Visual Features in Stereo-Electroencephalography to Predict Surgical Outcome: A Multicenter Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie
Grantová podpora
Doctoral Award
Fonds de Recherche du Québec - Santé
Salary Award
Fonds de Recherche du Québec - Santé
CIHR, PJT-175056
CIHR - Canada
Doctoral Award
CIHR - Canada
//doi.org/10.69777/320890
CIHR - Canada
Doctoral Award
Savoy Foundation
CIHR, PJT-175056
CIHR - Canada
Doctoral Award
CIHR - Canada
//doi.org/10.69777/320890
CIHR - Canada
PubMed
40519108
PubMed Central
PMC12392059
DOI
10.1002/ana.27278
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- elektroencefalografie * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- prediktivní hodnota testů MeSH
- refrakterní epilepsie * chirurgie patofyziologie MeSH
- reprodukovatelnost výsledků MeSH
- stereotaktické techniky MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
OBJECTIVE: Epilepsy surgery needs predictive features that are easily implemented in clinical practice. Previous studies are limited by small sample sizes, lack of external validation, and complex computational approaches. We aimed to identify and validate visually stereo-electroencephalography (SEEG) features with the highest predictive value for surgical outcome, and assess the reliability of their visual extraction. METHODS: We included 177 patients with drug-resistant epilepsy who underwent SEEG-guided surgery at 4 epilepsy centers. We assessed the predictive performance of 10 SEEG features from various SEEG periods for surgical outcome, using the area under the receiver operating characteristic curve, and considering resected channels and surgical outcome as the gold standard. Findings were validated externally using balanced accuracy. Six experts, blinded to outcome, evaluated the visual reliability of the optimal feature using interrater reliability, percentage agreement (standard deviation ± SD) and Gwet's kappa (κ ± SD). RESULTS: The derivation cohort comprised 100 consecutive patients, each with at least 1-year of postoperative follow up (40% temporal lobe epilepsy; 42% Engel Ia). Spatial co-occurrence of gamma spikes and preictal spikes emerged as the optimal predictive feature of surgical outcome (area under the receiver operating characteristic curve 0.82). Applying the optimized threshold from the derivation cohort, external validation in 2 datasets showed similar performances (balanced accuracy 69.2% and 73.2%). Expert interrater reliability for gamma spikes (percentage agreement, 96% ± 2%; κ, 0.63 ± 0.16) and preictal spikes (percentage agreement, 92% ± 2%; κ, 0.65 ± 0.18) were substantial. INTERPRETATION: Spatial co-occurrence of gamma spikes and preictal spikes predicts surgical outcome. These visually identifiable features may reduce the burden of SEEG analysis by reducing analysis time, and improve outcome by guiding surgical resection margins. ANN NEUROL 2025;98:547-560.
CHU Grenoble Alpes Univ Grenoble Alpes Inserm U1216 Grenoble Institut Neurosciences Grenoble France
Department of Biomedical Engineering Duke Pratt School of Engineering Durham North Carolina USA
Department of Clinical Neurophysiology Aarhus University Hospital Aarhus Denmark
Department of Clinical Neurophysiology Danish Epilepsy Center Dianalund Denmark
Department of Neurology Duke University Medical Center Durham North Carolina USA
Department of Neurology The Ohio State University Wexner Medical Center Columbus Ohio USA
Department of Neurology University Hospital of Nancy Lorraine University Nancy France
Montreal Neurological Institute and Hospital McGill University Montréal Québec Canada
Neurophysiology Unit Institute of Neurosurgery Dr Asenjo Santiago Chile
Research Center for Automatic Control of Nancy Lorraine University CNRS UMR Nancy France
Zobrazit více v PubMed
Thijs RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. Lancet 2019;393:689–701. 10.1016/S0140-6736(18)32596-0. PubMed DOI
Frauscher B. Localizing the epileptogenic zone. Curr Opin Neurol 2020;33:198–206. 10.1097/WCO.0000000000000790. PubMed DOI
Dwivedi R, Ramanujam B, Chandra PS, et al. Surgery for drug‐resistant epilepsy in children. N Engl J Med 2017;377:1639–1647. 10.1056/NEJMOA1615335. PubMed DOI
