The genetic demographic history of the last hunter-gatherer population of the Himalayas

. 2025 Jan 09 ; 15 (1) : 1505. [epub] 20250109

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39789000

Grantová podpora
PID2023-147621NB-I00 MICIU/AEI/10.13039/501100011033
MB22.00059 SERI-funded ERC Consolidator Grant

Odkazy

PubMed 39789000
PubMed Central PMC11718311
DOI 10.1038/s41598-024-80156-0
PII: 10.1038/s41598-024-80156-0
Knihovny.cz E-zdroje

Nepal, largely covered by the Himalayan mountains, hosts indigenous populations with distinct linguistic, cultural, and genetic characteristics. Among these populations, the Raute, Nepal's last nomadic hunter-gatherers, offer a unique insight into the genetic and demographic history of Himalayan foragers. Despite strong cultural connections to other regional foragers, the genetic history of this population remains understudied. This study presents newly genotyped genome-wide SNP data of the Raute to explore their genetic isolation, their origins and potential as an older foraging lineage, and their genetic connections to other regional foragers. Our results show that high levels of inbreeding in the Raute indicate recent genetic isolation. Effective population size estimates suggest a dramatic population decline around 50 generations ago. Strong genetic similarity to Nepalese populations of various subsistence styles highlights a dynamic history of genetic interactions prior to isolation, with particular closeness to historical foragers like the Kusunda and Tharu, but excludes an ancient foraging lineage origin. The study underscores the complexity of human population dynamics in the Himalayas, suggesting a history of extensive interaction between foragers and farmers, followed by isolation and demographic decline among the Raute.

Zobrazit více v PubMed

Cole, A. M. et al. Genetic structure in the Sherpa and neighboring Nepalese populations. BMC Genom.18, 1–10 (2017). PubMed PMC

Gayden, T. et al. The Himalayas as a directional barrier to gene flow. Am. J. Hum. Genet.80 (5), 884–894 (2007). PubMed PMC

Gayden, T. et al. The himalayas: barrier and conduit for gene flow. Am. J. Phys. Anthropol.151 (2), 169–182 (2013). PubMed

Gnecchi-Ruscone, G. A. et al. The genomic landscape of Nepalese tibeto-burmans reveals new insights into the recent peopling of Southern Himalayas. Sci. Rep.7 (1), 15512 (2017). PubMed PMC

Tamang, R. et al. Reconstructing the demographic history of the Himalayan and adjoining populations. Hum. Genet.137, 129–139 (2018). PubMed

Wang, H. W. et al. Revisiting the role of the Himalayas in peopling Nepal: insights from mitochondrial genomes. J. Hum. Genet.57 (4), 228–234 (2012). PubMed

Zhang, M., Yan, S., Pan, W. & Jin, L. Phylogenetic evidence for sino-tibetan origin in northern China in the late neolithic. Nature569 (7754), 112–115 (2019). PubMed

Basnet, R. et al. The matrilineal ancestry of Nepali populations. Hum. Genet.142 (2), 167–180 (2023). PubMed

Gayden, T. et al. Genetic insights into the origins of Tibeto-Burman populations in the Himalayas. J. Hum. Genet.54 (4), 216–223 (2009). PubMed

Gayden, T. et al. Y-STR diversity in the Himalayas. Int. J. Legal Med.125, 367–375 (2011). PubMed

Kivisild, T. et al. The genetic heritage of the earliest settlers persists both in Indian tribal and caste populations. Am. J. Hum. Genet.72 (2), 313–332 (2003). PubMed PMC

Fortier, J. Kings of the Forest: The Cultural Resilience of Himalayan hunter-gatherers (University of Hawaii, 2009).

Atkinson, E. T. The Himalayan Districts of the North-Western ProvincesVol. 1 (Oudh, 1882).

Hodgson, B. H. On the Chepang and Kusunda tribes of Nepal. J. Asiatic Soc. Bengal. 17 (2), 650–658 (1848).

