Nanorobot-Cell Communication via In Situ Generation of Biochemical Signals: Toward Regenerative Therapies
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40526792
PubMed Central
PMC12224328
DOI
10.1021/acsnano.5c02092
Knihovny.cz E-resources
- Keywords
- cell signaling, communication, enhanced diffusion, nanorobot, steady-state,
- MeSH
- Glucose chemistry metabolism MeSH
- Metal Nanoparticles * chemistry MeSH
- Humans MeSH
- Cell Communication * drug effects MeSH
- Mice MeSH
- Silicon Dioxide chemistry MeSH
- Hydrogen Peroxide metabolism chemistry MeSH
- Cell Movement drug effects MeSH
- Cell Proliferation drug effects MeSH
- Regenerative Medicine * MeSH
- Gold chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glucose MeSH
- Silicon Dioxide MeSH
- Hydrogen Peroxide MeSH
- Gold MeSH
Achieving precise control of cellular processes drives possibilities for next-generation therapeutic approaches. However, existing technologies for influencing cell behavior primarily rely on specific drug delivery, limiting their ability to mimic natural cellular communication processes. In this work, we developed glucose-powered gold-silica (Au-SiO2) nanorobots that induce cell migration by generating steady-state hydrogen peroxide (H2O2) as a biochemical signaling molecule to mimic natural cellular communication with high spatial resolution. These nanorobots leverage the unique 2-in-1 catalytic activity of gold nanoparticles for glucose oxidation and H2O2 decomposition, allowing for precise control over the generation of steady-state H2O2 concentration and enhanced diffusion powered by glucose within the cellular microenvironment. We further demonstrated that at low dosages of nanorobots, the steady-state H2O2 generation promotes cell migration and proliferation, while higher dosages of nanorobots slow down cell proliferation. The proposed design of this biocompatible nanorobot is intended to enable communication with the environment and provide a noninvasive, biochemical command system for regulating cellular behavior. Additionally, we show proof of principle of a method by which nanorobots can augment wound healing and similar regenerative therapies.
See more in PubMed
Gao C., Wang Y., Ye Z., Lin Z., Ma X., He Q., Gao C. Y., Lin Z. H., He Q., Wang Y., Ye Z. H., Ma X.. Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging. Adv. Mater. 2021;33(6):2000512. doi: 10.1002/adma.202000512. PubMed DOI
Vyskočil J., Mayorga-Martinez C. C., Jablonská E., Novotný F., Ruml T., Pumera M.. Cancer Cells Microsurgery via Asymmetric Bent Surface Au/Ag/Ni Microrobotic Scalpels through a Transversal Rotating Magnetic Field. ACS Nano. 2020;14(7):8247–8256. doi: 10.1021/acsnano.0c01705. PubMed DOI
Alapan Y., Bozuyuk U., Erkoc P., Karacakol A. C., Sitti M.. Multifunctional Surface Microrollers for Targeted Cargo Delivery in Physiological Blood Flow. Sci. Robot. 2020;5(42):5726. doi: 10.1126/scirobotics.aba5726. PubMed DOI
Novotný F., Wang H., Pumera M.. Nanorobots: Machines Squeezed between Molecular Motors and Micromotors. Chem. 2020;6(4):867–884. doi: 10.1016/j.chempr.2019.12.028. DOI
