Towards understanding the impact of mycorrhizal fungal environments on the functioning of terrestrial ecosystems

. 2025 Jul 14 ; 101 (8) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40512519

Grantová podpora
Hasselt University
202548816 German Research Foundation
862/29-1 German Research Foundation
CZ.02.01.01/00/22_008/0004597 Ministry of Education, Youth and Sports
CZ.02.01.01/00/22_008/0004635 Ministry of Education, Youth and Sports

Mutualistic interactions between plants and soil fungi, mycorrhizas, control carbon and nutrient fluxes in terrestrial ecosystems. Soil of ecosystems featuring a particular type of mycorrhiza exhibit specific properties across multiple dimensions of soil functioning. The knowledge about the impacts of mycorrhizal fungi on soil functioning accumulated so far, indicates that these impacts are of major importance, yet poorly conceptualized. We propose a concept of mycorrhizal fungal environments in soil. Within this concept, we discuss knowledge gaps related to the understanding and quantification of mycorrhizal fungal impacts. We introduce an experimental framework to address these gaps in a quantitative manner, and present the field experiment 'Mycotron', where we established vegetation series featuring three mycorrhizal types; ericoid (ERM), ecto- (ECM), and arbuscular mycorrhiza (AM), to quantitatively assess mycorrhizal fungal impacts on soil functioning. The experimental treatments entail manipulations in dominance levels of vegetation of three mycorrhizal types (AM, ECM, and ERM) in standardized soil conditions. This experiment constitutes a unique testbed to quantitatively evaluate the impacts of distinct mycorrhizal fungal environments on a large variety of ecosystem functions. Our approach aids the quantification of microbiota and plant-microbial interaction impacts on soil biochemical cycles.

Zobrazit více v PubMed

Agerer  R.  Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza. 2001;11:107–14. 10.1007/S005720100108. DOI

Ahonen-Jonnarth  U, Goransson  A, Finlay  RD.  Growth and nutrient uptake of ectomycorrhizal PubMed DOI

Averill  C, Bhatnagar  JM, Dietze  MC.  et al.  Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc Natl Acad Sci. 2019;116:23163–8. 10.1073/pnas.1906655116. PubMed DOI PMC

Averill  C, Turner  BL, Finzi  AC.  Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature. 2014;505:543–5. 10.1038/nature12901. PubMed DOI

Badri  Dv, Vivanco  JM.  Regulation and function of root exudates. Plant Cell Environ. 2009;32:666–81. 10.1111/j.1365-3040.2009.01926.x. PubMed DOI

Barceló  M, van Bodegom  PM, Tedersoo  L.  et al.  Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests. J Ecol. 2022;110:1271–82. 10.1111/1365-2745.13868. DOI

Berg  B.  Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag. 2000;133:13–22. 10.1016/S0378-1127(99)00294-7. DOI

Brundrett  MC, Tedersoo  L.  Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018;220:1108–15. 10.1111/nph.14976. PubMed DOI

Brundrett  MC.  Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77. 10.1007/s11104-008-9877-9. DOI

Brundrett, M. (1991). Mycorrhizas in Natural Ecosystems (pp. 171–313). 10.1016/S0065-2504(08)60099-9 DOI

Brzostek  ER, Dragoni  D, Brown  ZA.  et al.  Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytol. 2015;206:1274–82. 10.1111/NPH.13303. PubMed DOI

Cairney  JWG, Meharg  AA.  Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for soil organic matter decomposition and degradation of organic pollutants in the rhizosphere. Can J Bot Revue Canadienne De Botanique. 2002;80:803–9. 10.1139/B02-072. DOI

Cairney  JWG.  Evolution of mycorrhiza systems. Naturwissenschaften. 2000;87:467–75. 10.1007/S001140050762. PubMed DOI

Cao  T, Fang  Y, Chen  Y.  et al.  Synergy of saprotrophs with mycorrhiza for litter decomposition and hotspot formation depends on nutrient availability in the rhizosphere. Geoderma. 2022;410:115662. 10.1016/j.geoderma.2021.115662. DOI