Rastogi, K. Raji orthography development. Himalayan Linguistics, 14(2). (2015).

Arciero, E., Kraaijenbrink, T., Asan, Haber, M., Mezzavilla, M., Ayub, Q., … Tyler-Smith,C. (2018). Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations. Molecular biology and evolution, 35(8), 1916–1933. PubMed PMC

Venugopal, P. N. et al. Genetic Diversity and Affinity among five Tibeto-Burman tribal populations of Northern India: a study on eight Alu Markers. J. Anthropol. Surv. India. 68 (1), 41–55 (2019).

Watters, D. Notes on Kusunda Grammar: A language isolate of Nepal [HL Archive 3]. Himalayan Linguistics. (2006).

Whitehouse, P., Usher, T., Ruhlen, M. & Wang, W. S. Y. Kusunda: an Indo-Pacific language in Nepal. Proc. Natl. Acad. Sci.101 (15), 5692–5695 (2004). PubMed PMC

Derkx, I. et al. Alcohol consumption, life history and extinction risk among Raute hunter–gatherers from Nepal. Evol. Hum. Sci., 6, 1–14, e45. (2024). PubMed PMC

Koirala, T. et al. S., Arterial hypertension and its covariates among nomadic Raute hunter-gatherers of Western Nepal: a mixed-method study. BMJ open., 13(3), 1–13, e067312. (2023). PubMed PMC

Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet.19 (4), 220–234 (2018). PubMed

Curik, I., Ferenčaković, M. & Sölkner, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livest. Sci.166, 26–34 (2014).

McQuillan, R. et al. Runs of homozygosity in European populations. Am. J. Hum. Genet.83 (3), 359–372 (2008). PubMed PMC

Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun.12 (1), 5425 (2021). PubMed PMC

Ceballos, F. C., Gürün, K., Altınışık, N. E., Gemici, H. C., Karamurat, C., Koptekin,D., … Somel, M. (2021). Human inbreeding has decreased in time through the Holocene.Current Biology, 31(17), 3925–3934. PubMed

Kirin, M. et al. Genomic runs of homozygosity record population history and consanguinity. PloS One. 5 (11), e13996 (2010). PubMed PMC

Clark, D. W., Okada, Y., Moore, K. H., Mason, D., Pirastu, N., Gandin, I., … Jagadeesan,A. (2019). Associations of autozygosity with a broad range of human phenotypes. Nature communications, 10(1), 4957. PubMed PMC

Colpitts, J., McLoughlin, P. D. & Poissant, J. Runs of homozygosity in Sable Island feral horses reveal the genomic consequences of inbreeding and divergence from domestic breeds. BMC Genom.23 (1), 501 (2022). PubMed PMC

Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol.17 (5), 230–241 (2002).

Pemberton, T. J. et al. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet.91 (2), 275–292 (2012). PubMed PMC

Charlesworth, B. & Charlesworth, D. Elements of Evolutionary Genetics (Vol42p. 43 (Roberts and Company, 2010).

Slatkin, M. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet.9 (6), 477–485 (2008). PubMed PMC

Santiago, E. et al. Recent demographic history inferred by high-resolution analysis of linkage disequilibrium. Mol. Biol. Evol.37 (12), 3642–3653 (2020). PubMed

Hawks, J., Hunley, K., Lee, S. H. & Wolpoff, M. H. Population bottlenecks and pleistocene human evolution. Mol. Biol. Evol.17 (1), 2–22 (2000). PubMed

Nunney, L. Measuring the ratio of effective population size to adult numbers using genetic and ecological data. Genet. Res.66 (2), 95–107 (1995). PubMed

Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol.128 (2), 415–423 (2005). PubMed

Reinhard, J. The Raute: notes on a nomadic hunting and gathering tribe of Nepal. J. Himal. Stud.2 (4), 233–271 (1974). Kathmandu.