Huang L., Moran J. L., Wang W.. Designing Chemical Micromotors That Communicate-A Survey of Experiments. JCIS Open. 2021;2:100006. doi: 10.1016/j.jciso.2021.100006. DOI
Su J., Song Y., Zhu Z., Huang X., Fan J., Qiao J., Mao F.. Cell–Cell Communication: New Insights and Clinical Implications. Signal Transduction Targeted Ther. 2024;9(1):196. doi: 10.1038/s41392-024-01888-z. PubMed DOI PMC
Rhee S. G.. H2O2, a Necessary Evil for Cell Signaling. Science. 2006;312(5782):1882–1883. doi: 10.1126/science.1130481. PubMed DOI
Schreml S., Landthaler M., Schaferling M., Babilas P.. A New Star on the H2O2rizon of Wound Healing? Exp. Dermatol. 2011;20(3):229–231. doi: 10.1111/j.1600-0625.2010.01195.x. PubMed DOI
Niethammer P., Grabher C., Look A. T., Mitchison T. J.. A Tissue-Scale Gradient of Hydrogen Peroxide Mediates Rapid Wound Detection in Zebrafish. Nature. 2009;459(7249):996–999. doi: 10.1038/nature08119. PubMed DOI PMC
Zhu G., Wang Q., Lu S., Niu Y.. Hydrogen Peroxide: A Potential Wound Therapeutic Target? Med. Principles Pract. 2017;26(4):301. doi: 10.1159/000475501. PubMed DOI PMC
Loo A. E. K., Wong Y. T., Ho R., Wasser M., Du T., Ng W. T., Halliwell B.. Effects of Hydrogen Peroxide on Wound Healing in Mice in Relation to Oxidative Damage. PLoS One. 2012;7(11):e49215. doi: 10.1371/journal.pone.0049215. PubMed DOI PMC
Sies H.. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035. PubMed DOI PMC
Dröge W.. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002;82(1):47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI
Ma X., Jannasch A., Albrecht U. R., Hahn K., Miguel-López A., Schäffer E., Sánchez S.. Enzyme-Powered Hollow Mesoporous Janus Nanomotors. Nano Lett. 2015;15(10):7043–7050. doi: 10.1021/acs.nanolett.5b03100. PubMed DOI
Joseph A., Contini C., Cecchin D., Nyberg S., Ruiz-Perez L., Gaitzsch J., Fullstone G., Tian X., Azizi J., Preston J., Volpe G., Battaglia G.. Chemotactic Synthetic Vesicles: Design and Applications in Blood-Brain Barrier Crossing. Sci. Adv. 2017;3(8):e1700362. doi: 10.1126/sciadv.1700362. PubMed DOI PMC
Schattling P., Thingholm B., Städler B.. Enhanced Diffusion of Glucose-Fueled Janus Particles. Chem. Mater. 2015;27(21):7412–7418. doi: 10.1021/acs.chemmater.5b03303. DOI
Mueller S., Millonig G., Waite G. N.. The GOX/CAT System: A Novel Enzymatic Method to Independently Control Hydrogen Peroxide and Hypoxia in Cell Culture. Adv. Med. Sci. 2009;54(2):121–135. doi: 10.2478/v10039-009-0042-3. PubMed DOI
Abdelmohsen L. K. E. A., Nijemeisland M., Pawar G. M., Janssen G.-J. A., Nolte R. J. M., van Hest J. C. M., Wilson D. A.. Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor. ACS Nano. 2016;10(2):2652–2660. doi: 10.1021/acsnano.5b07689. PubMed DOI
Sobotta M. C., Barata A. G., Schmidt U., Mueller S., Millonig G., Dick T. P.. Exposing Cells to H2O2: A Quantitative Comparison between Continuous Low-Dose and One-Time High-Dose Treatments. Free Radical Biol. Med. 2013;60:325–335. doi: 10.1016/j.freeradbiomed.2013.02.017. PubMed DOI
Marinho, H. S. ; Cyrne, L. ; Cadenas, E. ; Antunes, F. . H2O2 Delivery to Cells: Steady-State Versus Bolus Addition. In Methods in Enzymology; Elsevier, 2013; Vol. 526, pp 159–173 10.1016/B978-0-12-405883-5.00010-7. PubMed DOI
