Microscale Tattooing of Hydrogels and Cells: Benzoxaborole-Driven Microcontact Printing (µCP) on Glycosylated Surfaces
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
25-15590S
Czech Science Foundation
Chinese Scholarship Council
ZE-1121-3
German Research Foundation
471323994
German Research Foundation
PubMed
40515745
PubMed Central
PMC12377447
DOI
10.1002/anie.202501759
Knihovny.cz E-zdroje
- Klíčová slova
- Carbohydrate‐boronic acid interactions, Functionalization of cellular interfaces, Glycopolymers, Glycoproteins, Microcontact printing,
- MeSH
- dimethylpolysiloxany chemie MeSH
- glykosylace MeSH
- hydrogely * chemie MeSH
- kyseliny boronové * chemie MeSH
- lidé MeSH
- povrchové vlastnosti MeSH
- tiskařství * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dimethylpolysiloxany MeSH
- hydrogely * MeSH
- kyseliny boronové * MeSH
Microcontact printing (µCP) is a widely used technique for microscale surface patterning. In this study, we present a polymer-supported µCP method for the patterning of (bioactive) glycosylated surfaces under hydrated conditions. Patterning is achieved by direct contact with a grooved polydimethylsiloxane (PDMS) stamp, whose surface was grafted with a dopamine-containing polymer. The polymer brushes offer an anchor for the boronic acid derivative 6-aminobenzo[c][1,2]oxaborol-1(3H)-ol (ABOB), used as an ink for surface functionalization, to introduce patterns to three different surfaces as substrates: (1) monosaccharide-modified hydrogel surfaces possessing aldose (glucose, fucose, galactose) or ketose (fructose, sorbose) functions; (2) glycosylated surfaces of polymeric microspheres; and (3) the membranes of mammalian cells, such as human primary gastric cells and others. During µCP, ABOB patterns transferred to the target surface through the formation of carbohydrate-ABOB complexes at fully hydrated, neutral pH conditions. Fluorescence microscopy confirmed the successful transfer of ABOB patterns to glycosylated surfaces, with clear "tattoo-like" signatures observed on hydrogels, glycosylated particle surfaces and cellular interfaces.
Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD Frankfurt am Main Germany
Fraunhofer Institute of Applied Polymer Research Geiselbergstr 69 14476 Potsdam Germany
Institute of Chemistry University of Potsdam Karl Liebknecht Str 24 25 14476 Potsdam Germany
Zobrazit více v PubMed
Reifarth M., Soft Matter 2025, 10.1039/d5sm00355e. PubMed DOI
Xia Y., Whitesides G. M., Annu. Rev. Mater. Sci. 1998, 28, 153–184.
Geissler M., Kind H., Schmidt‐Winkel P., Michel B., Delamarche E., Langmuir 2003, 19, 6283–6296.
James C. D., Davis R. C., Kam L., Craighead H. G., Isaacson M., Turner J. N., Shain W., Langmuir 1998, 14, 741–744.
Kaufmann T., Ravoo B. J., Polym. Chem. 2010, 1, 371–387.
Quist A. P., Pavlovic E., Oscarsson S., Anal. Bioanal. Chem. 2005, 381, 591–600. PubMed
Béduer A., Seichepine F., Flahaut E., Vieu C., Microelectron. Eng. 2012, 97, 301–305.
Bao W., Liang D., Zhang M., Jiao Y., Wang L., Cai L., Li J., Prog. Nat. Sci. Mater. Int. 2017, 27, 669–673.
Xu H., Huskens J., Chem. Eur. J. 2010, 16, 2342–2348. PubMed
Liu G., Petrosko S. H., Zheng Z., Mirkin C. A., Chem. Rev. 2020, 120, 6009–6047. PubMed
Lohmüller T., Aydin D., Schwieder M., Morhard C., Louban I., Pacholski C., Spatz J. P., Biointerphases. 2011, 6, MR1–MR12. PubMed
Madou M. J., Fundamentals of Microfabrication, Second Edition, Boca Raton, CRC Press, 2018.
Kumar A., Whitesides G. M., Appl. Phys. Lett. 1993, 63, 2002–2004.
Love J. C., Estroff L. A., Kriebel J. K., Nuzzo R. G., Whitesides G. M., Chem. Rev. 2005, 105, 1103–1170. PubMed
Xia Y., Kim E., Mrksich M., Whitesides G. M., Chem. Mater. 1996, 8, 601–603.
Xia Y., Venkateswaran N., Qin D., Tien J., Whitesides G. M., Langmuir 1998, 14, 363–371.
Yan L., Huck W. T. S., Zhao X.‐M., Whitesides G. M., Langmuir 1999, 15, 1208–1214.
Yan L., Zhao X.‐M., Whitesides G. M., J. Am. Chem. Soc. 1998, 120, 6179–6180.
Böhm I., Lampert A., Buck M., Eisert F., Grunze M., Appl. Surf. Sci. 1999, 141, 237–243.
Graham D. J., Price D. D., Ratner B. D., Langmuir 2002, 18, 1518–1527.
Zhai L., Laird D. W., McCullough R. D., Langmuir 2003, 19, 6492–6497.