Gavvala J, Zafar M, Sinha SR, et al. Stereotactic EEG practices: a survey of United States tertiary referral epilepsy centers. J Clin Neurophysiol 2022;39:474–480. 10.1097/WNP.0000000000000794. PubMed DOI
Bartolomei F, Nica A, Valenti‐Hirsch MP, et al. Interpretation of SEEG recordings. Neurophysiol Clin 2018;48:53–57. 10.1016/j.neucli.2017.11.010. PubMed DOI
Abdallah C, Mansilla D, Minato E, et al. Systematic review of seizure‐onset patterns in stereo‐electroencephalography: current state and future directions. Clin Neurophysiol 2024;163:112–123. 10.1016/J.CLINPH.2024.04.016. PubMed DOI
Cuello Oderiz C, Von Ellenrieder N, Dubeau F, et al. Association of Cortical Stimulation‐Induced Seizure with surgical outcome in patients with focal drug‐resistant epilepsy. JAMA Neurol 2019;76:1070–1078. 10.1001/jamaneurol.2019.1464. PubMed DOI PMC
Trebuchon A, Racila R, Cardinale F, et al. Electrical stimulation for seizure induction during SEEG exploration: a useful predictor of postoperative seizure recurrence? J Neurol Neurosurg Psychiatry 2021;92:22–26. 10.1136/JNNP-2019-322469. PubMed DOI
Frauscher B, Bartolomei F, Kobayashi K, et al. High‐frequency oscillations: the state of clinical research. Epilepsia 2017;58:1316–1329. 10.1111/EPI.13829. PubMed DOI PMC
Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain 2008;131:1818–1830. 10.1093/brain/awn111. PubMed DOI
Thomas J, Kahane P, Abdallah C, et al. A subpopulation of spikes predicts successful epilepsy surgery outcome. Ann Neurol 2022;93:522–535. 10.1002/ana.26548. PubMed DOI
Ren L, Kucewicz MT, Cimbalnik J, et al. Gamma oscillations precede interictal epileptiform spikes in the seizure onset zone. Neurology 2015;84:602–608. 10.1212/WNL.0000000000001234. PubMed DOI PMC
Bernabei JM, Li A, Revell AY, et al. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain 2023;146:2248–2258. 10.1093/BRAIN/AWAD007. PubMed DOI PMC
Cardinale F, Rizzi M, Vignati E, et al. Stereoelectroencephalography: retrospective analysis of 742 procedures in a single centre. Brain 2019;142:2688–2704. 10.1093/brain/awz196. PubMed DOI
Job ASS, David O, Minotti L, et al. Epileptogenicity maps of intracerebral fast activities (60–100 Hz) at seizure onset in epilepsy surgery candidates. Front Neurol 2019;10:1263. 10.3389/fneur.2019.01263. PubMed DOI PMC
von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 2007;370:1453–1457. 10.1016/S0140-6736(07)61602-X. PubMed DOI
Hannan S, Thomas J, Jaber K, et al. The differing effects of sleep on ictal and Interictal network dynamics in drug‐resistant epilepsy. Ann Neurol 2024;95:42–56. 10.1002/ANA.26796. PubMed DOI
Hufnagel A, Dümpelmann M, Zentner J, et al. Clinical relevance of quantified intracranial interictal spike activity in presurgical evaluation of epilepsy. Epilepsia 2000;41:467–478. 10.1111/J.1528-1157.2000.TB00191.X. PubMed DOI
Klimes P, Cimbalnik J, Brazdil M, et al. NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram. Epilepsia 2019;60:2404–2415. 10.1111/epi.16377. PubMed DOI
Conrad EC, Tomlinson SB, Wong JN, et al. Spatial distribution of interictal spikes fluctuates over time and localizes seizure onset. Brain 2020;143:554–569. 10.1093/brain/awz386. PubMed DOI PMC
Grinenko O, Li J, Mosher JC, et al. A fingerprint of the epileptogenic zone in human epilepsies. Brain 2018;141:117–131. 10.1093/brain/awx306. PubMed DOI PMC
Frauscher B, Mansilla D, Abdallah C, et al. Learn how to interpret and use intracranial EEG findings. Epileptic Disord 2024;26:1–59. 10.1002/EPD2.20190. PubMed DOI
Otz‐Trabert KG, Hauck C, Wagner K, et al. Spread of ictal activity in focal epilepsy. Epilepsia 2008;49:1594–1601. 10.1111/j.1528-1167.2008.01627.x. PubMed DOI
Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographic seizure‐onset patterns: effect of underlying pathology. Brain 2014;137:183–196. 10.1093/brain/awt299. PubMed DOI
Pottkämper JCM, Hofmeijer J, van Waarde JA, van Putten MJAM. The postictal state — what do we know? Epilepsia 2020;61:1045–1061. 10.1111/EPI.16519. PubMed DOI PMC
Isnard J, Taussig D, Bartolomei F, et al. French guidelines on stereoelectroencephalography (SEEG). Neurophysiol Clin 2018;48:5–13. 10.1016/j.neucli.2017.11.005. PubMed DOI
