Towards understanding the impact of mycorrhizal fungal environments on the functioning of terrestrial ecosystems
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Hasselt University
202548816
German Research Foundation
862/29-1
German Research Foundation
CZ.02.01.01/00/22_008/0004597
Ministry of Education, Youth and Sports
CZ.02.01.01/00/22_008/0004635
Ministry of Education, Youth and Sports
PubMed
40512519
PubMed Central
PMC12320777
DOI
10.1093/femsec/fiaf062
PII: 8161681
Knihovny.cz E-zdroje
- Klíčová slova
- Mycotron experiment, arbuscular mycorrhiza, ectomycorrhiza, ericoid mycorrhiza, soil biochemical cycles, soil properties,
- MeSH
- ekosystém * MeSH
- mykorhiza * fyziologie MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- rostliny mikrobiologie MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda MeSH
Mutualistic interactions between plants and soil fungi, mycorrhizas, control carbon and nutrient fluxes in terrestrial ecosystems. Soil of ecosystems featuring a particular type of mycorrhiza exhibit specific properties across multiple dimensions of soil functioning. The knowledge about the impacts of mycorrhizal fungi on soil functioning accumulated so far, indicates that these impacts are of major importance, yet poorly conceptualized. We propose a concept of mycorrhizal fungal environments in soil. Within this concept, we discuss knowledge gaps related to the understanding and quantification of mycorrhizal fungal impacts. We introduce an experimental framework to address these gaps in a quantitative manner, and present the field experiment 'Mycotron', where we established vegetation series featuring three mycorrhizal types; ericoid (ERM), ecto- (ECM), and arbuscular mycorrhiza (AM), to quantitatively assess mycorrhizal fungal impacts on soil functioning. The experimental treatments entail manipulations in dominance levels of vegetation of three mycorrhizal types (AM, ECM, and ERM) in standardized soil conditions. This experiment constitutes a unique testbed to quantitatively evaluate the impacts of distinct mycorrhizal fungal environments on a large variety of ecosystem functions. Our approach aids the quantification of microbiota and plant-microbial interaction impacts on soil biochemical cycles.
Faculty of Science Charles University Albertov 6 128 43 Prague Czechia
Institute of Biology Leipzig University Puschstr 4 04103 Leipzig Germany
Institute of Microbiology of the Czech Academy of Sciences Videnska 1083 14220 Prague Czechia
Zobrazit více v PubMed
Agerer R. Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza. 2001;11:107–14. 10.1007/S005720100108. DOI
Ahonen-Jonnarth U, Goransson A, Finlay RD. Growth and nutrient uptake of ectomycorrhizal PubMed DOI
Averill C, Bhatnagar JM, Dietze MC. et al. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc Natl Acad Sci. 2019;116:23163–8. 10.1073/pnas.1906655116. PubMed DOI PMC
Averill C, Turner BL, Finzi AC. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature. 2014;505:543–5. 10.1038/nature12901. PubMed DOI
Badri Dv, Vivanco JM. Regulation and function of root exudates. Plant Cell Environ. 2009;32:666–81. 10.1111/j.1365-3040.2009.01926.x. PubMed DOI
Barceló M, van Bodegom PM, Tedersoo L. et al. Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests. J Ecol. 2022;110:1271–82. 10.1111/1365-2745.13868. DOI
Berg B. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag. 2000;133:13–22. 10.1016/S0378-1127(99)00294-7. DOI
Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018;220:1108–15. 10.1111/nph.14976. PubMed DOI
Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77. 10.1007/s11104-008-9877-9. DOI
Brundrett, M. (1991). Mycorrhizas in Natural Ecosystems (pp. 171–313). 10.1016/S0065-2504(08)60099-9 DOI
Brzostek ER, Dragoni D, Brown ZA. et al. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytol. 2015;206:1274–82. 10.1111/NPH.13303. PubMed DOI