Zandieh M., Liu J.. Nanozymes: Definition, Activity, and Mechanisms. Adv. Mater. 2024;36(10):2211041. doi: 10.1002/adma.202211041. PubMed DOI
He W., Zhou Y. T., Wamer W. G., Hu X., Wu X., Zheng Z., Boudreau M. D., Yin J. J.. Intrinsic Catalytic Activity of Au Nanoparticles with Respect to Hydrogen Peroxide Decomposition and Superoxide Scavenging. Biomaterials. 2013;34(3):765–773. doi: 10.1016/j.biomaterials.2012.10.010. PubMed DOI
Chen J., Ma Q., Li M., Chao D., Huang L., Wu W., Fang Y., Dong S.. Glucose-Oxidase like Catalytic Mechanism of Noble Metal Nanozymes. Nat. Commun. 2021;12(1):3375. doi: 10.1038/s41467-021-23737-1. PubMed DOI PMC
Comotti M., Della Pina C., Matarrese R., Rossi M.. The Catalytic Activity of “Naked” Gold Particles. Angew. Chem., Int. Ed. 2004;43(43):5812–5815. doi: 10.1002/anie.200460446. PubMed DOI
Deraedt C., Salmon L., Gatard S., Ciganda R., Hernandez R., Mayor M., Astruc D.. Sodium Borohydride Stabilizes Very Active Gold Nanoparticle Catalysts. Chem. Commun. 2014;50(91):14194–14196. doi: 10.1039/C4CC05946H. PubMed DOI
Xu L., Chen J., Ma Q., Chao D., Zhu X., Liu L., Wang J., Fang Y., Dong S.. Critical Evaluation of the Glucose Oxidase-like Activity of Gold Nanoparticles Stabilized by Different Polymers. Nano Res. 2023;16(4):4758–4766. doi: 10.1007/s12274-022-5218-1. DOI
Wang X., Li Q. Z., Zheng J. J., Gao X.. Two-Electron or Four-Electron Nanocatalysis for Aerobic Glucose Oxidation: A Mechanism-Driven Prediction Model. ACS Catal. 2024;14(17):13040–13048. doi: 10.1021/acscatal.4c03226. DOI
Ragg R., Natalio F., Tahir M. N., Janssen H., Kashyap A., Strand D., Strand S., Tremel W.. Molybdenum Trioxide Nanoparticles with Intrinsic Sulfite Oxidase Activity. ACS Nano. 2014;8(5):5182–5189. doi: 10.1021/nn501235j. PubMed DOI
Paxton W. F., Kistler K. C., Olmeda C. C., Sen A., St Angelo S. K., Cao Y., Mallouk T. E., Lammert P. E., Crespi V. H.. Catalytic Nanomotors: Autonomous Movement of Striped Nanorods. J. Am. Chem. Soc. 2004;126(41):13424–13431. doi: 10.1021/ja047697z. PubMed DOI
Xiao Q., Li J., Han J., Xu K. X., Huang Z. X., Hu J., Sun J. J.. The Role of Hydrazine in Mixed Fuels (H2O2/N2H4) for Au–Fe/Ni Nanomotors. RSC Adv. 2015;5(87):71139–71143. doi: 10.1039/C5RA08263C. DOI
Ortiz-Rivera I., Mathesh M., Wilson D. A.. A Supramolecular Approach to Nanoscale Motion: Polymersome-Based Self-Propelled Nanomotors. Acc. Chem. Res. 2018;51(9):1891–1900. doi: 10.1021/acs.accounts.8b00199. PubMed DOI PMC
Ma X., Sanchez S.. A Bio-Catalytically Driven Janus Mesoporous Silica Cluster Motor with Magnetic Guidance. Chem. Commun. 2015;51(25):5467–5470. doi: 10.1039/C4CC08285K. PubMed DOI PMC
Pantarotto D., Browne W. R., Feringa B. L.. Autonomous Propulsion of Carbon Nanotubes Powered by a Multienzyme Ensemble. Chem. Commun. 2008;(13):1533–1535. doi: 10.1039/B715310D. PubMed DOI
Simmchen J., Baeza A., Ruiz-Molina D., Vallet-Regí M.. Improving Catalase-Based Propelled Motor Endurance by Enzyme Encapsulation. Nanoscale. 2014;6(15):8907–8913. doi: 10.1039/C4NR02459A. PubMed DOI
Ma X., Sánchez S.. Bio-Catalytic Mesoporous Janus Nano-Motors Powered by Catalase Enzyme. Tetrahedron. 2017;73(33):4883–4886. doi: 10.1016/j.tet.2017.06.048. DOI