Cheeke  TE, Phillips  RP, Brzostek  ER.  et al.  Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytol. 2017;214:432–42. 10.1111/nph.14343. PubMed DOI

Cheng  W, Parton  WJ, Gonzalez-Meler  MA.  et al.  Synthesis and modeling perspectives of rhizosphere priming. New Phytol. 2014;201:31–44. 10.1111/NPH.12440. PubMed DOI

Choreño-Parra  EM, Treseder KK.  Mycorrhizal fungi modify decomposition: a meta-analysis. New Phytologist, 2024;242:2763–74. 10.1111/NPH.19748 PubMed DOI

Chowdhury  S, Lange  M, Malik  AA.  et al.  Plants with arbuscular mycorrhizal fungi efficiently acquire nitrogen from substrate additions by shaping the decomposer community composition and their net plant carbon demand. Plant Soil. 2022;475:473–90. 10.1007/S11104-022-05380-X/FIGURES/6. DOI

Cornelissen  J, Aerts  R, Cerabolini  B.  et al.  Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia. 2001;129:611–9. 10.1007/s004420100752. PubMed DOI

Cotrufo  MF, Ranalli  MG, Haddix  ML.  et al.  Soil carbon storage informed by particulate and mineral-associated organic matter. Nat Geosci. 2019;12:989–94. 10.1038/s41561-019-0484-6. DOI

Cotrufo  MF, Soong  JL, Horton  AJ.  et al.  Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci. 2015;8:776–9. 10.1038/ngeo2520. DOI

Cotrufo  MF, Wallenstein  MD, Boot  CM.  et al.  the Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?. Global Change Biol. 2013;19:988–95. 10.1111/gcb.12113. PubMed DOI

Dalenberg  JW, Jager  G.  Priming effect of some organic additions to 14C-labelled soil. Soil Biol Biochem. 1989;21:443–8. 10.1016/0038-0717(89)90157-0. DOI

Eldhuset  TD, Swensen  B, Wickstrøm  T.  et al.  Organic acids in root exudates from DOI

Ellis  EC, Klein Goldewijk  K, Siebert  S.  et al.  Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol Biogeogr. 2010;19:589–606. 10.1111/j.1466-8238.2010.00540.x. DOI

Farrar  J, Hawes  M, Davey  J  et al.  How roots control the flux of carbon to the rhizosphere. Ecol Soc Am. 2003;4:827–37.

Ferlian  O, Cesarz  S, Craven  D.  et al.  Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere. 2018;9. 10.1002/ecs2.2226. PubMed DOI PMC

Fernandez  CW, Kennedy  PG.  Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. J Ecol. 2018;106:468–79. 10.1111/1365-2745.12920. DOI

Fernandez  CW, Kennedy  PG.  Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils?. New Phytol. 2016;209:1382–94. 10.1111/nph.13648. PubMed DOI

Fernandez  CW, Koide  RT.  Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem. 2014;77:150–7. 10.1016/j.soilbio.2014.06.026. DOI

Fernandez  CW, Langley  JA, Chapman  S.  et al.  The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem. 2016;93:38–49. 10.1016/J.SOILBIO.2015.10.017. DOI

Fernandez  CW, McCormack  ML, Hill  JM.  et al.  On the persistence of DOI

Fernández  N, Knoblochová  T, Kohout  P.  et al.  Asymmetric interaction between two mycorrhizal fungal guilds and consequences for the establishment of their host plants. Front Plant Sci. 2022;13. 10.3389/fpls.2022.873204. PubMed DOI PMC

Fernandez  CW, Kennedy PG.  Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. Journal of Ecology, 2018;106:468–79. 10.1111/1365-2745.12920. DOI

Field  KJ, Pressel  S, Duckett  JG, et al.  Symbiotic options for the conquest of land. Trends in Ecology & Evolution, 2015;30:477–86. 10.1016/j.tree.2015.05.007. PubMed DOI

Finlay  R, Wallander  H, Smits  M.  et al.  The role of fungi in biogenic weathering in boreal forest soils. Fung Biol Rev. 2009;23:101–6. 10.1016/J.FBR.2010.03.002. DOI

Finlay  RD.  Interactions between soil acidification, plant growth and nutrient uptake in ectomycorrhizal associations of forest trees. Ecol Bull. 1995;44:197–214.