Cairney JWG, Meharg AA. Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for soil organic matter decomposition and degradation of organic pollutants in the rhizosphere. Can J Bot Revue Canadienne De Botanique. 2002;80:803–9. 10.1139/B02-072. DOI
Cairney JWG. Evolution of mycorrhiza systems. Naturwissenschaften. 2000;87:467–75. 10.1007/S001140050762. PubMed DOI
Cao T, Fang Y, Chen Y. et al. Synergy of saprotrophs with mycorrhiza for litter decomposition and hotspot formation depends on nutrient availability in the rhizosphere. Geoderma. 2022;410:115662. 10.1016/j.geoderma.2021.115662. DOI
Cheeke TE, Phillips RP, Brzostek ER. et al. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytol. 2017;214:432–42. 10.1111/nph.14343. PubMed DOI
Cheng W, Parton WJ, Gonzalez-Meler MA. et al. Synthesis and modeling perspectives of rhizosphere priming. New Phytol. 2014;201:31–44. 10.1111/NPH.12440. PubMed DOI
Choreño-Parra EM, Treseder KK. Mycorrhizal fungi modify decomposition: a meta-analysis. New Phytologist, 2024;242:2763–74. 10.1111/NPH.19748 PubMed DOI
Chowdhury S, Lange M, Malik AA. et al. Plants with arbuscular mycorrhizal fungi efficiently acquire nitrogen from substrate additions by shaping the decomposer community composition and their net plant carbon demand. Plant Soil. 2022;475:473–90. 10.1007/S11104-022-05380-X/FIGURES/6. DOI
Cornelissen J, Aerts R, Cerabolini B. et al. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia. 2001;129:611–9. 10.1007/s004420100752. PubMed DOI
Cotrufo MF, Ranalli MG, Haddix ML. et al. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat Geosci. 2019;12:989–94. 10.1038/s41561-019-0484-6. DOI
Cotrufo MF, Soong JL, Horton AJ. et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci. 2015;8:776–9. 10.1038/ngeo2520. DOI
Cotrufo MF, Wallenstein MD, Boot CM. et al. the Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?. Global Change Biol. 2013;19:988–95. 10.1111/gcb.12113. PubMed DOI
Dalenberg JW, Jager G. Priming effect of some organic additions to 14C-labelled soil. Soil Biol Biochem. 1989;21:443–8. 10.1016/0038-0717(89)90157-0. DOI
Eldhuset TD, Swensen B, Wickstrøm T. et al. Organic acids in root exudates from DOI
Ellis EC, Klein Goldewijk K, Siebert S. et al. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol Biogeogr. 2010;19:589–606. 10.1111/j.1466-8238.2010.00540.x. DOI
Farrar J, Hawes M, Davey J et al. How roots control the flux of carbon to the rhizosphere. Ecol Soc Am. 2003;4:827–37.
Ferlian O, Cesarz S, Craven D. et al. Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere. 2018;9. 10.1002/ecs2.2226. PubMed DOI PMC
Fernandez CW, Kennedy PG. Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. J Ecol. 2018;106:468–79. 10.1111/1365-2745.12920. DOI
Fernandez CW, Kennedy PG. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils?. New Phytol. 2016;209:1382–94. 10.1111/nph.13648. PubMed DOI
Fernandez CW, Koide RT. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem. 2014;77:150–7. 10.1016/j.soilbio.2014.06.026. DOI
Fernandez CW, Langley JA, Chapman S. et al. The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem. 2016;93:38–49. 10.1016/J.SOILBIO.2015.10.017. DOI
Fernandez CW, McCormack ML, Hill JM. et al. On the persistence of DOI
Fernández N, Knoblochová T, Kohout P. et al. Asymmetric interaction between two mycorrhizal fungal guilds and consequences for the establishment of their host plants. Front Plant Sci. 2022;13. 10.3389/fpls.2022.873204. PubMed DOI PMC
Fernandez CW, Kennedy PG. Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. Journal of Ecology, 2018;106:468–79. 10.1111/1365-2745.12920. DOI
Field KJ, Pressel S, Duckett JG, et al. Symbiotic options for the conquest of land. Trends in Ecology & Evolution, 2015;30:477–86. 10.1016/j.tree.2015.05.007. PubMed DOI
Finlay R, Wallander H, Smits M. et al. The role of fungi in biogenic weathering in boreal forest soils. Fung Biol Rev. 2009;23:101–6. 10.1016/J.FBR.2010.03.002. DOI
Finlay RD. Interactions between soil acidification, plant growth and nutrient uptake in ectomycorrhizal associations of forest trees. Ecol Bull. 1995;44:197–214.
