Molecular Characterization of a Novel Rubodvirus Infecting Raspberries
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
TO01000295
Technology Agency of the Czech Republic
RVO: 60077344
Czech Academy of Sciences
PubMed
39066236
PubMed Central
PMC11281551
DOI
10.3390/v16071074
PII: v16071074
Knihovny.cz E-resources
- Keywords
- HTS, Rubus, aphids, raspberry, rubodvirus,
- MeSH
- Phylogeny * MeSH
- Negative-Sense RNA Viruses genetics classification isolation & purification MeSH
- Plant Diseases * virology MeSH
- RNA, Viral genetics MeSH
- Rubus * virology MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Norway MeSH
- Names of Substances
- RNA, Viral MeSH
A novel negative-sense single-stranded RNA virus showing genetic similarity to viruses of the genus Rubodvirus has been found in raspberry plants in the Czech Republic and has tentatively been named raspberry rubodvirus 1 (RaRV1). Phylogenetic analysis confirmed its clustering within the group, albeit distantly related to other members. A screening of 679 plant and 168 arthropod samples from the Czech Republic and Norway revealed RaRV1 in 10 raspberry shrubs, one batch of Aphis idaei, and one individual of Orius minutus. Furthermore, a distinct isolate of this virus was found, sharing 95% amino acid identity in both the full nucleoprotein and partial sequence of the RNA-dependent RNA polymerase gene sequences, meeting the species demarcation criteria. This discovery marks the first reported instance of a rubodvirus infecting raspberry plants. Although transmission experiments under experimental conditions were unsuccessful, positive detection of the virus in some insects suggests their potential role as vectors for the virus.
Faculty of Science University of South Bohemia 370 05 Ceske Budejovice Czech Republic
Norwegian Institute of Bioeconomy Research 1433 Aas Norway
Research and Breeding Institute of Pomology Holovousy Ltd 508 01 Horice Czech Republic
See more in PubMed
Rott M.E., Kesanakurti P., Berwarth C., Rast H., Boyes I., Phelan J., Jelkmann W. Discovery of Negative-Sense RNA Viruses in Trees Infected with Apple Rubbery Wood Disease by Next-Generation Sequencing. Plant Dis. 2018;102:1254–1263. doi: 10.1094/PDIS-06-17-0851-RE. PubMed DOI
Cao X., Liu J., Pang J., Kondo H., Chi S., Zhang J., Sun L., Andika I.B. Common but Nonpersistent Acquisitions of Plant Viruses by Plant-Associated Fungi. Viruses. 2022;14:2279. doi: 10.3390/v14102279. PubMed DOI PMC
Wang Y., Wang Y., Wang G., Li Q., Zhang Z., Li L., Lv Y., Yang Z., Guo J., Hong N. Molecular Characteristics and Incidence of Apple Rubbery Wood Virus 2 and Citrus Virus A Infecting Pear Trees in China. Viruses. 2022;14:576. doi: 10.3390/v14030576. PubMed DOI PMC
Nickel O., Grynberg P., Fajardo T.V.M. Detection of multiple viruses and viroid in apple trees in Brazil and their possible association with decline. Australasian Plant Dis. Notes. 2023;18:10. doi: 10.1007/s13314-023-00492-4. DOI
Sasaya T., Palacios G., Briese T., Di Serio F., Groschup M.H., Neriya Y., Song J.W., Tomitaka Y. ICTV Virus Taxonomy Profile: Phenuiviridae 2023. J. Gen. Virol. 2023;104:001893. doi: 10.1099/jgv.0.001893. PubMed DOI
Diaz-Lara A., Navarro B., Di Serio F., Stevens K., Hwang M.S., Kohl J., Vu S.T., Falk B.W., Golino D., Al Rwahnih M. Two Novel Negative-Sense RNA Viruses Infecting Grapevine Are Members of a Newly Proposed Genus within the Family Phenuiviridae. Viruses. 2019;11:685. doi: 10.3390/v11080685. PubMed DOI PMC
Chiapello M., Rodríguez-Romero J., Nerva L., Forgia M., Chitarra W., Ayllón M., Turina M. Putative new plant viruses associated with Plasmopara viticola-infected grapevine samples. Ann. Appl. Biol. 2020;176:180–191. doi: 10.1111/aab.12563. DOI
