Intrinsic aggregation and propagation of unmodified tau peptides: R2R3 as a minimal model system

. 2025 Jul 15 ; 124 (14) : 2339-2346. [epub] 20250616

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40515399
Odkazy

PubMed 40515399
PubMed Central PMC12414707
DOI 10.1016/j.bpj.2025.06.009
PII: S0006-3495(25)00369-8
Knihovny.cz E-zdroje

Tau aggregation into neurofibrillary tangles is a defining feature of Alzheimer's disease and other tauopathies. Although aggregation depends largely on specific amyloidogenic motifs (particularly VQIINK and VQIVYK) in repeated regions of tau microtubule-binding domains, how the primary sequence of adjacent repeats intrinsically influences aggregation and prion-like propagation remains unclear. This study systematically characterized three unmodified, physiologically relevant tau peptide constructs-R1R3, R2R3, and R3R4-to define their intrinsic aggregation kinetics, structural features, and prion-like seeding activity. Among these constructs, we found that R2R3 showed rapid aggregation, distinct β-sheet formation, and potent seeding capable of sustained secondary propagation in cellular biosensor assays. Whereas recent studies have highlighted chemically modified peptides (e.g., acetylated and phosphomimic peptides), our study emphasizes the importance of native, unmodified sequences as fundamental determinants in tau aggregation. Furthermore, these findings establish R2R3 as a robust minimal tau model, providing a valuable tool for mechanistic research and therapeutic screening in tau-related neurodegeneration.

Zobrazit více v PubMed

Goedert M., Spillantini M.G., et al. Crowther R.A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3:519–526. PubMed

Ganguly P., Do T.D., et al. Shea J.-E. Tau Assembly: The Dominant Role of PHF6 (VQIVYK) in Microtubule Binding Region Repeat R3. J. Phys. Chem. B. 2015;119:4582–4593. PubMed PMC

Fitzpatrick A.W.P., Falcon B., et al. Scheres S.H.W. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature. 2017;547:185–190. PubMed PMC

Yang J., Agnihotri M.V., et al. Singer S.J. A theoretical study of polymorphism in VQIVYK fibrils. Biophys. J. 2021;120:1396–1416. PubMed PMC

Chen D., Drombosky K.W., et al. Joachimiak L.A. Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat. Commun. 2019;10:2493. PubMed PMC

Chen D., Bali S., et al. Joachimiak L.A. FTD-tau S320F mutation stabilizes local structure and allosterically promotes amyloid motif-dependent aggregation. Nat. Commun. 2023;14:1625. PubMed PMC

Soeda Y., Yoshikawa M., et al. Takashima A. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nat. Commun. 2015;6 PubMed PMC

Lövestam S., Li D., et al. Scheres S.H.W. Disease-specific tau filaments assemble via polymorphic intermediates. Nature. 2024;625:119–125. PubMed PMC

Li L., Nguyen B.A., et al. Joachimiak L.A. Disease-associated patterns of acetylation stabilize tau fibril formation. Structure. 2023;31:1025–1037.e4. PubMed PMC

Aillaud I., Funke S.A. Tau Aggregation Inhibiting Peptides as Potential Therapeutics for Alzheimer Disease. Cell. Mol. Neurobiol. 2023;43:951–961. PubMed PMC

Tsuchida T., Susa K., et al. Tomoo K. Crystal structure of the human tau PHF core domain VQIINK complexed with the Fab domain of monoclonal antibody Tau2r3. FEBS Lett. 2020;594:2140–2149. PubMed

Seidler P.M., Boyer D.R., et al. Eisenberg D.S. Structure-based inhibitors of tau aggregation. Nat. Chem. 2018;10:170–176. PubMed PMC

Lövestam S., Wagstaff J.L., et al. Scheres S.H. Twelve phosphomimetic mutations induce the assembly of recombinant full-length human tau into paired helical filaments. eLife. 2025;14 doi: 10.7554/eLife.104778.1. DOI

Annadurai N., Malina L., et al. Das V. Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation. Biochimie. 2022;200:79–86. PubMed

Kyte J., Doolittle R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982;157:105–132. PubMed

Togo T., Sahara N., et al. Dickson D.W. Argyrophilic Grain Disease Is a Sporadic 4-Repeat Tauopathy. J. Neuropathol. Exp. Neurol. 2002;61:547–556. PubMed

Kumar S., Tepper K., et al. Mandelkow E. Stages and Conformations of the Tau Repeat Domain during Aggregation and Its Effect on Neuronal Toxicity. J. Biol. Chem. 2014;289:20318–20332. PubMed PMC

Wang J., Williams C.K., et al. Seidler P.M. Tau seeds catalyze fibril-type structures from GFP tau biosensor cells. Structure. 2024;32:2251–2258.e3. PubMed

Annadurai N., Hrubý J., et al. Das V. Time- and dose-dependent seeding tendency of exogenous tau R2 and R3 aggregates in cells. Biochem. Biophys. Res. Commun. 2023;653:102–105. PubMed

Zhang W., Falcon B., et al. Scheres S.H. Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. eLife. 2019;8 PubMed PMC

Falcon B., Zhang W., et al. Goedert M. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature. 2018;561:137–140. PubMed PMC

Arakhamia T., Lee C.E., et al. Fitzpatrick A.W.P. Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains. Cell. 2020;180:633–644.e12. PubMed PMC

von Bergen M., Friedhoff P., et al. Mandelkow E. Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming β structure. Proc. Natl. Acad. Sci. USA. 2000;97:5129–5134. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...