Elhaik, E. Principal component analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Sci. Rep.12 (1), 14683 (2022). PubMed PMC

Lee, S., Zou, F. & Wright, F. A. Convergence and prediction of principal component scores in high-dimensional settings. Ann. Stat.38 (6), 3605 (2010). PubMed PMC

Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature461 (7263), 489–494 (2009). PubMed PMC

Browning, S. R. & Browning, B. L. Identity by descent between distant relatives: detection and applications. Annu. Rev. Genet.46, 617–633 (2012). PubMed

Browning, S. R. & Browning, B. L. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am. J. Hum. Genet.97 (3), 404–418 (2015). PubMed PMC

Zhou, Y., Browning, S. R. & Browning, B. L. A fast and simple method for detecting identity-by-descent segments in large-scale data. Am. J. Hum. Genet.106 (4), 426–437 (2020). PubMed PMC

Ringbauer, H., Coop, G. & Barton, N. H. Inferring recent demography from isolation by distance of long shared sequence blocks. Genetics205 (3), 1335–1351 (2017). PubMed PMC

Arango-Isaza, E., Capodiferro, M. R., Aninao, M. J., Babiker, H., Aeschbacher, S.,Achilli, A., … Barbieri, C. (2023). The genetic history of the Southern Andes from present-day Mapuche ancestry. Current Biology, 33(13), 2602–2615. PubMed

Ioannidis, A. G. et al. Native American gene flow into Polynesia predating Easter Island settlement. Nature583 (7817), 572–577 (2020). PubMed PMC

Jha, A. R., Davenport, E. R., Gautam, Y., Bhandari, D., Tandukar, S., Ng, K. M., …Sonnenburg, J. L. (2018). Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS biology, 16(11), e2005396. PubMed PMC

Chaubey, G. et al. Unravelling the distinct strains of Tharu ancestry. Eur. J. Hum. Genet.22 (12), 1404–1412 (2014). PubMed PMC

Metspalu, M., Mondal, M. & Chaubey, G. The genetic makings of South Asia. Curr. Opin. Genet. Dev.53, 128–133 (2018). PubMed

Gopalan, S., Berl, R. E., Myrick, J. W., Garfield, Z. H., Reynolds, A. W., Bafens,B. K., … Henn, B. M. (2022). Hunter-gatherer genomes reveal diverse demographic trajectories during the rise of farming in Eastern Africa. Current Biology, 32(8), 1852–1860. PubMed PMC

Moore, J. A. Forager/farmer interactions: information, social organization, and the frontier in The Archaeology of Frontiers and Boundaries (eds. Green, S. W. & Perlman, S. M.) 93–112 (Academic Press, 1985).

Padilla-Iglesias, C., Blanco-Portillo, J., Pricop, B., Ioannidis, A. G., Bickel, B.,Manica, A., … Migliano, A. B. (2024). Deep history of cultural and linguistic evolution among Central African hunter-gatherers. Nature Human Behaviour, 1–13. PubMed PMC

Patin, E. & Quintana-Murci, L. The demographic and adaptive history of Central African hunter-gatherers and farmers. Curr. Opin. Genet. Dev.53, 90–97 (2018). PubMed

Göllner, T. et al. Unveiling the genetic history of the Maniq, a primary hunter-gatherer society. Genome Biol. Evol.14 (4), evac021 (2022). PubMed PMC

Lynch, M., Wei, W., Ye, Z. & Pfrender, M. The genome-wide signature of short-term temporal selection. Proc. Natl. Acad. Sci.121 (28), e2307107121 (2024). PubMed PMC

Abraham, G., Qiu, Y. & Inouye, M. FlashPCA2: principal component analysis of Biobank-scale genotype datasets. Bioinformatics33 (17), 2776–2778 (2017). PubMed

Novo, I. et al. Impact of population structure in the estimation of recent historical effective population size by the software GONE. Genet. Selection Evol.55 (1), 86 (2023). PubMed PMC

Ceballos, F. C., Hazelhurst, S. & Ramsay, M. Runs of homozygosity in sub-saharan African populations provide insights into complex demographic histories. Hum. Genet.138, 1123–1142 (2019). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...