapeseed oil as part of a management strategy for the raspberry leaf and bud mite

Tuovinen T, Lindqvist I (2014) Comparison of biological control of the raspberry leaf and bud mite in two raspberry varieties. In: IOBC Working Group Integrated Protection of Fruit Crops Subgroup Soft Fruits, Vigalzano di Pergine Valsugana, Italy, 26–28 May IOBC-WPRS

Vangansbeke D, Duarte MVA, Pekas A, Wäckers F, Bolckmans K (2022) Mass production of predatory mites: state of the art and future challenges. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass Production of Beneficial organisms: invertebrates and entomopathogens.(pp195-232). Academic, Cambridge, Massachusetts

Vincent C, Lasnier J (2020) Sustainable arthropod management in Quebec vineyards. Agriculture 10:91. 10.3390/agriculture10040091 10.3390/agriculture10040091 DOI

Walzer A, Moder K, Schausberger P (2009) Spatiotemporal within-plant distribution of the spider mite PubMed DOI

Weintraub PG, Kleitman S, Alchanatis V, Palevsky E (2007) Factors affecting the distribution of a predatory mite on greenhouse sweet pepper. Exp Appl Acarol 42:23–35. 10.1007/s10493-007-9077-y 10.1007/s10493-007-9077-y PubMed DOI

Xue X-F, Song Z-W, Hong X-Y (2009) Five new species of DOI

Zacharda M, Zemek R (2013)

Zemek R (2005) The effect of powdery mildew on the number of prey consumed by DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...