Frey  SD.  Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu Rev Ecol Evol Syst. 2019;50:237–59. 10.1146/annurev-ecolsys-110617-062331. DOI

Frey-Klett  P, Garbaye  J, Tarkka  M.  The mycorrhiza helper bacteria revisited. New Phytol. 2007;176:22–36. 10.1111/J.1469-8137.2007.02191.X. PubMed DOI

Gadgil  RL, Gadgil  PD.  Mycorrhiza and litter decomposition. Nature. 1971;233:133. 10.1038/233133a0. PubMed DOI

Gadgil  RL, Gadgil  PD.  Suppression of litter decomposition by mycorrhizal roots of

Garrido  N, Becerra  J, Marticorena  C.  et al.  Antibiotic properties of ectomycorrhizae and saprophytic fungi growing on PubMed DOI

Genre  A, Lanfranco  L, Perotto  S.  et al.  Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol. 2020;18:649–60. 10.1038/s41579-020-0402-3. PubMed DOI

Guo  L, Deng  M, Li  X.  et al.  Evolutionary and ecological forces shape nutrient strategies of mycorrhizal woody plants. Ecol Lett. 2024;27:e14330. 10.1111/ELE.14330. PubMed DOI

Hart  MM, Gorzelak  M, Ragone  D.  et al.  Arbuscular mycorrhizal fungal succession in a long-lived perennial1. Botany. 2014;92:313–20. 10.1139/CJB-2013-0185/SUPPL_FILE/CJB-2013-0185SUPPL.DOCX. DOI

Hawkins  HJ, Cargill  RIM, Van Nuland  ME.  et al.  Mycorrhizal mycelium as a global carbon pool. Curr Biol. 2023;33:R560–73. 10.1016/J.CUB.2023.02.027. PubMed DOI

Heijden  MGA, Martin  FM, Selosse  M.  et al.  Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205:1406–23. 10.1111/nph.13288. PubMed DOI

Huang  W, van Bodegom  PM, Declerck  S.  et al.  Mycelium chemistry differs markedly between ectomycorrhizal and arbuscular mycorrhizal fungi. Commun Biol. 2022;5:398. 10.1038/s42003-022-03341-9. PubMed DOI PMC

Huang  W, van Bodegom  PM, Viskari  T.  et al.  Implementation of mycorrhizal mechanisms into soil carbon model improves the prediction of long-term processes of plant litter decomposition. Biogeosciences. 2022a;19:1469–90. 10.5194/bg-19-1469-2022. DOI

Itoo  ZA, Reshi  ZA.  The multifunctional role of ectomycorrhizal associations in forest ecosystem processes. Botan Rev. 2013;79:371–400. 10.1007/S12229-013-9126-7. DOI

Johnston  SR, Hiscox  J, Savoury  M.  et al.  Highly competitive fungi manipulate bacterial communities in decomposing beech wood ( PubMed DOI PMC

Kaiser  C, Kilburn  MR, Clode  PL.  et al.  Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol. 2015;205:1537–51. 10.1111/nph.13138. PubMed DOI PMC

Keller  AB, Brzostek  ER, Craig  ME.  et al.  Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecol Lett. 2021;24:626–35. 10.1111/ele.13651. PubMed DOI

Keller  NP, Turner  G, Bennett  JW.  Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol. 2005;3:937–47. 10.1038/nrmicro1286. PubMed DOI

Khouja  HR, Abbà  S, Lacercat-Didier  L.  et al.  OmZnT1 and OmFET, two metal transporters from the metal-tolerant strain Zn of the ericoid mycorrhizal fungus PubMed DOI