Kwon T., Kumari N., Kumar A., Lim J., Son C. Y., Lee I. S.. Au/Pt-Egg-in-Nest Nanomotor for Glucose-Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angew. Chem., Int. Ed. 2021;60(32):17579–17586. doi: 10.1002/anie.202103827. PubMed DOI
Lin J., Lian C., Xu L., Li Z., Guan Q., Wei W., Dai H., Guan J.. Hyperglycemia Targeting Nanomotors for Accelerated Healing of Diabetic Wounds by Efficient Microenvironment Remodeling. Adv. Funct. Mater. 2024;35(11):2417146. doi: 10.1002/adfm.202417146. DOI
Wang W., Mallouk T. E.. A Practical Guide to Analyzing and Reporting the Movement of Nanoscale Swimmers. ACS Nano. 2021;15(10):15446–15460. doi: 10.1021/acsnano.1c07503. PubMed DOI
Dunderdale G., Ebbens S., Fairclough P., Howse J.. Importance of Particle Tracking and Calculating the Mean-Squared Displacement in Distinguishing Nanopropulsion from Other Processes. Langmuir. 2012;28(30):10997–11006. doi: 10.1021/la301370y. PubMed DOI
Novotný F., Pumera M.. Nanomotor Tracking Experiments at the Edge of Reproducibility. Sci. Rep. 2019;9(1):13222. doi: 10.1038/s41598-019-49527-w. PubMed DOI PMC
Wang W., Duan W., Ahmed S., Mallouk T. E., Sen A.. Small Power: Autonomous Nano- and Micromotors Propelled by Self-Generated Gradients. Nano Today. 2013;8(5):531–554. doi: 10.1016/j.nantod.2013.08.009. DOI
Moran J. L., Posner J. D.. Phoretic Self-Propulsion. Annu. Rev. Fluid Mech. 2017;49:511–540. doi: 10.1146/annurev-fluid-122414-034456. DOI
Arqué X., Romero-Rivera A., Feixas F., Patiño T., Osuna S., Sánchez S.. Intrinsic Enzymatic Properties Modulate the Self-Propulsion of Micromotors. Nat. Commun. 2019;10(1):2826. doi: 10.1038/s41467-019-10726-8. PubMed DOI PMC
Wang W.. Open Questions of Chemically Powered Nano- and Micromotors. J. Am. Chem. Soc. 2023;145(50):27185–27197. doi: 10.1021/jacs.3c09223. PubMed DOI
Anderson J. L.. Colloid Transport by Interfacial Forces. Annu. Rev. Fluid Mech. 1989;21:61–99. doi: 10.1146/annurev.fl.21.010189.000425. DOI
Anderson J. L., Lowell M. E., Prieve D. C.. Motion of a Particle Generated by Chemical Gradients Part 1. Non-Electrolytes. J. Fluid Mech. 1982;117:107–121. doi: 10.1017/S0022112082001542. DOI
Chen X., Zhou C., Wang W.. Colloidal Motors 101: A Beginner’s Guide to Colloidal Motor Research. Chem. – Asian J. 2019;14(14):2388–2405. doi: 10.1002/asia.201900377. PubMed DOI
Brown A., Poon W.. Ionic Effects in Self-Propelled Pt-Coated Janus Swimmers. Soft Matter. 2014;10(22):4016–4027. doi: 10.1039/C4SM00340C. PubMed DOI
Yang A., McKenzie B. E., Pavlat B., Johnson E. S., Khair A. S., Garoff S., Tilton R. D.. Diffusiophoretic Transport of Charged Colloids in Ionic Surfactant Gradients Entirely below versus Entirely above the Critical Micelle Concentration. Langmuir. 2024;40(19):10143–10156. doi: 10.1021/acs.langmuir.4c00431. PubMed DOI PMC
Abécassis B., Cottin-Bizonne C., Ybert C., Ajdari A., Bocquet L.. Boosting Migration of Large Particles by Solute Contrasts. Nat. Mater. 2008;7(10):785–789. doi: 10.1038/nmat2254. PubMed DOI
Somasundar A., Ghosh S., Mohajerani F., Massenburg L. N., Yang T., Cremer P. S., Velegol D., Sen A.. Positive and Negative Chemotaxis of Enzyme-Coated Liposome Motors. Nat. Nanotechnol. 2019;14(12):1129–1134. doi: 10.1038/s41565-019-0578-8. PubMed DOI
