Integrative miRNOMe profiling reveals the miR-195-5p-CHEK1 axis and its impact on luminal breast cancer outcomes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5102
European Union - Next Generation EU
207043
Grant Agency of Charles University in Prague
NU22-08-00281
Czech health research council
PubMed
40548926
PubMed Central
PMC12591302
DOI
10.1002/1878-0261.70077
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage response, breast carcinoma, chemotherapy, luminal subtype, microRNA, prognosis,
- MeSH
- checkpoint kinasa 1 * genetika metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory prsu * genetika patologie farmakoterapie metabolismus MeSH
- proliferace buněk genetika MeSH
- regulace genové exprese u nádorů MeSH
- stanovení celkové genové exprese * MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- checkpoint kinasa 1 * MeSH
- CHEK1 protein, human MeSH Prohlížeč
- mikro RNA * MeSH
- MIRN195 microRNA, human MeSH Prohlížeč
The luminal subtype (estrogen receptor-positive, ER+) is the most common and the most heterogeneous type of breast carcinoma (BC) in women. During our study, we determined expression levels of all microRNAs (miRNome) in 101 ER+ BC samples and identified 25 miRNAs being associated with proliferative markers. Using comprehensive in silico analyses we prioritized CHEK1, CDC25A, and CCNE1 as candidate genes affecting the proliferation of ER+ BC, with two microRNAs from the miR-497∼195 cluster identified as their potential regulators. In a cohort of 217 patients, we found a significant association between high expression of CHEK1 and shorter relapse-free survival (RFS) in luminal BC patients treated with adjuvant chemotherapy, especially in patients with luminal A subtype. In patients treated with neoadjuvant therapy, the opposite role for RFS was observed for hsa-miR-195-5p. Subsequently, we confirmed the potency of hsa-miR-195-5p to inhibit the expression of CHEK1 in vitro. Moreover, the specific Chk1 inhibitor rabusertib (LY2603618) significantly enhanced the efficacy of doxorubicin in both ER+ and ER- cell lines. In summary, we have identified the association of a specific miRNA profile with highly proliferative luminal BCs and demonstrated the ability of hsa-miR-195-5p to inhibit CHEK1 expression in BC in vitro, underlining the importance of CHEK1 expression and its inhibition for prognosis and treatment of patients with luminal BCs.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Comprehensive Cancer Center of Hospital AGEL Novy Jicin Czech Republic
EUC Hospital Zlin and Tomas Bata University in Zlin Czech Republic
MEDICON a s Prague Czech Republic
Toxicogenomics Unit National Institute of Public Health Prague Czech Republic
Zobrazit více v PubMed
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–752. PubMed
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100(14):8418–8423. PubMed PMC
Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart‐Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 2013;24(9):2206–2223. PubMed PMC
Ciriello G, Sinha R, Hoadley KA, Jacobsen AS, Reva B, Perou CM, et al. The molecular diversity of luminal a breast tumors. Breast Cancer Res Treat. 2013;141(3):409–420. PubMed PMC
Poudel P, Nyamundanda G, Patil Y, Cheang MCU, Sadanandam A. Heterocellular gene signatures reveal luminal‐a breast cancer heterogeneity and differential therapeutic responses. NPJ Breast Cancer. 2019;5:21. PubMed PMC
Li ZH, Hu PH, Tu JH, Yu NS. Luminal B breast cancer: patterns of recurrence and clinical outcome. Oncotarget. 2016;7(40):65024–65033. PubMed PMC
Yang Q, Deng S, Preibsch H, Schade TC, Koch A, Berezhnoy G, et al. Image‐guided metabolomics and transcriptomics reveal tumour heterogeneity in luminal A and B human breast cancer beyond glucose tracer uptake. Clin Transl Med. 2024;14(2):e1550. PubMed PMC
Andre F, Ismaila N, Allison KH, Barlow WE, Collyar DE, Damodaran S, et al. Biomarkers for adjuvant endocrine and chemotherapy in early‐stage breast cancer: ASCO guideline update. J Clin Oncol. 2022;40(16):1816–1837. PubMed
Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki‐67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol. 2011;29(32):4273–4278. PubMed
Haque W, Verma V, Hatch S, Suzanne Klimberg V, Brian Butler E, Teh BS. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res Treat. 2018;170(3):559–567. PubMed
Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38. PubMed PMC
Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J. Functional miRNAs in breast cancer drug resistance. Onco Targets Ther. 2018;11:1529–1541. PubMed PMC
Brynychova V, Hlavac V, Ehrlichova M, Vaclavikova R, Pecha V, Trnkova M, et al. Importance of transcript levels of caspase‐2 isoforms S and L for breast carcinoma progression. Future Oncol. 2013;9(3):427–438. PubMed
Tavassoli FA, Devilee P. The WHO classification of tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 10–112.
