• This record comes from PubMed

Molecular Characterization of a Novel Enamovirus Infecting Raspberry

. 2023 Nov 21 ; 15 (12) : . [epub] 20231121

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
TO01000295 EEA Grants and the Technology Agency of the Czech Republic

Raspberry plants, valued for their fruits, are vulnerable to a range of viruses that adversely affect their yield and quality. Utilizing high-throughput sequencing (HTS), we identified a novel virus, tentatively named raspberry enamovirus 1 (RaEV1), in three distinct raspberry plants. This study provides a comprehensive characterization of RaEV1, focusing on its genomic structure, phylogeny, and possible transmission routes. Analysis of nearly complete genomes from 14 RaEV1 isolates highlighted regions of variance, particularly marked by indel events. The evidence from phylogenetic and sequence analyses supports the classification of RaEV1 as a distinct species within the Enamovirus genus. Among the 289 plant and 168 invertebrate samples analyzed, RaEV1 was detected in 10.4% and 0.4%, respectively. Most detections occurred in plants that were also infected with other common raspberry viruses. The virus was present in both commercial and wild raspberries, indicating the potential of wild plants to act as viral reservoirs. Experiments involving aphids as potential vectors demonstrated their ability to acquire RaEV1 but not to successfully transmit it to plants.

See more in PubMed

EFSA Panel on Plant Health (PLH) Bragard C., Dehnen-Schmutz K., Gonthier P., Jacques M., Jaques Miret J.A., Justesen A.F., MacLeod A., Magnusson C.S., Milonas P., et al. List of non-EU Viruses and Viroids of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J. 2019;17:e05501. doi: 10.2903/j.efsa.2019.5501. PubMed DOI PMC

Gazel M., Roumi V., Ördek K., Maclot F., Massart S., Çağlayan K. Identification and Molecular Characterization of a Novel Foveavirus from Rubus Spp. in Turkey. Virus Res. 2020;286:198078. doi: 10.1016/j.virusres.2020.198078. PubMed DOI

Villamor D.E.V., Keller K.E., Martin R.R., Tzanetakis I.E. Comparison of High Throughput Sequencing to Standard Protocols for Virus Detection in Berry Crops. Plant Dis. 2022;106:518–525. doi: 10.1094/PDIS-05-21-0949-RE. PubMed DOI

Martin R.R., MacFarlane S., Sabanadzovic S., Quito D., Poudel B., Tzanetakis I.E. Viruses and Virus Diseases of Rubus. Plant Dis. 2013;97:168–182. doi: 10.1094/PDIS-04-12-0362-FE. PubMed DOI

Quito-Avila D.F., Lightle D., Martin R.R. Effect of Raspberry Bushy Dwarf Virus, Raspberry Leaf Mottle Virus, and Raspberry Latent Virus on Plant Growth and Fruit Crumbliness in ‘Meeker’ Red Raspberry. Plant Dis. 2014;98:176–183. doi: 10.1094/PDIS-05-13-0562-RE. PubMed DOI

Tan J.L., Trandem N., Fránová J., Hamborg Z., Blystad D.-R., Zemek R. Known and Potential Invertebrate Vectors of Raspberry Viruses. Viruses. 2022;14:571. doi: 10.3390/v14030571. PubMed DOI PMC

Gray S., Gildow F.E. Luteovirus-Aphid Interactions. Annu. Rev. Phytopathol. 2003;41:539–566. doi: 10.1146/annurev.phyto.41.012203.105815. PubMed DOI

Domier L.L., D’Arcy C.J. Encyclopedia of Virology. Elsevier; Amsterdam, The Netherlands: 2008. Luteoviruses; pp. 231–238.

