Structural Connectivity of the Basal Ganglia from Patient-Individual Tractography Is Key for Understanding the Effects of Deep Brain Stimulation in Parkinson's Disease
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40532683
PubMed Central
PMC12453574
DOI
10.1159/000546716
PII: 000546716
Knihovny.cz E-zdroje
- Klíčová slova
- Deep brain stimulation, Parkinson’s disease, Structural connectivity, Tractography,
- MeSH
- bazální ganglia * diagnostické zobrazování MeSH
- hluboká mozková stimulace * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- nervové dráhy diagnostické zobrazování MeSH
- nucleus subthalamicus diagnostické zobrazování MeSH
- Parkinsonova nemoc * terapie diagnostické zobrazování patofyziologie MeSH
- retrospektivní studie MeSH
- senioři MeSH
- zobrazování difuzních tenzorů * metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: In Parkinson's disease (PD) patients, modulation of the fibre tracts of the cortico-basal ganglia-thalamo-cortical loop is the presumed mechanism of action of deep brain stimulation (DBS) of the subthalamic nucleus (STN). Therefore, we explored patient-individual cortical structural connectivity of the volume of tissue activated (VTA), as well as DBS-induced modulation of fibre tracts connecting the STN with cortical and subcortical nodes, and their correlation with therapeutic effects. METHODS: A retrospective cohort of n = 69 PD patients treated with bilateral DBS of the STN was analysed. Clinical response was assessed from the DBS-induced change in the UPDRS-III motor scores (total and symptom-specific sub-scores) under regular medication after a median follow-up of 9.0 (range 2.6-20.2) months. Tractography based on patient-individual diffusion-weighted MRI was employed in two ways. Whole-brain tractography was used to identify the cortical connections of fibres passing the VTAs, and reconstruction of specific white matter pathways of the motor loop connecting the STN with the basal ganglia and cortex was used to identify the proportion of fibres within these pathways which was modulated by STN-DBS. This proportion of pathway modulation was used in a correlative analysis with clinical outcomes. RESULTS: Fibres traversing the VTAs were primarily connected to the supplementary motor area (SMA) and to a lesser degree to the premotor cortex. Within the pathways connecting the STN with the cortical and subcortical nodes, on average 30-40% (range 10-80%) of the fibres were modulated by STN-DBS. This proportion correlated significantly with the percentage change in UPDRS motor score for fibres connecting the STN with the SMA (ρ = 0.28), pre-SMA (ρ = 0.26), ventral and dorsal premotor cortices (ρ = 0.26 and ρ = 0.29, respectively), and the globus pallidus externus (ρ = 0.26) and internus (ρ = 0.29). Also, good clinical responses for both tremor and rigidity were associated with a significantly (p < 0.05) higher proportion of modulated fibres for the same cortico- and sub-cortico-STN connections. CONCLUSION: Patient-individual tractography reveals that, in PD, most of the cortical fibres traversing the VTA are connected to the SMA. In addition, clinical efficacy is related to the proportion of DBS-affected fibres connecting the STN with nodes of both the hyperdirect (cortex-STN) and the indirect pathways (STN-basal ganglia). As such, patient-specific tractography, in particular in the basal ganglia, could be used in a clinical context as a tool to guide therapy.