Baraban L., Harazim S. M., Sanchez S., Schmidt O. G.. Chemotactic Behavior of Catalytic Motors in Microfluidic Channels. Angew. Chem., Int. Ed. 2013;52(21):5552–5556. doi: 10.1002/anie.201301460. PubMed DOI PMC
Williams I., Lee S., Apriceno A., Sear R. P., Battaglia G.. Diffusioosmotic and Convective Flows Induced by a Nonelectrolyte Concentration Gradient. Proc. Natl. Acad. Sci. U.S.A. 2020;117(41):25263–25271. doi: 10.1073/pnas.2009072117. PubMed DOI PMC
Keh H. J.. Diffusiophoresis of Charged Particles and Diffusioosmosis of Electrolyte Solutions. Curr. Opin. Colloid Interface Sci. 2016;24:13–22. doi: 10.1016/j.cocis.2016.05.008. DOI
Ebbens S., Gregory D. A., Dunderdale G., Howse J. R., Ibrahim Y., Liverpool T. B., Golestanian R.. Electrokinetic Effects in Catalytic Platinum-Insulator Janus Swimmers. Europhys. Lett. 2014;106(5):58003. doi: 10.1209/0295-5075/106/58003. DOI
Wang H., Zhao G., Pumera M.. Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO 2 Catalysts. J. Am. Chem. Soc. 2014;136(7):2719–2722. doi: 10.1021/ja411705d. PubMed DOI
Serra-Casablancas M., Di Carlo V., Esporrín-Ubieto D., Prado-Morales C., Bakenecker A. C., Sánchez S.. Catalase-Powered Nanobots for Overcoming the Mucus Barrier. ACS Nano. 2024;18(26):16701–16714. doi: 10.1021/acsnano.4c01760. PubMed DOI PMC
Lyu X., Liu X., Zhou C., Duan S., Xu P., Dai J., Chen X., Peng Y., Cui D., Tang J., Ma X., Wang W.. Active, Yet Little Mobility: Asymmetric Decomposition of H2O2 Is Not Sufficient in Propelling Catalytic Micromotors. J. Am. Chem. Soc. 2021;143(31):12154–12164. doi: 10.1021/jacs.1c04501. PubMed DOI
Howse J. R., Jones R. A. L., Ryan A. J., Gough T., Vafabakhsh R., Golestanian R.. Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Phys. Rev. Lett. 2007;99(4):048102. doi: 10.1103/PhysRevLett.99.048102. PubMed DOI
Richardson B. E., Lehmann R.. Mechanisms Guiding Primordial Germ Cell Migration: Strategies from Different Organisms. Nat. Rev. Mol. Cell Biol. 2010;11(1):37–49. doi: 10.1038/nrm2815. PubMed DOI PMC
Ridley A. J., Schwartz M. A., Burridge K., Firtel R. A., Ginsberg M. H., Borisy G., Parsons J. T., Horwitz A. R.. Cell Migration: Integrating Signals from Front to Back. Science. 2003;302:1704–1709. doi: 10.1126/science.1092053. PubMed DOI
SenGupta S., Parent C. A., Bear J. E.. The Principles of Directed Cell Migration. Nat. Rev. Mol. Cell Biol. 2021;22(8):529–547. doi: 10.1038/s41580-021-00366-6. PubMed DOI PMC
Loo A. E. K., Ho R., Halliwell B.. Mechanism of Hydrogen Peroxide-Induced Keratinocyte Migration in a Scratch-Wound Model. Free Radical Biol. Med. 2011;51(4):884–892. doi: 10.1016/j.freeradbiomed.2011.06.001. PubMed DOI
Wagner B. A., Witmer J. R., van’t Erve T. J., Buettner G. R.. An Assay for the Rate of Removal of Extracellular Hydrogen Peroxide by Cells. Redox Biol. 2013;1(1):210–217. doi: 10.1016/j.redox.2013.01.011. PubMed DOI PMC
Liang C. C., Park A. Y., Guan J. L.. In Vitro Scratch Assay: A Convenient and Inexpensive Method for Analysis of Cell Migration in Vitro. Nat. Protocols. 2007;2(2):329–333. doi: 10.1038/nprot.2007.30. PubMed DOI