Sõmera M., Fargette D., Hébrard E., Sarmiento C. ICTV Report Consortium ICTV Virus Taxonomy Profile: Solemoviridae 2021. J. Gen. Virol. 2021;102:001707. doi: 10.1099/jgv.0.001707. PubMed DOI PMC

Brault V., Van Den Heuvel J.F., Verbeek M., Ziegler-Graff V., Reutenauer A., Herrbach E., Garaud J.C., Guilley H., Richards K., Jonard G. Aphid Transmission of Beet Western Yellows Luteovirus Requires the Minor Capsid Read-through Protein P74. EMBO J. 1995;14:650–659. doi: 10.1002/j.1460-2075.1995.tb07043.x. PubMed DOI PMC

Van Den Heuvel J.F., Bruyère A., Hogenhout S.A., Ziegler-Graff V., Brault V., Verbeek M., Van Der Wilk F., Richards K. The N-Terminal Region of the Luteovirus Readthrough Domain Determines Virus Binding to Buchnera GroEL and Is Essential for Virus Persistence in the Aphid. J. Virol. 1997;71:7258–7265. doi: 10.1128/jvi.71.10.7258-7265.1997. PubMed DOI PMC

Gray S.M., Banerjee N. Mechanisms of Arthropod Transmission of Plant and Animal Viruses. Microbiol. Mol. Biol. Rev. 1999;63:128–148. doi: 10.1128/MMBR.63.1.128-148.1999. PubMed DOI PMC

Gray S., Cilia M., Ghanim M. Advances in Virus Research. Volume 89. Elsevier; Amsterdam, The Netherlands: 2014. Circulative, “Nonpropagative” Virus Transmission; pp. 141–199. PubMed

Xu Y., Ju H.-J., DeBlasio S., Carino E.J., Johnson R., MacCoss M.J., Heck M., Miller W.A., Gray S.M. A Stem-Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 Bases Upstream. J. Virol. 2018;92:e01544-17. doi: 10.1128/JVI.01544-17. PubMed DOI PMC

Miller W.A. Encyclopedia of Virology. Elsevier; Amsterdam, The Netherlands: 1999. Luteovirus (Luteoviridae) pp. 901–908.

Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294–299. PubMed

Morris T.J. Isolation and Analysis of Double-Stranded RNA from Virus-Infected Plant and Fungal Tissue. Phytopathology. 1979;69:854. doi: 10.1094/Phyto-69-854. DOI

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI

Anisimova M., Gascuel O. Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative. Syst. Biol. 2006;55:539–552. doi: 10.1080/10635150600755453. PubMed DOI

Letunic I., Bork P. Interactive Tree of Life (iTOL) v3: An Online Tool for the Display and Annotation of Phylogenetic and Other Trees. Nucleic Acids Res. 2016;44:W242–W245. doi: 10.1093/nar/gkw290. PubMed DOI PMC

Peter K.A., Liang D., Palukaitis P., Gray S.M. Small Deletions in the Potato Leafroll Virus Readthrough Protein Affect Particle Morphology, Aphid Transmission, Virus Movement and Accumulation. J. Gen. Virol. 2008;89:2037–2045. doi: 10.1099/vir.0.83625-0. PubMed DOI

Boissinot S., Erdinger M., Monsion B., Ziegler-Graff V., Brault V. Both Structural and Non-Structural Forms of the Readthrough Protein of Cucurbit Aphid-Borne Yellows Virus Are Essential for Efficient Systemic Infection of Plants. PLoS ONE. 2014;9:e93448. doi: 10.1371/journal.pone.0093448. PubMed DOI PMC

Linck H., Reineke A. Rubus Stunt: A Review of an Important Phytoplasma Disease in Rubus spp. J. Plant Dis. Prot. 2019;126:393–399. doi: 10.1007/s41348-019-00247-3. DOI

Blackman R.L., Eastop V.F. Aphids on the World’s Crops: An Identification and Information Guide. 2nd ed. Wiley; Chichester, UK: Weinheim, Germany: 2000.

Whitfield A.E., Falk B.W., Rotenberg D. Insect Vector-Mediated Transmission of Plant Viruses. Virology. 2015;479–480:278–289. doi: 10.1016/j.virol.2015.03.026. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...