Movement Disorders Unit Foch Hospital Université Paris Saclay Suresnes France
Research Department Brain Innovation BV Maastricht The Netherlands
Zobrazit více v PubMed
Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res. 1990;85:119–46. PubMed
Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50(4):381–425. PubMed
Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway. Neurosci Res. 2002;43(2):111–7. PubMed
Bonnevie T, Zaghloul KA. The subthalamic nucleus: unravelling new roles and mechanisms in the control of action. Neuroscientist. 2019;25(1):48–64. PubMed PMC
Obeso JA, Marin C, Rodriguez-Oroz C, Blesa J, Benitez-Temiño B, Mena-Segovia J, et al. The basal ganglia in Parkinson’s disease: current concepts and unexplained observations. Ann Neurol. 2008;64(Suppl 2):S30–46. PubMed
Ng PR, Bush A, Vissani M, McIntyre CC, Richardson RM. Biophysical principles and computational modeling of deep brain stimulation. Neuromodulation. 2024;27(3):422–39. PubMed
Oswal A, Beudel M, Zrinzo L, Limousin P, Hariz M, Foltynie T, et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain. 2016;139(Pt 5):1482–96. PubMed PMC
Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148–60. PubMed PMC
Neumann WJ, Steiner LA, Milosevic L. Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions. Brain. 2023;146(11):4456–68. PubMed PMC
Wong JK, Middlebrooks EH, Grewal SS, Almeida L, Hess CW, Okun MS. A comprehensive review of brain connectomics and imaging to improve deep brain stimulation outcomes. Mov Disord. 2020;35(5):741–51. PubMed PMC
Andrews L, Keller SS, Osman-Farah J, Macerollo A. A structural magnetic resonance imaging review of clinical motor outcomes from deep brain stimulation in movement disorders. Brain Commun. 2023;5(3):fcad171. PubMed PMC
Temel Y, Blokland A, Steinbusch HW, Visser-Vandewalle V. The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol. 2005;76(6):393–413. PubMed
Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord. 2006;12(5):265–72. PubMed
Brunenberg EJ, Moeskops P, Backes WH, Pollo C, Cammoun L, Vilanova A, et al. Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PLoS One. 2012;7(6):e39061. PubMed PMC
Oswal A, Cao C, Yeh CH, Neumann WJ, Gratwicke J, Akram H, et al. Neural signatures of hyperdirect pathway activity in Parkinson’s disease. Nat Commun. 2021;12(1):5185. PubMed PMC
Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82(1):67–78. PubMed PMC
Wang Q, Akram H, Muthuraman M, Gonzalez-Escamilla G, Sheth SA, Oxenford S, et al. Normative vs. patient-specific brain connectivity in deep brain stimulation. Neuroimage. 2021;224:117307. PubMed
Chen Y, Zhu G, Liu D, Liu Y, Zhang X, Du T, et al. Seed-based connectivity prediction of initial outcome of subthalamic nuclei deep brain stimulation. Neurotherapeutics. 2022;19(2):608–15. PubMed PMC
Strelow JN, Baldermann JC, Dembek TA, Jergas H, Petry-Schmelzer JN, Schott F, et al. Structural connectivity of subthalamic nucleus stimulation for improving freezing of gait. J Parkinsons Dis. 2022;12(4):1251–67. PubMed
Fan H, Guo Z, Jiang Y, Xue T, Yin Z, Xie H, et al. Optimal subthalamic stimulation sites and related networks for freezing of gait in Parkinson’s disease. Brain Commun. 2023;5(5):fcad238. PubMed PMC
Gadot R, Vanegas Arroyave N, Dang H, Anand A, Najera RA, Taneff LY, et al. Association of clinical outcomes and connectivity in awake versus asleep deep brain stimulation for Parkinson disease. J Neurosurg. 2023;138(4):1016–27. PubMed PMC
Hacker ML, Rajamani N, Neudorfer C, Hollunder B, Oxenford S, Li N, et al. Connectivity profile for subthalamic nucleus deep brain stimulation in early stage Parkinson disease. Ann Neurol. 2023;94(2):271–84. PubMed PMC
Hollunder B, Ostrem JL, Sahin IA, Rajamani N, Oxenford S, Butenko K, et al. Mapping dysfunctional circuits in the frontal cortex using deep brain stimulation. Nat Neurosci. 2024;27(3):573–86. PubMed PMC
Rajamani N, Friedrich H, Butenko K, Dembek T, Lange F, Navrátil P, et al. Deep brain stimulation of symptom-specific networks in Parkinson’s disease. Nat Commun. 2024;15(1):4662. PubMed PMC
Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25(15):2649–53. PubMed
Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E. Denoising of diffusion MRI using random matrix theory. Neuroimage. 2016;142:394–406. PubMed PMC
Pierpaoli C, Walker L, Irfanoglu MO, Barnett A, Basser P, Chang LC, et al. TORTOISE: an integrated software package for processing of diffusion MRI data. ISMRM; 2010. abstract #1597(18th annual meeting).