Navarro B., Minutolo M., De Stradis A., Palmisano F., Alioto D., Di Serio F. The first phlebo-like virus infecting plants: A case study on the adaptation of negative-stranded RNA viruses to new hosts. Mol. Plant Pathol. 2018;19:1075–1089. doi: 10.1111/mpp.12587. PubMed DOI PMC
Xiong R., Wu J., Zhou Y., Zhou X. Identification of a movement protein of the tenuivirus rice stripe virus. J. Virol. 2008;82:12304–12311. doi: 10.1128/JVI.01696-08. PubMed DOI PMC
Gaafar Y.Z.A., Richert-Pöggeler K.R., Sieg-Müller A., Lüddecke P., Herz K., Hartrick J., Seide Y., Vetten H.J., Ziebell H. A divergent strain of melon chlorotic spot virus isolated from black medic (Medicago lupulina) in Austria. Virol. J. 2019;16:89. doi: 10.1186/s12985-019-1195-8. PubMed DOI PMC
Lim S., Baek D., Moon J.S., Cho I.S., Choi G.S., Do Y.S., Lee D.H., Lee S.H. First report of Apple luteovirus 1 and Apple rubbery wood virus 1 on apple tree rootstocks in Korea. Plant Dis. 2019;103:591. doi: 10.1094/PDIS-08-18-1351-PDN. DOI
Bester R., Bougard K., Maree H.J. First report of apple rubbery wood virus 2 infecting apples (Malus domestica) in South Africa. J. Plant Pathol. 2022;104:1199–1200. doi: 10.1007/s42161-022-01167-2. DOI
Bougard K., Maree H.J., Pietersen G., Meitz-Hopkins J., Bester R. First Report of apple rubbery wood virus 2 Infecting Pear (Pyrus communis) in South Africa. Plant Dis. 2022;106:1535. doi: 10.1094/PDIS-08-21-1631-PDN. PubMed DOI
Fontdevila Pareta N., Lateur M., Steyer S., Blouin A.G., Massart S. First Reports of Apple Luteovirus 1, apple rubbery wood virus 1 and Apple Hammerhead Viroid Infecting Apples in Belgium. New Dis. Rep. 2022;45:e12076. doi: 10.1002/ndr2.12076. DOI
Kaur K., Rinaldo A., Rodoni B.R., Constable F.E. First report of Grapevine rubodvirus 2 infecting Vitis vinifera cv. Malbec in Australia. New Dis. Rep. 2023;47:e12172. doi: 10.1002/ndr2.12172. DOI
Minutolo M., Cinque M., Di Serio F., Navarro B., Alioto D. Occurrence of apple rubbery wood virus 1 and apple rubbery wood virus 2 in pear and apple in Campania (Southern Italy) and development of degenerate primers for the rapid detection of rubodviruses. J. Plant Pathol. 2023;105:567–572. doi: 10.1007/s42161-023-01316-1. DOI
Khan Z.A., Diksha D., Thapa P., Mailem Y.S., Sharma S.K., Gupta N., Kishan G., Watpade S., Baranwal V.K. Genome analysis of viruses of Phenuiviridae, Betaflexiviridae and Bromoviridae, and apple scar skin viroid in pear by high-throughput sequencing revealing host expansion of a rubodvirus and an ilarvirus. Physiol. Mol. Plant Pathol. 2024;129:102196. doi: 10.1016/j.pmpp.2023.102196. DOI
Syller J. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol. 2012;13:204–216. doi: 10.1111/j.1364-3703.2011.00734.x. PubMed DOI PMC
Chávez-Calvillo G., Contreras-Paredes C.A., Mora-Macias J., Noa-Carrazana J.C., Serrano-Rubio A.A., Dinkova T.D., Carrillo-Tripp M., Silva-Rosales L. Antagonism or synergism between papaya ringspot virus and papaya mosaic virus in Carica papaya is determined by their order of infection. Virology. 2016;489:179–191. doi: 10.1016/j.virol.2015.11.026. PubMed DOI
Postman J.D., Tzanetakis I.E., Martin R.R. First Report of Strawberry latent ringspot virus in a Mentha sp. from North America. Plant Dis. 2004;88:907. doi: 10.1094/PDIS.2004.88.8.907B. PubMed DOI
Ochoa-Corona F.M., Lebas B.S.M., Tang J.Z., Bootten T.J., Stewart F.J., Harris R.D.R., Alexander B.J.R. RT-PCR detection and strain typing of Raspberry ringspot virus; Proceedings of the XXth International Symposium on Virus and Virus-like Diseases of Temperate Fruit Crops & XIth International Symposium on Small Fruit Virus Diseases; Antalya, Turkey. 22–26 May 2006.