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME)‐toward standards for microarray data. Nat Genet. 2001;29(4):365–371. PubMed
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034. PubMed PMC
Andersen CL, Jensen JL, Orntoft TF. Normalization of real‐time quantitative reverse transcription‐PCR data: a model‐based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–5250. PubMed
Hlavac V, Brynychova V, Vaclavikova R, Ehrlichova M, Vrana D, Pecha V, et al. The expression profile of ATP‐binding cassette transporter genes in breast carcinoma. Pharmacogenomics. 2013;14(5):515–529. PubMed
Johnson G, Nolan T, Bustin SA. Real‐time quantitative PCR, pathogen detection and MIQE. Methods Mol Biol. 2013;943:1–16. PubMed
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300.
Schmittgen TD, Livak KJ. Analyzing real‐time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. PubMed
Tastsoglou S, Alexiou A, Karagkouni D, Skoufos G, Zacharopoulou E, Hatzigeorgiou AG. DIANA‐microT 2023: including predicted targets of virally encoded miRNAs. Nucleic Acids Res. 2023;51(W1):W148–W153. PubMed PMC
Vejnar CE, Zdobnov EM. MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012;40(22):11673–11683. PubMed PMC
Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One. 2018;13(10):e0206239. PubMed PMC
Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–W221. PubMed PMC
Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein‐protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–D646. PubMed PMC
Farabaugh SM, Boone DN, Lee AV. Role of IGF1R in breast cancer subtypes, Stemness, and lineage differentiation. Front Endocrinol. 2015;6:59. PubMed PMC
Yang W, Feng W, Wu F, Gao Y, Sun Q, Hu N, et al. MiR‐135‐5p inhibits TGF‐beta‐induced epithelial‐mesenchymal transition and metastasis by targeting SMAD3 in breast cancer. J Cancer. 2020;11(21):6402–6412. PubMed PMC
Luo G, He K, Xia Z, Liu S, Liu H, Xiang G. Regulation of microRNA‐497 expression in human cancer. Oncol Lett. 2021;21(1):23. PubMed PMC
Wu J, Ji A, Wang X, Zhu Y, Yu Y, Lin Y, et al. MicroRNA‐195‐5p, a new regulator of Fra‐1, suppresses the migration and invasion of prostate cancer cells. J Transl Med. 2015;13:289. PubMed PMC
Sun M, Song H, Wang S, Zhang C, Zheng L, Chen F, et al. Integrated analysis identifies microRNA‐195 as a suppressor of hippo‐YAP pathway in colorectal cancer. J Hematol Oncol. 2017;10(1):79. PubMed PMC
Furuta M, Kozaki K, Tanimoto K, Tanaka S, Arii S, Shimamura T, et al. The tumor‐suppressive miR‐497‐195 cluster targets multiple cell‐cycle regulators in hepatocellular carcinoma. PLoS One. 2013;8(3):e60155. PubMed PMC
Gan Y, Fang W, Zeng Y, Wang P, Shan R, Zhang L. Identification of a novel survival‐related circRNA‐miRNA‐mRNA regulatory network related to immune infiltration in liver hepatocellular carcinoma. Front Genet. 2022;13:800537. PubMed PMC
Liu B, Qu J, Xu F, Guo Y, Wang Y, Yu H, et al. MiR‐195 suppresses non‐small cell lung cancer by targeting CHEK1. Oncotarget. 2015;6(11):9445–9456. PubMed PMC
Bargiela‐Iparraguirre J, Prado‐Marchal L, Fernandez‐Fuente M, Gutierrez‐Gonzalez A, Moreno‐Rubio J, Munoz‐Fernandez M, et al. CHK1 expression in gastric cancer is modulated by p53 and RB1/E2F1: implications in chemo/radiotherapy response. Sci Rep. 2016;6:21519. PubMed PMC
Hui W, Yuntao L, Lun L, WenSheng L, ChaoFeng L, HaiYong H, et al. MicroRNA‐195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1. PLoS One. 2013;8(1):e54932. PubMed PMC
Luo Q, Wei C, Li X, Li J, Chen L, Huang Y, et al. MicroRNA‐195‐5p is a potential diagnostic and therapeutic target for breast cancer. Oncol Rep. 2014;31(3):1096–1102. PubMed PMC