Irfanoglu MO, Nayak A, Jenkins J, Pierpaoli C. TORTOISE v3: improvements and new features of the NIH diffusion MRI processing pipeline. ISMRM; 2021. 25th annual meeting, :abstract #3540.
Irfanoglu MO, Modi P, Nayak A, Hutchinson EB, Sarlls J, Pierpaoli C. DR-BUDDI (Diffeomorphic Registration for Blip-Up blip-Down Diffusion Imaging) method for correcting echo planar imaging distortions. Neuroimage. 2015;106:284–99. PubMed PMC
Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137. PubMed
Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310–20. PubMed PMC
Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage. 2007;35(4):1459–72. PubMed
Dhollander T, Raffelt D, Connelly A. Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. ISMRM Workshop on Breaking the Barriers of Diffusion MRI; 2016; p. 5.
Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, et al. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage. 2011;54(1):313–27. PubMed PMC
Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12(1):26–41. PubMed PMC
Vorwerk J, Oostenveld R, Piastra MC, Magyari L, Wolters CH. The FieldTrip-SimBio pipeline for EEG forward solutions. Biomed Eng Online. 2018;17(1):37. PubMed PMC
Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. PubMed PMC
Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S, et al. Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage. 2019;184:293–316. PubMed PMC
Smith RE, Tournier JD, Calamante F, Connelly A. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage. 2012;62(3):1924–38. PubMed
Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536(7615):171–8. PubMed PMC
Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE. Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage. 2006;31(4):1453–74. PubMed PMC
Ewert S, Plettig P, Li N, Chakravarty MM, Collins DL, Herrington TM, et al. Toward defining deep brain stimulation targets in MNI space: a subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage. 2018;170:271–82. PubMed
Koirala N, Fleischer V, Granert O, Deuschl G, Muthuraman M, Groppa S. Network effects and pathways in Deep brain stimulation in Parkinson’s disease. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:5533–6. PubMed
Vanegas-Arroyave N, Lauro PM, Huang L, Hallett M, Horovitz SG, Zaghloul KA, et al. Tractography patterns of subthalamic nucleus deep brain stimulation. Brain. 2016;139(Pt 4):1200–10. PubMed PMC
Akram H, Sotiropoulos SN, Jbabdi S, Georgiev D, Mahlknecht P, Hyam J, et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage. 2017;158:332–45. PubMed PMC
Avecillas-Chasin JM, Alonso-Frech F, Nombela C, Villanueva C, Barcia JA. Stimulation of the tractography-defined subthalamic nucleus regions correlates with clinical outcomes. Neurosurgery. 2019;85(2):E294–303. PubMed
Krishna V, Sammartino F, Rabbani Q, Changizi B, Agrawal P, Deogaonkar M, et al. Connectivity-based selection of optimal deep brain stimulation contacts: a feasibility study. Ann Clin Transl Neurol. 2019;6(7):1142–50. PubMed PMC
Vassal F, Dilly D, Boutet C, Bertholon F, Charier D, Pommier B. White matter tracts involved by deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: a connectivity study based on preoperative diffusion tensor imaging tractography. Br J Neurosurg. 2020;34(2):187–95. PubMed
Gonzalez-Escamilla G, Koirala N, Bange M, Glaser M, Pintea B, Dresel C, et al. Deciphering the network effects of deep brain stimulation in Parkinson’s disease. Neurol Ther. 2022;11(1):265–82. PubMed PMC
Kähkölä J, Lahtinen M, Keinänen T, Katisko J. Stimulation of the presupplementary motor area cluster of the subthalamic nucleus predicts more consistent clinical outcomes. Neurosurgery. 2023;92(5):1058–65. PubMed
Segura-Amil A, Nowacki A, Debove I, Petermann K, Tinkhauser G, Krack P, et al. Programming of subthalamic nucleus deep brain stimulation with hyperdirect pathway and corticospinal tract-guided parameter suggestions. Hum Brain Mapp. 2023;44(12):4439–51. PubMed PMC
Jones DK. Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med. 2010;2(3):341–55.
Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do's and don’ts of diffusion MRI. Neuroimage. 2013;73:239–54. PubMed
Haynes WI, Haber SN. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci. 2013;33(11):4804–14. PubMed PMC
Petersen MV, Lund TE, Sunde N, Frandsen J, Rosendal F, Juul N, et al. Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation. J Neurosurg. 2017;126(5):1657–68. PubMed
Petersen MV, Mlakar J, Haber SN, Parent M, Smith Y, Strick PL, et al. Holographic reconstruction of axonal pathways in the human brain. Neuron. 2019;104(6):1056–64.e3. PubMed PMC
Milardi D, Basile GA, Faskowitz J, Bertino S, Quartarone A, Anastasi GP, et al. Effects of diffusion signal modeling and segmentation approaches on subthalamic nucleus parcellation. Neuroimage. 2022;250:118959. PubMed
Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord. 2008;23(Suppl 3):S548–59. PubMed
Plantinga BR, Temel Y, Duchin Y, Uludağ K, Patriat R, Roebroeck A, et al. Individualized parcellation of the subthalamic nucleus in patients with Parkinson’s disease with 7T MRI. Neuroimage. 2018;168:403–11. PubMed PMC
Rodriguez-Rojas R, Pineda-Pardo JA, Mañez-Miro J, Sanchez-Turel A, Martinez-Fernandez R, Del Alamo M, et al. Functional topography of the human subthalamic nucleus: relevance for subthalamotomy in Parkinson’s disease. Mov Disord. 2022;37(2):279–90. PubMed
Pujol S, Cabeen R, Sébille SB, Yelnik J, François C, Fernandez Vidal S, et al. In vivo exploration of the connectivity between the subthalamic nucleus and the globus pallidus in the human brain using multi-fiber tractography. Front Neuroanat. 2016;10:119. PubMed PMC
Cousineau M, Jodoin PM, Morency FC, Rozanski V, Grand’Maison M, Bedell BJ, et al. A test-retest study on Parkinson’s PPMI dataset yields statistically significant white matter fascicles. Neuroimage Clin. 2017;16:222–33. PubMed PMC
Shim JH, Baek HM. White matter connectivity between structures of the basal ganglia using 3T and 7T. Neuroscience. 2022;483:32–9. PubMed
Spiliotis K, Butenko K, Starke J, van Rienen U, Köhling R. Towards an optimised deep brain stimulation using a large-scale computational network and realistic volume conductor model. J Neural Eng. 2024;20(6):066045. PubMed
Weiss D, Klotz R, Govindan RB, Scholten M, Naros G, Ramos-Murguialday A, et al. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease. Brain. 2015;138(Pt 3):679–93. PubMed PMC
Abbasi N, Fereshtehnejad SM, Zeighami Y, Larcher KM, Postuma RB, Dagher A. Predicting severity and prognosis in Parkinson’s disease from brain microstructure and connectivity. Neuroimage Clin. 2020;25:102111. PubMed PMC
Bočková M, Lamoš M, Chrastina J, Daniel P, Kupcová S, Říha I, et al. Coupling between beta band and high frequency oscillations as a clinically useful biomarker for DBS. NPJ Parkinsons Dis. 2024;10(1):40. PubMed PMC
Cioni B, Tufo T, Bentivoglio A, Trevisi G, Piano C. Motor cortex stimulation for movement disorders. J Neurosurg Sci. 2016;60(2):230–41. PubMed
Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund HJ, et al. Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg. 2002;96(2):269–79. PubMed
Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain. 2006;129(Pt 7):1732–47. PubMed
Pollo C, Vingerhoets F, Pralong E, Ghika J, Maeder P, Meuli R, et al. Localization of electrodes in the subthalamic nucleus on magnetic resonance imaging. J Neurosurg. 2007;106(1):36–44. PubMed
Neudorfer C, Maarouf M. Neuroanatomical background and functional considerations for stereotactic interventions in the H fields of Forel. Brain Struct Funct. 2018;223(1):17–30. PubMed
Emmi A, Antonini A, Macchi V, Porzionato A, De Caro R. Anatomy and connectivity of the subthalamic nucleus in humans and non-human primates. Front Neuroanat. 2020;14:13. PubMed PMC