Kielak  AM, Scheublin  TR, Mendes  LW.  et al.  Bacterial community succession in pine-wood decomposition. Front Microbiol. 2016;7. 10.3389/fmicb.2016.00231. PubMed DOI PMC

Klink  S, Keller  AB, Wild  AJ.  et al.  Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues. Soil Biol Biochem. 2022;168:108634. 10.1016/j.soilbio.2022.108634. DOI

Koele  N, Dickie  IA, Blum  JD.  et al.  Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison. Soil Biol Biochem. 2014;69:63–70. 10.1016/j.soilbio.2013.10.041. DOI

Koele  N, Dickie  IA, Oleksyn  J.  et al.  No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytol. 2012;196:845–52. 10.1111/j.1469-8137.2012.04297.x. PubMed DOI

Koide  RT, Malcolm  GM.  N concentration controls decomposition rates of different strains of ectomycorrhizal fungi. Fungal Ecol. 2009;2:197–202. 10.1016/j.funeco.2009.06.001. DOI

Kope  HH, Fortin  JA.  Antifungal activity in culture filtrates of the ectomycorrhizal fungus DOI

Kou  L, McCormack  ML, Chen  W.  et al.  Nitrogen ion form and spatio-temporal variation in root distribution mediate nitrogen effects on lifespan of ectomycorrhizal roots. Plant Soil. 2017;411:261–73. 10.1007/s11104-016-3018-7. DOI

Krywolap  GN, Casida  LE.  Jr  An antibiotic produced by the mycorrhizal fungus PubMed DOI

Kuzyakov  Y, Friedel  JK, Stahr  K.  Review of mechanisms and quantification of priming effects. Soil Biol Biochem. 2000;32:1485–98. 10.1016/S0038-0717(00)00084-5. DOI

Kuzyakov  Y.  Factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci. 2002;165: 382–96. 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-. DOI

Landeweert  R, Hoffland  E, Finlay  RD.  et al.  Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol. 2001;16:248–54. 10.1016/S0169-5347(01)02122-X. PubMed DOI

Lang  AK, Pett-Ridge  J, McFarlane  KJ.  et al.  Climate, soil mineralogy and mycorrhizal fungi influence soil organic matter fractions in eastern US temperate forests. J Ecol. 2023;111:1254–69. 10.1111/1365-2745.14094. DOI

Langley  AJ, Chapman  SK, Hungate  BA.  Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett. 2006;9:955–9. 10.1111/J.1461-0248.2006.00948.X. PubMed DOI

Langley  JA, Hungate  BA.  Mycorrhizal controls on belowground litter quality. Ecology. 2003;84:2302–12. 10.1890/02-0282. DOI

Leake  J, Johnson  D, Donnelly  D.  et al.  Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot. 2004;82:1016–45. 10.1139/b04-060. DOI

Lin  G, McCormack  ML, Ma  C.  et al.  Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol. 2017;213:1440–51. 10.1111/nph.14206. PubMed DOI

Lindahl  BD, Tunlid  A.  Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015;205:1443–7. 10.1111/NPH.13201. PubMed DOI

Lindahl  BO, Taylor  AFS, Finlay  RD.  Defining nutritional constraints on carbon cycling in boreal forests—towards a less `phytocentric’ perspective. Plant Soil. 2002;242:123–35. 10.1023/A:1019650226585. DOI

Machuca  A, Pereira  G, Aguiar  A.  et al.  Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol. 2007;44:7–12. 10.1111/j.1472-765X.2006.02046.x. PubMed DOI

Mancinelli  R, van Bodegom  PM, Lankhorst  JA.  et al.  Understanding the impact of main cell wall polysaccharides on the decomposition of ectomycorrhizal fungal necromass. Eur J Soil Sci. 2023;74:e13351. 10.1111/EJSS.13351. DOI

Martino  E, Franco  B, Piccoli  G.  et al.  Influence of zinc ions on protein secretion in a heavy metal tolerant strain of the ericoid mycorrhizal fungus PubMed DOI