Conrad EC, Revell AY, Greenblatt AS, et al. Spike patterns surrounding sleep and seizures localize the seizure‐onset zone in focal epilepsy. Epilepsia 2023;64:754–768. 10.1111/EPI.17482. PubMed DOI PMC
Whitehead K, Gollwitzer S, Millward H, et al. The additional lateralizing and localizing value of the postictal EEG in frontal lobe epilepsy. Clin Neurophysiol 2016;127:1774–1780. 10.1016/J.CLINPH.2015.11.050. PubMed DOI
Jobst BC, Bartolomei F, Diehl B, et al. Intracranial EEG in the 21st century. Epilepsy Curr 2020;20:180–188. 10.1177/1535759720934852. PubMed DOI PMC
Halford JJ, Arain A, Kalamangalam GP, et al. Characteristics of EEG interpreters associated with higher interrater agreement. J Clin Neurophysiol 2017;34:168–173. 10.1097/WNP.0000000000000344. PubMed DOI PMC
Massey FJ. The Kolmogorov‐Smirnov test for goodness of fit. J Am Stat Assoc 1951;46:68–78. 10.1080/01621459.1951.10500769. DOI
Kruskal WH, Wallis WA. Use of ranks in one‐criterion variance analysis. J Am Stat Assoc 1952;47:583–621. 10.1080/01621459.1952.10483441. DOI
Cliff N. Dominance statistics: ordinal analyses to answer ordinal questions. Psychol Bull 1994;114:494. 10.1037/0033-2909.114.3.494. DOI
Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt 2014;34:502–508. 10.1111/OPO.12131. PubMed DOI
DeLong ER, DeLong DM, Clarke‐Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837. 10.2307/2531595. PubMed DOI
Wongpakaran N, Wongpakaran T, Wedding D, Gwet KL. A comparison of Cohen's kappa and Gwet's AC1 when calculating inter‐rater reliability coefficients: a study conducted with personality disorder samples. BMC Med Res Methodol 2013;13:61. 10.1186/1471-2288-13-61. PubMed DOI PMC
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159–174. 10.2307/2529310. PubMed DOI
Abdallah C, Maillard LG, Rikir E, et al. Localizing value of electrical source imaging: frontal lobe, malformations of cortical development and negative MRI related epilepsies are the best candidates. Neuroimage Clin 2017;16:319–329. 10.1016/j.nicl.2017.08.009. PubMed DOI PMC
Lüders HO, Najm I, Nair D, et al. The epileptogenic zone: general principles. Epileptic disorders. Boca Raton: CRC Press. 2006;8(Suppl 2):S1–S9. PubMed
Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol 2014;13:1114–1126. 10.1016/s1474-4422(14)70156-5. PubMed DOI
Cossu M, Fuschillo D, Casaceli G, et al. Stereoelectroencephalography‐guided radiofrequency thermocoagulation in the epileptogenic zone: a retrospective study on 89 cases. J Neurosurg 2015;123:1358–1367. 10.3171/2014.12.JNS141968. PubMed DOI
Weiss SA, Alvarado‐Rojas C, Bragin A, et al. Ictal onset patterns of local field potentials, high frequency oscillations, and unit activity in human mesial temporal lobe epilepsy. Epilepsia 2015;57:111. 10.1111/EPI.13251. PubMed DOI PMC
Schevon CA, Weiss SA, McKhann G, et al. Evidence of an inhibitory restraint of seizure activity in humans. Nat Commun 2012:3:1060. 10.1038/NCOMMS2056. PubMed DOI PMC
De Curtis M, Avoli M. GABAergic networks jump‐start focal seizures. Epilepsia 2016;57:679–687. 10.1111/EPI.13370. PubMed DOI PMC
Weiss SA, Staba R, Bragin A, et al. Interneurons and principal cell firing in human limbic areas AT focal seizure onset. Neurobiol Dis 2018;124:183. 10.1016/J.NBD.2018.11.014. PubMed DOI PMC
Lévesque M, Gnatkovsky V, Li FR, et al. Fast activity chirp patterns in focal seizures from patients and animal models. Epilepsia 2025;66:621–631. 10.1111/EPI.18245. PubMed DOI PMC
Abdallah C, Hedrich T, Koupparis A, et al. Clinical yield of electromagnetic source imaging and hemodynamic responses in epilepsy: validation with intracerebral data. Neurology 2022;98:e2499‐e2511. 10.1212/WNL.0000000000200337. PubMed DOI PMC
Sakakura K, Kuroda N, Sonoda M, et al. Developmental atlas of phase‐amplitude coupling between physiologic high‐frequency oscillations and slow waves. Nat Commun 2023;14:6435. 10.1038/S41467-023-42091-Y. PubMed DOI PMC
Kanazawa K, Matsumoto R, Imamura H, et al. Intracranially recorded ictal direct current shifts may precede high frequency oscillations in human epilepsy. Clin Neurophysiol 2015;126:47–59. 10.1016/j.clinph.2014.05.028. PubMed DOI