Frey SD. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu Rev Ecol Evol Syst. 2019;50:237–59. 10.1146/annurev-ecolsys-110617-062331. DOI
Frey-Klett P, Garbaye J, Tarkka M. The mycorrhiza helper bacteria revisited. New Phytol. 2007;176:22–36. 10.1111/J.1469-8137.2007.02191.X. PubMed DOI
Gadgil RL, Gadgil PD. Mycorrhiza and litter decomposition. Nature. 1971;233:133. 10.1038/233133a0. PubMed DOI
Gadgil RL, Gadgil PD. Suppression of litter decomposition by mycorrhizal roots of
Garrido N, Becerra J, Marticorena C. et al. Antibiotic properties of ectomycorrhizae and saprophytic fungi growing on PubMed DOI
Genre A, Lanfranco L, Perotto S. et al. Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol. 2020;18:649–60. 10.1038/s41579-020-0402-3. PubMed DOI
Guo L, Deng M, Li X. et al. Evolutionary and ecological forces shape nutrient strategies of mycorrhizal woody plants. Ecol Lett. 2024;27:e14330. 10.1111/ELE.14330. PubMed DOI
Hart MM, Gorzelak M, Ragone D. et al. Arbuscular mycorrhizal fungal succession in a long-lived perennial1. Botany. 2014;92:313–20. 10.1139/CJB-2013-0185/SUPPL_FILE/CJB-2013-0185SUPPL.DOCX. DOI
Hawkins HJ, Cargill RIM, Van Nuland ME. et al. Mycorrhizal mycelium as a global carbon pool. Curr Biol. 2023;33:R560–73. 10.1016/J.CUB.2023.02.027. PubMed DOI
Heijden MGA, Martin FM, Selosse M. et al. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205:1406–23. 10.1111/nph.13288. PubMed DOI
Huang W, van Bodegom PM, Declerck S. et al. Mycelium chemistry differs markedly between ectomycorrhizal and arbuscular mycorrhizal fungi. Commun Biol. 2022;5:398. 10.1038/s42003-022-03341-9. PubMed DOI PMC
Huang W, van Bodegom PM, Viskari T. et al. Implementation of mycorrhizal mechanisms into soil carbon model improves the prediction of long-term processes of plant litter decomposition. Biogeosciences. 2022a;19:1469–90. 10.5194/bg-19-1469-2022. DOI
Itoo ZA, Reshi ZA. The multifunctional role of ectomycorrhizal associations in forest ecosystem processes. Botan Rev. 2013;79:371–400. 10.1007/S12229-013-9126-7. DOI
Johnston SR, Hiscox J, Savoury M. et al. Highly competitive fungi manipulate bacterial communities in decomposing beech wood ( PubMed DOI PMC
Kaiser C, Kilburn MR, Clode PL. et al. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol. 2015;205:1537–51. 10.1111/nph.13138. PubMed DOI PMC
Keller AB, Brzostek ER, Craig ME. et al. Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecol Lett. 2021;24:626–35. 10.1111/ele.13651. PubMed DOI
Keller NP, Turner G, Bennett JW. Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol. 2005;3:937–47. 10.1038/nrmicro1286. PubMed DOI
Khouja HR, Abbà S, Lacercat-Didier L. et al. OmZnT1 and OmFET, two metal transporters from the metal-tolerant strain Zn of the ericoid mycorrhizal fungus PubMed DOI
Kielak AM, Scheublin TR, Mendes LW. et al. Bacterial community succession in pine-wood decomposition. Front Microbiol. 2016;7. 10.3389/fmicb.2016.00231. PubMed DOI PMC