Hoffmann M. E., Meneghini R.. Action of Hydrogen Peroxide on Human Fibroblast in Culture. Photochem. Photobiol. 1979;30(1):151–155. doi: 10.1111/j.1751-1097.1979.tb07128.x. PubMed DOI
Rodriguez, L. G. ; Wu, X. ; Guan, J. L. . Wound-Healing Assay. In Methods in Molecular Biology; Humana Press, 2005; Vol. 294, pp 23–29. PubMed
Dang, I. ; Gautreau, A. . Random Migration Assays of Mammalian Cells and Quantitative Analyses of Single Cell Trajectories. In Methods in Molecular Biology; Springer: New York, 2018; Vol. 1749, pp 1–9 10.1007/978-1-4939-7701-7_1. PubMed DOI
Kolman P., Chmelík R.. Coherence-Controlled Holographic Microscope. Optics Express. 2010;18(21):21990–22004. doi: 10.1364/OE.18.021990. PubMed DOI
Pasqualato A., Lei V., Cucina A., Dinicola S., D’Anselmi F., Proietti S., Masiello M. G., Palombo A., Bizzarri M.. Shape in Migration: Quantitative Image Analysis of Migrating Chemoresistant HCT-8 Colon Cancer Cells. Cell Adhes. Migr. 2013;7(5):450. doi: 10.4161/cam.26765. PubMed DOI PMC
Hurd T. R., DeGennaro M., Lehmann R.. Redox Regulation of Cell Migration and Adhesion. Trends Cell Biol. 2012;22(2):107–115. doi: 10.1016/j.tcb.2011.11.002. PubMed DOI PMC
Kato T., Tenrui T., Lizawa O., Tagami H.. Lucigenin-Induced Chemiluminescence in Human Neutrophils in the Process of Chemotactic Migration Measured in a Modified Boyden Chamber. Dermatology. 1989;179(Suppl. 1):113–115. doi: 10.1159/000248460. PubMed DOI
Wach F., Hein R., Adelmann-Grill B. C., Krieg T.. Inhibition of Fibroblast Chemotaxis by Superoxide Dismutase. Eur. J. Cell Biol. 1987;44(1):124–127. PubMed
Choi M. H., Lee I. K., Kim G. W., Kim B. U., Han Y. H., Yu D. Y., Park H. S., Kim K. Y., Lee J. S., Choi C., Bae Y. S., Lee B. I., Rhee S. G., Kang S. W.. Regulation of PDGF Signalling and Vascular Remodelling by Peroxiredoxin II. Nature. 2005;435(7040):347–353. doi: 10.1038/nature03587. PubMed DOI
Sundaresan M., Yu Z.-X., Ferrans V. J., Irani K., Finkel T.. Requirement for Generation of H2O2 for Platelet-Derived Growth Factor Signal Transduction. Science. 1995;270(5234):296–299. doi: 10.1126/science.270.5234.296. PubMed DOI
Loo A. E. K., Halliwell B.. Effects of Hydrogen Peroxide in a Keratinocyte-Fibroblast Co-Culture Model of Wound Healing. Biochem. Biophys. Res. Commun. 2012;423(2):253–258. doi: 10.1016/j.bbrc.2012.05.100. PubMed DOI
Chance B., Sies H., Boveris A.. Hydroperoxide Metabolism in Mammalian Organs. Physiol. Rev. 1979;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. PubMed DOI
Moldovan L., Moldovan N. I., Sohn R. H., Parikh S. A., Goldschmidt-Clermont P. J.. Redox Changes of Cultured Endothelial Cells and Actin Dynamics. Circ. Res. 2000;86(5):549–557. doi: 10.1161/01.RES.86.5.549. PubMed DOI
Polytarchou C., Hatziapostolou M., Papadimitriou E.. Hydrogen Peroxide Stimulates Proliferation and Migration of Human Prostate Cancer Cells through Activation of Activator Protein-1 and Up-Regulation of the Heparin Affin Regulatory Peptide Gene. J. Biol. Chem. 2005;280(49):40428–40435. doi: 10.1074/jbc.M505120200. PubMed DOI
Rhee S. G., Yang K. S., Kang S. W., Woo H. A., Chang T. S.. Controlled Elimination of Intracellular H2O2: Regulation of Peroxiredoxin, Catalase, and Glutathione Peroxidase via Post-Translational Modification. Antioxid. Redox Signaling. 2005;7(5–6):619–626. doi: 10.1089/ars.2005.7.619. PubMed DOI
