Molecular Characterization of a Novel Enamovirus Infecting Raspberry
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TO01000295
EEA Grants and the Technology Agency of the Czech Republic
PubMed
38140523
PubMed Central
PMC10747458
DOI
10.3390/v15122281
PII: v15122281
Knihovny.cz E-resources
- Keywords
- HTS, Rubus, aphid transmission, raspberry, virus,
- MeSH
- Phylogeny MeSH
- Luteoviridae * genetics MeSH
- Aphids * MeSH
- Plant Diseases MeSH
- Rubus * MeSH
- Viruses * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Raspberry plants, valued for their fruits, are vulnerable to a range of viruses that adversely affect their yield and quality. Utilizing high-throughput sequencing (HTS), we identified a novel virus, tentatively named raspberry enamovirus 1 (RaEV1), in three distinct raspberry plants. This study provides a comprehensive characterization of RaEV1, focusing on its genomic structure, phylogeny, and possible transmission routes. Analysis of nearly complete genomes from 14 RaEV1 isolates highlighted regions of variance, particularly marked by indel events. The evidence from phylogenetic and sequence analyses supports the classification of RaEV1 as a distinct species within the Enamovirus genus. Among the 289 plant and 168 invertebrate samples analyzed, RaEV1 was detected in 10.4% and 0.4%, respectively. Most detections occurred in plants that were also infected with other common raspberry viruses. The virus was present in both commercial and wild raspberries, indicating the potential of wild plants to act as viral reservoirs. Experiments involving aphids as potential vectors demonstrated their ability to acquire RaEV1 but not to successfully transmit it to plants.
Faculty of Science University of South Bohemia 370 05 Ceske Budejovice Czech Republic
Jan Holub Ltd 783 25 Bouzov Czech Republic
Norwegian Institute of Bioeconomy Research 1433 Aas Norway
Research and Breeding Institute of Pomology Holovousy Ltd 508 01 Horice Czech Republic
See more in PubMed
EFSA Panel on Plant Health (PLH) Bragard C., Dehnen-Schmutz K., Gonthier P., Jacques M., Jaques Miret J.A., Justesen A.F., MacLeod A., Magnusson C.S., Milonas P., et al. List of non-EU Viruses and Viroids of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J. 2019;17:e05501. doi: 10.2903/j.efsa.2019.5501. PubMed DOI PMC
Gazel M., Roumi V., Ördek K., Maclot F., Massart S., Çağlayan K. Identification and Molecular Characterization of a Novel Foveavirus from Rubus Spp. in Turkey. Virus Res. 2020;286:198078. doi: 10.1016/j.virusres.2020.198078. PubMed DOI
Villamor D.E.V., Keller K.E., Martin R.R., Tzanetakis I.E. Comparison of High Throughput Sequencing to Standard Protocols for Virus Detection in Berry Crops. Plant Dis. 2022;106:518–525. doi: 10.1094/PDIS-05-21-0949-RE. PubMed DOI
Martin R.R., MacFarlane S., Sabanadzovic S., Quito D., Poudel B., Tzanetakis I.E. Viruses and Virus Diseases of Rubus. Plant Dis. 2013;97:168–182. doi: 10.1094/PDIS-04-12-0362-FE. PubMed DOI
Quito-Avila D.F., Lightle D., Martin R.R. Effect of Raspberry Bushy Dwarf Virus, Raspberry Leaf Mottle Virus, and Raspberry Latent Virus on Plant Growth and Fruit Crumbliness in ‘Meeker’ Red Raspberry. Plant Dis. 2014;98:176–183. doi: 10.1094/PDIS-05-13-0562-RE. PubMed DOI
Tan J.L., Trandem N., Fránová J., Hamborg Z., Blystad D.-R., Zemek R. Known and Potential Invertebrate Vectors of Raspberry Viruses. Viruses. 2022;14:571. doi: 10.3390/v14030571. PubMed DOI PMC
Gray S., Gildow F.E. Luteovirus-Aphid Interactions. Annu. Rev. Phytopathol. 2003;41:539–566. doi: 10.1146/annurev.phyto.41.012203.105815. PubMed DOI
Domier L.L., D’Arcy C.J. Encyclopedia of Virology. Elsevier; Amsterdam, The Netherlands: 2008. Luteoviruses; pp. 231–238.