Martino  E, Turnau  K, Girlanda  M.  et al.  Ericoid mycorrhizal fungi from heavy metal polluted soils: their identification and growth in the presence of zinc ions. Mycol Res. 2000;104:338–44. 10.1017/S0953756299001252. DOI

Miransari  M.  Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol. 2011;89:917–30. 10.1007/S00253-010-3004-6/TABLES/1. PubMed DOI

Mogge  B, Loferer  C, Agerer  R.  et al.  Bacterial community structure and colonization patterns of DOI

Nazir  R, Tazetdinova  DI, van Elsas  JD. PubMed DOI PMC

Odriozola  I, Abrego  N, TlÁskal  V.  et al.  Fungal communities are important determinants of bacterial community composition in deadwood. mSystems. 2021;6. 10.1128/mSystems.01017-20. PubMed DOI PMC

Pepe  A, Giovannetti  M, Sbrana  C.  Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Sci Rep. 2018;8:10235. 10.1038/s41598-018-28354-5. PubMed DOI PMC

Phillips  RP, Brzostek  E, Midgley  MG.  The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 2013;199:41–51. 10.1111/nph.12221. PubMed DOI

Read  DJ, Perez-Moreno  J.  Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance?. New Phytol. 2003;157:475–92. 10.1046/j.1469-8137.2003.00704.x. PubMed DOI

Riaz  M, Azhar  MT, Kamran  M.  et al.  Role of arbuscular mycorrhizal fungi in plant phosphorus acquisition for sustainable agriculture. In: Iqbal  A (ed.), Sustainable Agriculture Reviews. Vol. 58. Cham: Springer, 2023, 155–76. 10.1007/978-3-031-16155-1_8. DOI

Rillig  MC.  Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett. 2004;7:740–54. 10.1111/j.1461-0248.2004.00620.x. DOI

Ruth  B, Khalvati  M, Schmidhalter  U.  Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant Soil. 2011;342:459–68. 10.1007/s11104-010-0709-3. DOI

Ryan  ME, Schreiner  KM, Swenson  JT.  et al.  Rapid changes in the chemical composition of degrading ectomycorrhizal fungal necromass. Fungal Ecol. 2020;45:100922. 10.1016/j.funeco.2020.100922. DOI

Sato  T, Ezawa  T, Cheng  W.  et al.  Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus DOI

See  CR, Fernandez  CW, Conley  AM.  et al.  Distinct carbon fractions drive a generalisable two-pool model of fungal necromass decomposition. Funct Ecol. 2021;35:796–806. 10.1111/1365-2435.13728. DOI

Seguel  A, Cumming  JR, Klugh-Stewart  K.  et al.  The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza. 2013;23:167–83. 10.1007/s00572-013-0479-x. PubMed DOI

Singavarapu  B., Beugnon  R., Bruelheide  H., et al.  Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environmental Microbiology, 2022;24:4236–55. 10.1111/1462-2920.15690 PubMed DOI

Singh  PK, Singh  M, Tripathi  BN.  Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma. 2013;250:663–9. 10.1007/s00709-012-0453-z. PubMed DOI

Smith  SE, Read  DJ.  Mycorrhizal Symbiosis. 3rd edn.Vol. 1. Cambridge, MA: Academic Press, 2008.

Smits  M.  Mineral tunelling by fungi. In: Fungi in Biogeochemical Cycles. Cambridge: Cambridge University Press, 2006, 641–79.

Sokol  NW, Bradford  MA.  Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci. 2019;12:46–53. 10.1038/s41561-018-0258-6. DOI

Soudzilovskaia  NA, Douma  JC, Akhmetzhanova  AA.  et al.  Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecol Biogeogr. 2015a;24:371–82. 10.1111/geb.12272. DOI

Soudzilovskaia  NA, Vaessen  S, Barcelo  M.  et al.  FungalRoot: global online database of plant mycorrhizal associations. New Phytol. 2020;227:955–66. 10.1111/nph.16569. PubMed DOI