Chen L, Miao X, Si C, Qin A, Zhang Y, Chu C, et al. Long non‐coding RNA SENP3‐EIF4A1 functions as a sponge of miR‐195‐5p to drive triple‐negative breast cancer Progress by overexpressing CCNE1. Front Cell Dev Biol. 2021;9:647527. PubMed PMC
Neizer‐Ashun F, Bhattacharya R. Reality CHEK: understanding the biology and clinical potential of CHK1. Cancer Lett. 2021;497:202–211. PubMed
Nicoletto RE, Ofner CM 3rd. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol. 2022;89(3):285–311. PubMed
Ghelli Luserna Di Rora A, Ghetti M, Ledda L, Ferrari A, Bocconcelli M, Padella A, et al. Exploring the ATR‐CHK1 pathway in the response of doxorubicin‐induced DNA damages in acute lymphoblastic leukemia cells. Cell Biol Toxicol. 2023;39(3):795–811. PubMed PMC
Lezina L, Purmessur N, Antonov AV, Ivanova T, Karpova E, Krishan K, et al. miR‐16 and miR‐26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell Death Dis. 2013;4(12):e953. PubMed PMC
Mei Z, Su T, Ye J, Yang C, Zhang S, Xie C. The miR‐15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiat Res. 2015;183(2):196–207. PubMed
Xu J, Li Y, Wang F, Wang X, Cheng B, Ye F, et al. Suppressed miR‐424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer. Oncogene. 2013;32(8):976–987. PubMed
Knudsen ES, Witkiewicz AK, Rubin SM. Cancer takes many paths through G1/S. Trends Cell Biol. 2024;34(8):636–645. PubMed PMC
Wang FZ, Fei HR, Cui YJ, Sun YK, Li ZM, Wang XY, et al. The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis. 2014;19(9):1389–1398. PubMed
Laquente B, Lopez‐Martin J, Richards D, Illerhaus G, Chang DZ, Kim G, et al. A phase II study to evaluate LY2603618 in combination with gemcitabine in pancreatic cancer patients. BMC Cancer. 2017;17(1):137. PubMed PMC
Gorecki L, Andrs M, Korabecny J. Clinical candidates targeting the ATR‐CHK1‐WEE1 Axis in cancer. Cancers. 2021;13(4):795. PubMed PMC
Tian Y, Chen ZH, Wu P, Zhang D, Ma Y, Liu XF, et al. MIR497HG‐derived miR‐195 and miR‐497 mediate tamoxifen resistance via PI3K/AKT signaling in breast cancer. Adv Sci. 2023;10(12):e2204819. PubMed PMC
Fenizia C, Bottino C, Corbetta S, Fittipaldi R, Floris P, Gaudenzi G, et al. SMYD3 promotes the epithelial‐mesenchymal transition in breast cancer. Nucleic Acids Res. 2019;47(3):1278–1293. PubMed PMC
Ren Y, Wu L, Frost AR, Grizzle W, Cao X, Wan M. Dual effects of TGF‐beta on ERalpha‐mediated estrogenic transcriptional activity in breast cancer. Mol Cancer. 2009;8:111. PubMed PMC
Milioli HH, Alexandrou S, Lim E, Caldon CE. Cyclin E1 and cyclin E2 in ER+ breast cancer: prospects as biomarkers and therapeutic targets. Endocr Relat Cancer. 2020;27(5):R93–R112. PubMed
Luo Q, Li X, Li J, Kong X, Zhang J, Chen L, et al. MiR‐15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int J Oncol. 2013;43(4):1212–1218. PubMed
Shukla K, Sharma AK, Ward A, Will R, Hielscher T, Balwierz A, et al. MicroRNA‐30c‐2‐3p negatively regulates NF‐kappaB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer. Mol Oncol. 2015;9(6):1106–1119. PubMed PMC
Huang X, Lyu J. Tumor suppressor function of miR‐483‐3p on breast cancer via targeting of the cyclin E1 gene. Exp Ther Med. 2018;16(3):2615–2620. PubMed PMC
Zhao ZM, Yost SE, Hutchinson KE, Li SM, Yuan YC, Noorbakhsh J, et al. CCNE1 amplification is associated with poor prognosis in patients with triple negative breast cancer. BMC Cancer. 2019;19(1):96. PubMed PMC
Prat A, Karginova O, Parker JS, Fan C, He X, Bixby L, et al. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res Treat. 2013;142(2):237–255. PubMed PMC