Klink S, Keller AB, Wild AJ. et al. Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues. Soil Biol Biochem. 2022;168:108634. 10.1016/j.soilbio.2022.108634. DOI
Koele N, Dickie IA, Blum JD. et al. Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison. Soil Biol Biochem. 2014;69:63–70. 10.1016/j.soilbio.2013.10.041. DOI
Koele N, Dickie IA, Oleksyn J. et al. No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytol. 2012;196:845–52. 10.1111/j.1469-8137.2012.04297.x. PubMed DOI
Koide RT, Malcolm GM. N concentration controls decomposition rates of different strains of ectomycorrhizal fungi. Fungal Ecol. 2009;2:197–202. 10.1016/j.funeco.2009.06.001. DOI
Kope HH, Fortin JA. Antifungal activity in culture filtrates of the ectomycorrhizal fungus DOI
Kou L, McCormack ML, Chen W. et al. Nitrogen ion form and spatio-temporal variation in root distribution mediate nitrogen effects on lifespan of ectomycorrhizal roots. Plant Soil. 2017;411:261–73. 10.1007/s11104-016-3018-7. DOI
Krywolap GN, Casida LE. Jr An antibiotic produced by the mycorrhizal fungus PubMed DOI
Kuzyakov Y, Friedel JK, Stahr K. Review of mechanisms and quantification of priming effects. Soil Biol Biochem. 2000;32:1485–98. 10.1016/S0038-0717(00)00084-5. DOI
Kuzyakov Y. Factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci. 2002;165: 382–96. 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-. DOI
Landeweert R, Hoffland E, Finlay RD. et al. Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol. 2001;16:248–54. 10.1016/S0169-5347(01)02122-X. PubMed DOI
Lang AK, Pett-Ridge J, McFarlane KJ. et al. Climate, soil mineralogy and mycorrhizal fungi influence soil organic matter fractions in eastern US temperate forests. J Ecol. 2023;111:1254–69. 10.1111/1365-2745.14094. DOI
Langley AJ, Chapman SK, Hungate BA. Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett. 2006;9:955–9. 10.1111/J.1461-0248.2006.00948.X. PubMed DOI
Langley JA, Hungate BA. Mycorrhizal controls on belowground litter quality. Ecology. 2003;84:2302–12. 10.1890/02-0282. DOI
Leake J, Johnson D, Donnelly D. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot. 2004;82:1016–45. 10.1139/b04-060. DOI
Lin G, McCormack ML, Ma C. et al. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol. 2017;213:1440–51. 10.1111/nph.14206. PubMed DOI
Lindahl BD, Tunlid A. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015;205:1443–7. 10.1111/NPH.13201. PubMed DOI
Lindahl BO, Taylor AFS, Finlay RD. Defining nutritional constraints on carbon cycling in boreal forests—towards a less `phytocentric’ perspective. Plant Soil. 2002;242:123–35. 10.1023/A:1019650226585. DOI
Machuca A, Pereira G, Aguiar A. et al. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol. 2007;44:7–12. 10.1111/j.1472-765X.2006.02046.x. PubMed DOI
Mancinelli R, van Bodegom PM, Lankhorst JA. et al. Understanding the impact of main cell wall polysaccharides on the decomposition of ectomycorrhizal fungal necromass. Eur J Soil Sci. 2023;74:e13351. 10.1111/EJSS.13351. DOI