Bernard A., Renault J. P., Michel B., Bosshard H. R., Delamarche E., Adv. Mater. 2000, 12, 1067–1070.
Lim H.‐J., Lee D. Y., Oh Y.‐J., Sens. Actuators A: Phys. 2006, 125, 405–410.
Gunawan C. A., Ge M., Zhao C., Nat. Commun. 2014, 5, 3744. PubMed
Stolz Roman L., Inganäs O., Granlund T., Nyberg T., Svensson M., Andersson M. R., Hummelen J. C., Adv. Mater. 2000, 12, 189–195.
Didar T. F., Tabrizian M., Lab Chip 2012, 12, 4363. PubMed
Kane R., Biomaterials 1999, 20, 2363–2376. PubMed
Théry M., Piel M., Micropatterning in Cell Biology, Academic Press, Amsterdam, 2014.
Akarsu P., Grobe R., Nowaczyk J., Hartlieb M., Reinicke S., Böker A., Sperling M., Reifarth M., ACS Appl. Polym. Mater. 2021, 3, 2420–2431. PubMed PMC
Akarsu P., Reinicke S., Lehnen A., Bekir M., Böker A., Hartlieb M., Reifarth M., Small 2023, 2301761. PubMed
Pallab N., Reinicke S., Gurke J., Rihm R., Kogikoski S., Hartlieb M., Reifarth M., Polym. Chem. 2024, 15, 853–867.
Keskin D., Mergel O., Van Der Mei H. C., Busscher H. J., Van Rijn P., Biomacromolecules 2019, 20, 243–253. PubMed PMC
Nolan C. M., Reyes C. D., Debord J. D., García A. J., Lyon L. A., Biomacromolecules 2005, 6, 2032–2039. PubMed
Ancla C., Lapeyre V., Gosse I., Catargi B., Ravaine V., Langmuir 2011, 27, 12693–12701. PubMed
Schmidt S., Zeiser M., Hellweg T., Duschl C., Fery A., Möhwald H., Adv. Funct. Mater. 2010, 20, 3235–3243.
Castaño A. G., Hortigüela V., Lagunas A., Cortina C., Montserrat N., Samitier J., Martínez E., RSC Adv. 2014, 4, 29120.
Zhang H., Hanson Shepherd J. N., Nuzzo R. G., Soft Matter 2010, 6, 2238.
Poellmann M. J., Barton K. L., Mishra S., Johnson A. J. W., Macromol. Biosci. 2011, 11, 1164–1168. PubMed
Peng J., Zhao D., Tang X., Tong F., Guan L., Wang Y., Zhang M., Cao T., Langmuir 2013, 29, 11809–11814. PubMed
Burek M., Wandzik I., Polym. Rev. 2018, 58, 537–586.
Ambury R. F., Merry C. L. R., Ulijn R. V., J. Mater. Chem. 2011, 21, 2901.
Liu X., Lei Z., Liu F., Liu D., Wang Z., Biosens. Bioelectron. 2014, 58, 92–100. PubMed
Sperling M., Reifarth M., Grobe R., Böker A., Chem. Commun. 2019, 55, 10104–10107. PubMed
Du J., Yarema K. J., Adv. Drug Delivery Rev. 2010, 62, 671–682. PubMed PMC
Slomiany B. L., Sarosiek J., Slomiany A., Dig. Dis. 1987, 5, 125–145 PubMed
Kaltner H., Gabius H.‐J., Thromb. Haemost. 2019, 119, 517–533. PubMed
Ghosh P., Chem. Eur. J. 2024, 30, e202401983. PubMed
Jin S., Cheng Y., Reid S., Li M., Wang B., Med. Res. Rev. 2010, 30, 171–257. PubMed PMC
Zhai W., Sun X., James T. D., Fossey J. S., Chem. Asian J. 2015, 10, 1836–1848. PubMed
Worsley G. J., Tourniaire G. A., Medlock K. E., Sartain F. K., Harmer H. E., Thatcher M., Horgan A. M., Pritchard J., J. Diabetes Sci. Technol. 2008, 2, 213–220. PubMed PMC
Melavanki R., Kusanur R., Sadasivuni K. K., Singh D., Patil N. R., Heliyon 2020, 6, e05081. PubMed PMC
Yan J., Springsteen G., Deeter S., Wang B., Tetrahedron 2004, 60, 11205–11209.