Jones A., Mcgavin W., Geering A., Lockhart B. Identification of Rubus yellow net virus as a distinct badnavirus and its detection by PCR in Rubus species and in aphids. Ann. Appl. Biol. 2006;141:1–10. doi: 10.1111/j.1744-7348.2002.tb00189.x. DOI
Tzanetakis I.E., Halgren A., Mosier N., Martin R.R. Identification and characterization of Raspberry mottle virus, a novel member of the Closteroviridae. Virus Res. 2007;127:26–33. doi: 10.1016/j.virusres.2007.03.010. PubMed DOI
McGavin W.J., Cock P.J.A., MacFarlane S.A. Partial sequence and RT-PCR diagnostic test for the plant rhabdovirus Raspberry vein chlorosis virus. Plant Pathol. 2011;60:462–467. doi: 10.1111/j.1365-3059.2010.02387.x. DOI
McGavin W.J., Mitchell C., Cock P.J.A., Wright K.M., MacFarlane S.A. Raspberry leaf blotch virus, a putative new member of the genus Emaravirus, encodes a novel genomic RNA. Pt 2J. Gen. Virol. 2012;93:430–437. doi: 10.1099/vir.0.037937-0. PubMed DOI
Koloniuk I., Fránová J., Přibylová J., Sarkisova T., Špak J., Tan J.L., Zemek R., Čmejla R., Rejlová M., Valentová L., et al. Molecular Characterization of a Novel Enamovirus Infecting Raspberry. Viruses. 2023;15:2281. doi: 10.3390/v15122281. PubMed DOI PMC
Thompson J.R., Wetzel S., Klerks M.M., Vasková D., Schoen C.D., Spak J., Jelkmann W. Multiplex RT-PCR detection of four aphid-borne strawberry viruses in Fragaria spp. in combination with a plant mRNA specific internal control. J. Virol. Methods. 2003;111:85–93. doi: 10.1016/s0166-0934(03)00164-2. PubMed DOI
Zhang Z., Schwartz S., Wagner L., Miller W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI
Hallgren J., Tsirigos K.D., Pedersen M.D., Armenteros J.J.A., Marcatili P., Nielsen H., Krogh A., Winther O. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv. 2022 doi: 10.1101/2022.04.08.487609. DOI
Dobson L., Reményi I., Tusnády G.E. CCTOP: A Consensus Constrained TOPology prediction web server. Nucleic Acids Res. 2015;43:W408–W412. doi: 10.1093/nar/gkv451. PubMed DOI PMC
Paysan-Lafosse T., Blum M., Chuguransky S., Grego T., Pinto B.L., Salazar G.A., Bileschi M.L., Bork P., Bridge A., Colwell L., et al. InterPro in 2022. Nucleic Acids Res. 2022;D1:D418–D427. doi: 10.1093/nar/gkac993. PubMed DOI PMC
Lorenz R., Bernhart S.H., Höner Zu Siederdissen C., Tafer H., Flamm C., Stadler P.F., Hofacker I.L. ViennaRNA Package 2.0. Algorithms. Mol. Biol. 2011;6:26. doi: 10.1186/1748-7188-6-26. PubMed DOI PMC
Letunic I., Bork P. Interactive Tree of Life (iTOL) v3: An Online Tool for the Display and Annotation of Phylogenetic and Other Trees. Nucleic Acids Res. 2016;44:W242–W245. doi: 10.1093/nar/gkw290. PubMed DOI PMC
Navarro B., Zicca S., Minutolo M., Saponari M., Alioto D., Di Serio F. A Negative-Stranded RNA Virus Infecting Citrus Trees: The Second Member of a New Genus within the Order Bunyavirales. Front. Microbiol. 2018;9:2340. doi: 10.3389/fmicb.2018.02340. PubMed DOI PMC
Albariño C.G., Bird B.H., Nichol S.T. A shared transcription termination signal on negative and ambisense RNA genome segments of Rift Valley fever, sandfly fever Sicilian, and Toscana viruses. J. Virol. 2007;81:5246–5256. doi: 10.1128/JVI.02778-06. PubMed DOI PMC
Malet H., Williams H.M., Cusack S., Rosenthal M. The mechanism of genome replication and transcription in bunyaviruses. PLoS Pathog. 2023;19:e1011060. doi: 10.1371/journal.ppat.1011060. PubMed DOI PMC
Zhang S., Tian X., Navarro B., Di Serio F., Cao M. Watermelon crinkle leaf-associated virus 1 and watermelon crinkle leaf-associated virus 2 have a bipartite genome with molecular signatures typical of the members of the genus Coguvirus (family Phenuiviridae) Arch. Virol. 2021;166:2829–2834. doi: 10.1007/s00705-021-05181-0. PubMed DOI
Coll M. Feeding and ovipositing on plants by an omnivorous insect predator. Oecologia. 1996;105:214–220. doi: 10.1007/BF00328549. PubMed DOI
Yano E. Biological control using zoophytophagous bugs in Japan. J. Pest. Sci. 2022;95:1473–1484. doi: 10.1007/s10340-022-01561-w. DOI
Martin R.R., MacFarlane S., Sabanadzovic S., Quito D., Poudel B., Tzanetakis I.E. Viruses and virus diseases of Rubus. Plant Dis. 2013;97:168–182. doi: 10.1094/PDIS-04-12-0362-FE. PubMed DOI
BioProject
PRJNA1028176
GENBANK
PP732065-PP732070, PP933998-PP934006, PP942705-PP942707, PP977434-PP977435