Martino E, Franco B, Piccoli G. et al. Influence of zinc ions on protein secretion in a heavy metal tolerant strain of the ericoid mycorrhizal fungus PubMed DOI
Martino E, Turnau K, Girlanda M. et al. Ericoid mycorrhizal fungi from heavy metal polluted soils: their identification and growth in the presence of zinc ions. Mycol Res. 2000;104:338–44. 10.1017/S0953756299001252. DOI
Miransari M. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol. 2011;89:917–30. 10.1007/S00253-010-3004-6/TABLES/1. PubMed DOI
Mogge B, Loferer C, Agerer R. et al. Bacterial community structure and colonization patterns of DOI
Nazir R, Tazetdinova DI, van Elsas JD. PubMed DOI PMC
Odriozola I, Abrego N, TlÁskal V. et al. Fungal communities are important determinants of bacterial community composition in deadwood. mSystems. 2021;6. 10.1128/mSystems.01017-20. PubMed DOI PMC
Pepe A, Giovannetti M, Sbrana C. Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Sci Rep. 2018;8:10235. 10.1038/s41598-018-28354-5. PubMed DOI PMC
Phillips RP, Brzostek E, Midgley MG. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 2013;199:41–51. 10.1111/nph.12221. PubMed DOI
Read DJ, Perez-Moreno J. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance?. New Phytol. 2003;157:475–92. 10.1046/j.1469-8137.2003.00704.x. PubMed DOI
Riaz M, Azhar MT, Kamran M. et al. Role of arbuscular mycorrhizal fungi in plant phosphorus acquisition for sustainable agriculture. In: Iqbal A (ed.), Sustainable Agriculture Reviews. Vol. 58. Cham: Springer, 2023, 155–76. 10.1007/978-3-031-16155-1_8. DOI
Rillig MC. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett. 2004;7:740–54. 10.1111/j.1461-0248.2004.00620.x. DOI
Ruth B, Khalvati M, Schmidhalter U. Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant Soil. 2011;342:459–68. 10.1007/s11104-010-0709-3. DOI
Ryan ME, Schreiner KM, Swenson JT. et al. Rapid changes in the chemical composition of degrading ectomycorrhizal fungal necromass. Fungal Ecol. 2020;45:100922. 10.1016/j.funeco.2020.100922. DOI
Sato T, Ezawa T, Cheng W. et al. Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus DOI
See CR, Fernandez CW, Conley AM. et al. Distinct carbon fractions drive a generalisable two-pool model of fungal necromass decomposition. Funct Ecol. 2021;35:796–806. 10.1111/1365-2435.13728. DOI
Seguel A, Cumming JR, Klugh-Stewart K. et al. The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza. 2013;23:167–83. 10.1007/s00572-013-0479-x. PubMed DOI
Singavarapu B., Beugnon R., Bruelheide H., et al. Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environmental Microbiology, 2022;24:4236–55. 10.1111/1462-2920.15690 PubMed DOI
Singh PK, Singh M, Tripathi BN. Glomalin: an arbuscular mycorrhizal fungal soil protein. Protoplasma. 2013;250:663–9. 10.1007/s00709-012-0453-z. PubMed DOI
Smith SE, Read DJ. Mycorrhizal Symbiosis. 3rd edn.Vol. 1. Cambridge, MA: Academic Press, 2008.
Smits M. Mineral tunelling by fungi. In: Fungi in Biogeochemical Cycles. Cambridge: Cambridge University Press, 2006, 641–79.