Soudzilovskaia  NA, van Bodegom  PM, Terrer  C.  et al.  Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat Commun. 2019;10:5077. 10.1038/s41467-019-13019-2. PubMed DOI PMC

Soudzilovskaia  NA, van der Heijden  MGA, Cornelissen  JHC.  et al.  Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol. 2015b;208:280–93. 10.1111/NPH.13447. PubMed DOI

Staddon  PL, Ramsey  CB, Ostle  N.  et al.  Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of PubMed DOI

Sun  Q, Li  J, Finlay  RD.  et al.  Oxalotrophic bacterial assemblages in the ectomycorrhizosphere of forest trees and their effects on oxalate degradation and carbon fixation potential. Chem Geol. 2019;514:54–64. 10.1016/j.chemgeo.2019.03.023. DOI

Talbot  JM, Allison  SD, Treseder  KK.  Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol. 2008;22:955–63. 10.1111/j.1365-2435.2008.01402.x. DOI

Taylor  LL, Leake  JR, Quirk  J.  et al.  Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology. 2009;7:171–91. 10.1111/j.1472-4669.2009.00194.x. PubMed DOI

Tedersoo  L, Bahram  M.  Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol Rev. 2019;94:1857–80. 10.1111/BRV.12538. PubMed DOI

Tedersoo  L, Mikryukov  V, Anslan  S.  et al.  The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diver. 2021;111:573–88. 10.1007/s13225-021-00493-7. DOI

Tedersoo  L.  Biogeography of ericoid mycorrhiza. In: Tedersoo  L. (ed.), Biogeography of Mycorrhizal Symbiosis. Vol. 230. Berlin: Springer, 2017.

Tunlid  A, Floudas  D, Op De Beeck  M.  et al.  Decomposition of soil organic matter by ectomycorrhizal fungi: mechanisms and consequences for organic nitrogen uptake and soil carbon stabilization. Front Forests Global Change. 2022;5:934409. 10.3389/FFGC.2022.934409/BIBTEX. DOI

Van Breemen  N, Finlay  R, Lundström  U.  et al.  Mycorrhizal weathering: a true case of mineral plant nutrition?. Biogeochemistry. 2000;49:53–67. 10.1023/A:1006256231670/METRICS. DOI

van Schöll  L, Kuyper  TW, Smits  MM.  et al.  Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil. 2008;303:35–47. 10.1007/s11104-007-9513-0. DOI

Varma  A, Bakshi  M, Lou  B.  et al. DOI

Voronina  EY, Lysak  LV, Zagryadskaya  YA.  The quantity and structure of the saprotrophic bacterial complex of the mycorhizosphere and hyphosphere of symbiotrophic basidiomycetes. Biol Bull. 2011;38:622–8. 10.1134/S106235901106015X/METRICS. PubMed DOI

Wang  B., Yeun  LH, Xue  J.  et al.  Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytologist, 2010;186:514–25. 10.1111/j.1469-8137.2009.03137.x PubMed DOI

Ward  EB, Duguid  MC, Kuebbing  SE.  et al.  The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests. New Phytol. 2022;235:1701–18. 10.1111/nph.18307. PubMed DOI

Ward  EB, Polussa  A, Bradford  MA.  Depth-dependent effects of ericoid mycorrhizal shrubs on soil carbon and nitrogen pools are accentuated under arbuscular mycorrhizal trees. Global Change Biol. 2023;29: 5924–40. 10.1111/gcb.16887. PubMed DOI

Wei  X, Zhang  W, Zulfiqar  F, Zhang  C, Chen  J. Ericoid mycorrhizal fungi as biostimulants for improving propagation and production of ericaceous plants. Frontiers in Plant Science. 2022;13. 10.3389/fpls.2022.1027390 PubMed DOI PMC

Wu  B, Nara  K, Hogetsu  T.  Spatiotemporal transfer of carbon-14-labelled photosynthate from ectomycorrhizal Pinus densiflora seedlings to extraradical mycelia. Mycorrhiza. 2002;12:83–8. 10.1007/s00572-001-0157-2. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...