Sõmera M., Fargette D., Hébrard E., Sarmiento C. ICTV Report Consortium ICTV Virus Taxonomy Profile: Solemoviridae 2021. J. Gen. Virol. 2021;102:001707. doi: 10.1099/jgv.0.001707. PubMed DOI PMC
Brault V., Van Den Heuvel J.F., Verbeek M., Ziegler-Graff V., Reutenauer A., Herrbach E., Garaud J.C., Guilley H., Richards K., Jonard G. Aphid Transmission of Beet Western Yellows Luteovirus Requires the Minor Capsid Read-through Protein P74. EMBO J. 1995;14:650–659. doi: 10.1002/j.1460-2075.1995.tb07043.x. PubMed DOI PMC
Van Den Heuvel J.F., Bruyère A., Hogenhout S.A., Ziegler-Graff V., Brault V., Verbeek M., Van Der Wilk F., Richards K. The N-Terminal Region of the Luteovirus Readthrough Domain Determines Virus Binding to Buchnera GroEL and Is Essential for Virus Persistence in the Aphid. J. Virol. 1997;71:7258–7265. doi: 10.1128/jvi.71.10.7258-7265.1997. PubMed DOI PMC
Gray S.M., Banerjee N. Mechanisms of Arthropod Transmission of Plant and Animal Viruses. Microbiol. Mol. Biol. Rev. 1999;63:128–148. doi: 10.1128/MMBR.63.1.128-148.1999. PubMed DOI PMC
Gray S., Cilia M., Ghanim M. Advances in Virus Research. Volume 89. Elsevier; Amsterdam, The Netherlands: 2014. Circulative, “Nonpropagative” Virus Transmission; pp. 141–199. PubMed
Xu Y., Ju H.-J., DeBlasio S., Carino E.J., Johnson R., MacCoss M.J., Heck M., Miller W.A., Gray S.M. A Stem-Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 Bases Upstream. J. Virol. 2018;92:e01544-17. doi: 10.1128/JVI.01544-17. PubMed DOI PMC
Miller W.A. Encyclopedia of Virology. Elsevier; Amsterdam, The Netherlands: 1999. Luteovirus (Luteoviridae) pp. 901–908.
Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294–299. PubMed
Morris T.J. Isolation and Analysis of Double-Stranded RNA from Virus-Infected Plant and Fungal Tissue. Phytopathology. 1979;69:854. doi: 10.1094/Phyto-69-854. DOI
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Anisimova M., Gascuel O. Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative. Syst. Biol. 2006;55:539–552. doi: 10.1080/10635150600755453. PubMed DOI
Letunic I., Bork P. Interactive Tree of Life (iTOL) v3: An Online Tool for the Display and Annotation of Phylogenetic and Other Trees. Nucleic Acids Res. 2016;44:W242–W245. doi: 10.1093/nar/gkw290. PubMed DOI PMC
Peter K.A., Liang D., Palukaitis P., Gray S.M. Small Deletions in the Potato Leafroll Virus Readthrough Protein Affect Particle Morphology, Aphid Transmission, Virus Movement and Accumulation. J. Gen. Virol. 2008;89:2037–2045. doi: 10.1099/vir.0.83625-0. PubMed DOI
Boissinot S., Erdinger M., Monsion B., Ziegler-Graff V., Brault V. Both Structural and Non-Structural Forms of the Readthrough Protein of Cucurbit Aphid-Borne Yellows Virus Are Essential for Efficient Systemic Infection of Plants. PLoS ONE. 2014;9:e93448. doi: 10.1371/journal.pone.0093448. PubMed DOI PMC
Linck H., Reineke A. Rubus Stunt: A Review of an Important Phytoplasma Disease in Rubus spp. J. Plant Dis. Prot. 2019;126:393–399. doi: 10.1007/s41348-019-00247-3. DOI
Blackman R.L., Eastop V.F. Aphids on the World’s Crops: An Identification and Information Guide. 2nd ed. Wiley; Chichester, UK: Weinheim, Germany: 2000.
Whitfield A.E., Falk B.W., Rotenberg D. Insect Vector-Mediated Transmission of Plant Viruses. Virology. 2015;479–480:278–289. doi: 10.1016/j.virol.2015.03.026. PubMed DOI
The species, density, and intra-plant distribution of mites on red raspberry (Rubus idaeus L.)
Molecular Characterization of a Novel Rubodvirus Infecting Raspberries