Sokol NW, Bradford MA. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci. 2019;12:46–53. 10.1038/s41561-018-0258-6. DOI
Soudzilovskaia NA, Douma JC, Akhmetzhanova AA. et al. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecol Biogeogr. 2015a;24:371–82. 10.1111/geb.12272. DOI
Soudzilovskaia NA, Vaessen S, Barcelo M. et al. FungalRoot: global online database of plant mycorrhizal associations. New Phytol. 2020;227:955–66. 10.1111/nph.16569. PubMed DOI
Soudzilovskaia NA, van Bodegom PM, Terrer C. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat Commun. 2019;10:5077. 10.1038/s41467-019-13019-2. PubMed DOI PMC
Soudzilovskaia NA, van der Heijden MGA, Cornelissen JHC. et al. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol. 2015b;208:280–93. 10.1111/NPH.13447. PubMed DOI
Staddon PL, Ramsey CB, Ostle N. et al. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of PubMed DOI
Sun Q, Li J, Finlay RD. et al. Oxalotrophic bacterial assemblages in the ectomycorrhizosphere of forest trees and their effects on oxalate degradation and carbon fixation potential. Chem Geol. 2019;514:54–64. 10.1016/j.chemgeo.2019.03.023. DOI
Talbot JM, Allison SD, Treseder KK. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol. 2008;22:955–63. 10.1111/j.1365-2435.2008.01402.x. DOI
Taylor LL, Leake JR, Quirk J. et al. Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology. 2009;7:171–91. 10.1111/j.1472-4669.2009.00194.x. PubMed DOI
Tedersoo L, Bahram M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol Rev. 2019;94:1857–80. 10.1111/BRV.12538. PubMed DOI
Tedersoo L, Mikryukov V, Anslan S. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diver. 2021;111:573–88. 10.1007/s13225-021-00493-7. DOI
Tedersoo L. Biogeography of ericoid mycorrhiza. In: Tedersoo L. (ed.), Biogeography of Mycorrhizal Symbiosis. Vol. 230. Berlin: Springer, 2017.
Tunlid A, Floudas D, Op De Beeck M. et al. Decomposition of soil organic matter by ectomycorrhizal fungi: mechanisms and consequences for organic nitrogen uptake and soil carbon stabilization. Front Forests Global Change. 2022;5:934409. 10.3389/FFGC.2022.934409/BIBTEX. DOI
Van Breemen N, Finlay R, Lundström U. et al. Mycorrhizal weathering: a true case of mineral plant nutrition?. Biogeochemistry. 2000;49:53–67. 10.1023/A:1006256231670/METRICS. DOI
van Schöll L, Kuyper TW, Smits MM. et al. Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil. 2008;303:35–47. 10.1007/s11104-007-9513-0. DOI
Varma A, Bakshi M, Lou B. et al. DOI
Voronina EY, Lysak LV, Zagryadskaya YA. The quantity and structure of the saprotrophic bacterial complex of the mycorhizosphere and hyphosphere of symbiotrophic basidiomycetes. Biol Bull. 2011;38:622–8. 10.1134/S106235901106015X/METRICS. PubMed DOI
Wang B., Yeun LH, Xue J. et al. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytologist, 2010;186:514–25. 10.1111/j.1469-8137.2009.03137.x PubMed DOI
Ward EB, Duguid MC, Kuebbing SE. et al. The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests. New Phytol. 2022;235:1701–18. 10.1111/nph.18307. PubMed DOI
Ward EB, Polussa A, Bradford MA. Depth-dependent effects of ericoid mycorrhizal shrubs on soil carbon and nitrogen pools are accentuated under arbuscular mycorrhizal trees. Global Change Biol. 2023;29: 5924–40. 10.1111/gcb.16887. PubMed DOI
Wei X, Zhang W, Zulfiqar F, Zhang C, Chen J. Ericoid mycorrhizal fungi as biostimulants for improving propagation and production of ericaceous plants. Frontiers in Plant Science. 2022;13. 10.3389/fpls.2022.1027390 PubMed DOI PMC
Wu B, Nara K, Hogetsu T. Spatiotemporal transfer of carbon-14-labelled photosynthate from ectomycorrhizal Pinus densiflora seedlings to extraradical mycelia. Mycorrhiza. 2002;12:83–8. 10.1007/s00572-001-0157-2. PubMed DOI