Brooks W. L. A., Deng C. C., Sumerlin B. S., ACS Omega 2018, 3, 17863–17870. PubMed PMC
Stephenson‐Brown A., Wang H.‐C., Iqbal P., Preece J. A., Long Y., Fossey J. S., James T. D., Mendes P. M., Analyst 2013, 138, 7140. PubMed
António J. P. M., Russo R., Carvalho C. P., Cal P. M. S. D., Gois P. M. P., Chem. Soc. Rev. 2019, 48, 3513–3536. PubMed
Deshayes S., Cabral H., Ishii T., Miura Y., Kobayashi S., Yamashita T., Matsumoto A., Miyahara Y., Nishiyama N., Kataoka K., J. Am. Chem. Soc. 2013, 135, 15501–15507. PubMed
Ellis G. A., Palte M. J., Raines R. T., J. Am. Chem. Soc. 2012, 134, 3631–3634. PubMed PMC
Winblade N. D., Nikolic I. D., Hoffman A. S., Hubbell J. A., Biomacromolecules 2000, 1, 523–533. PubMed
Kwok K. S., Zuo Y., Choi S. J., Pahapale G. J., Gu L., Gracias D. H., Nano Lett. 2023, 23, 7477–7484. PubMed PMC
Asha A. B., Peng Y.‐Y., Cheng Q., Ishihara K., Liu Y., Narain R., ACS Appl. Mater. Interfaces 2022, 14, 9557–9569. PubMed
Scarano W., Lu H., Stenzel M. H., Chem. Commun. 2014, 50, 6390–6393. PubMed
Rowe L., El Khoury G., Lowe C. R., J. Mol. Recognit. 2016, 29, 232–238. PubMed
Su J., Chen F., Cryns V. L., Messersmith P. B., J. Am. Chem. Soc. 2011, 133, 11850–11853. PubMed PMC
Chen Y., Diaz‐Dussan D., Wu D., Wang W., Peng Y.‐Y., Asha A. B., Hall D. G., Ishihara K., Narain R., ACS Macro Lett. 2018, 7, 904–908. PubMed
Cho S., Hwang S. Y., Oh D. X., Park J., J. Mater. Chem. A 2021, 9, 14630–14655.
Chumillas S., Palomäki T., Zhang M., Laurila T., Climent V., Feliu J. M., Electrochim. Acta. 2018, 292, 309–321.
Adamczyk‐Woźniak A., Borys K. M., Sporzyński A., Chem. Rev. 2015, 115, 5224–5247. PubMed
Valenzuela S. A., Howard J. R., Park H. M., Darbha S., Anslyn E. V., J. Org. Chem. 2022, 87, 15071–15076. PubMed
Seera S. D. K., Pester C. W., ACS Polym. Au 2023, 3, 428–436. PubMed PMC
Zheng Z., Ling J., Müller A. H. E., Macromol. Rapid Commun. 2014, 35, 234–241. PubMed
Hemmatpour H., De Luca O., Crestani D., Stuart M. C. A., Lasorsa A., Van Der Wel P. C. A., Loos K., Giousis T., Haddadi‐Asl V., Rudolf P., Nat. Commun. 2023, 14, 664. PubMed PMC
Yang J., Bos I., Pranger W., Stuiver A., Velders A. H., Cohen Stuart M. A., Kamperman M., J. Mater. Chem. A 2016, 4, 6868–6877.
Calosso M., Charpentier D., Vaillancourt M., Bencheqroun M., St‐Pierre G., Wilkes B. C., Guindon Y., ACS Med. Chem. Lett. 2012, 3, 1045–1049. PubMed PMC
De Coen R., Vanparijs N., Risseeuw M. D. P., Lybaert L., Louage B., De Koker S., Kumar V., Grooten J., Taylor L., Ayres N., Van Calenbergh S., Nuhn L., De Geest B. G., Biomacromolecules 2016, 17, 2479–2488. PubMed
Vrbata D., Ďorďovič V., Seitsonen J., Ruokolainen J., Janoušková O., Uchman M., Matějíček P., Chem. Commun. 2019, 55, 2900–2903. PubMed
Zhang X., Liu G., Ning Z., Xing G., Carbohydr. Res. 2017, 452, 129–148. PubMed
Wu X., Li Z., Chen X.‐X., Fossey J. S., James T. D., Jiang Y.‐B., Chem. Soc. Rev. 2013, 42, 8032–8048. PubMed
Nicholls M. P., Paul P. K. C., Org. Biomol. Chem. 2004, 2, 1434–1441. PubMed
Schnaitman C. A., J. Bacteriol. 1971, 108, 545–552. PubMed PMC
Sheldrick G. M., C Struct. Chem. 2015, 71, 3–8. PubMed PMC
Sheldrick G. M., Acta Crystallogr. A. Found. Crystallogr. 2008, 64, 112–122. PubMed
Macrae C. F., Sovago I., Cottrell S. J., Galek P. T. A., McCabe P., Pidcock E., Platings M., Shields G. P., Stevens J. S., Towler M., Wood P. A., J.Appl. Crystallogr. 2020, 53, 226–235. PubMed PMC
Glass P., Chung H., Washburn N. R., Sitti M., Langmuir 2009, 25, 6607–6612. PubMed
Yu S., Liu Y., Shang C., Du Y., Liu J., Tetrahedron. Lett. 2021, 72, 153072.
Maryanoff B. E., McComsey D. F., Costanzo M. J., Hochman C., Smith‐Swintosky V., Shank R. P., J. Med. Chem. 2005, 48, 1941–1947. PubMed
Toyoshima Y., Kawamura A., Takashima Y., Miyata T., J. Mater. Chem. B 2022, 10, 6644–6654. PubMed
López M. G., Gruenwedel D. W., Carbohydr. Res. 1991, 212, 37–45.