D’Autréaux B., Toledano M. B.. ROS as Signalling Molecules: Mechanisms That Generate Specificity in ROS Homeostasis. Nat. Rev. Mol. Cell Biol. 2007;8(10):813–824. doi: 10.1038/nrm2256. PubMed DOI
Chiarugi P., Pani G., Giannoni E., Taddei L., Colavitti R., Raugei G., Symons M., Borrello S., Galeotti T., Ramponi G.. Reactive Oxygen Species as Essential Mediators of Cell Adhesion: The Oxidative Inhibition of a FAK Tyrosine Phosphatase Is Required for Cell Adhesion. J. Cell Biol. 2003;161(5):933–944. doi: 10.1083/jcb.200211118. PubMed DOI PMC
Nimnual A. S., Taylor L. J., Bar-Sagi D.. Redox-Dependent Downregulation of Rho by Rac. Nat. Cell Biol. 2003;5(3):236–241. doi: 10.1038/ncb938. PubMed DOI
Deem T. L., Cook-Mills J. M.. Vascular Cell Adhesion Molecule 1 (VCAM-1) Activation of Endothelial Cell Matrix Metalloproteinases: Role of Reactive Oxygen Species. Blood. 2004;104(8):2385–2393. doi: 10.1182/blood-2004-02-0665. PubMed DOI PMC
Kim S. R., Bae Y. H., Bae S. K., Choi K. S., Yoon K. H., Koo T. H., Jang H. O., Yun I., Kim K. W., Kwon Y. G., Yoo M. A., Bae M. K.. Visfatin Enhances ICAM-1 and VCAM-1 Expression through ROS-Dependent NF-κB Activation in Endothelial Cells. Biochim. Biophys. Acta, Mol. Cell Res. 2008;1783(5):886–895. doi: 10.1016/j.bbamcr.2008.01.004. PubMed DOI
Zheng J., Wang W., Gao X., Zhao S., Chen W., Li J., Liu Y.-N.. Cascade Catalytically Released Nitric Oxide-Driven Nanomotor with Enhanced Penetration for Antibiofilm. Small. 2022;18(52):2205252. doi: 10.1002/smll.202205252. PubMed DOI
Hou P., Xie L., Zhang L., Du X., Zhao D., Wang Y., Yang N., Wang D.. Anisotropic Hollow Structure with Chemotaxis Enabling Intratumoral Autonomic Therapy. Angew. Chem., Int. Ed. 2025;64(2):e202414370. doi: 10.1002/anie.202414370. PubMed DOI
Chen J., Hu J., Kapral R.. Chemical Logic Gates on Active Colloids. Adv. Sci. 2024;11(18):2305695. doi: 10.1002/advs.202305695. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J. Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A.. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Tinevez J. Y., Perry N., Schindelin J., Hoopes G. M., Reynolds G. D., Laplantine E., Bednarek S. Y., Shorte S. L., Eliceiri K. W.. TrackMate: An Open and Extensible Platform for Single-Particle Tracking. Methods. 2017;115:80–90. doi: 10.1016/j.ymeth.2016.09.016. PubMed DOI
Tarantino N., Tinevez J. Y., Crowell E. F., Boisson B., Henriques R., Mhlanga M., Agou F., Israël A., Laplantine E.. Tnf and Il-1 Exhibit Distinct Ubiquitin Requirements for Inducing NEMO-IKK Supramolecular Structures. J. Cell Biol. 2014;204(2):231–245. doi: 10.1083/jcb.201307172. PubMed DOI PMC
Suarez-Arnedo A., Figueroa F. T., Clavijo C., Arbeláez P., Cruz J. C., Muñoz-Camargo C.. An Image J Plugin for the High Throughput Image Analysis of in Vitro Scratch Wound Healing Assays. PLoS One. 2020;15(7):e0232565. doi: 10.1371/journal.pone.0232565. PubMed DOI PMC
Zangle T. A., Teitell M. A.. Live-Cell Mass Profiling: An Emerging Approach in Quantitative Biophysics. Nat. Methods. 2014;11(12):1221–1228. doi: 10.1038/nmeth.3175. PubMed DOI PMC