Integrative miRNOMe profiling reveals the miR-195-5p-CHEK1 axis and its impact on luminal breast cancer outcomes

. 2025 Nov ; 19 (11) : 3409-3426. [epub] 20250623

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40548926

Grantová podpora
LX22NPO5102 European Union - Next Generation EU
207043 Grant Agency of Charles University in Prague
NU22-08-00281 Czech health research council

The luminal subtype (estrogen receptor-positive, ER+) is the most common and the most heterogeneous type of breast carcinoma (BC) in women. During our study, we determined expression levels of all microRNAs (miRNome) in 101 ER+ BC samples and identified 25 miRNAs being associated with proliferative markers. Using comprehensive in silico analyses we prioritized CHEK1, CDC25A, and CCNE1 as candidate genes affecting the proliferation of ER+ BC, with two microRNAs from the miR-497∼195 cluster identified as their potential regulators. In a cohort of 217 patients, we found a significant association between high expression of CHEK1 and shorter relapse-free survival (RFS) in luminal BC patients treated with adjuvant chemotherapy, especially in patients with luminal A subtype. In patients treated with neoadjuvant therapy, the opposite role for RFS was observed for hsa-miR-195-5p. Subsequently, we confirmed the potency of hsa-miR-195-5p to inhibit the expression of CHEK1 in vitro. Moreover, the specific Chk1 inhibitor rabusertib (LY2603618) significantly enhanced the efficacy of doxorubicin in both ER+ and ER- cell lines. In summary, we have identified the association of a specific miRNA profile with highly proliferative luminal BCs and demonstrated the ability of hsa-miR-195-5p to inhibit CHEK1 expression in BC in vitro, underlining the importance of CHEK1 expression and its inhibition for prognosis and treatment of patients with luminal BCs.

Zobrazit více v PubMed

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–752. PubMed

Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100(14):8418–8423. PubMed PMC

Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart‐Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 2013;24(9):2206–2223. PubMed PMC

Ciriello G, Sinha R, Hoadley KA, Jacobsen AS, Reva B, Perou CM, et al. The molecular diversity of luminal a breast tumors. Breast Cancer Res Treat. 2013;141(3):409–420. PubMed PMC

Poudel P, Nyamundanda G, Patil Y, Cheang MCU, Sadanandam A. Heterocellular gene signatures reveal luminal‐a breast cancer heterogeneity and differential therapeutic responses. NPJ Breast Cancer. 2019;5:21. PubMed PMC

Li ZH, Hu PH, Tu JH, Yu NS. Luminal B breast cancer: patterns of recurrence and clinical outcome. Oncotarget. 2016;7(40):65024–65033. PubMed PMC

Yang Q, Deng S, Preibsch H, Schade TC, Koch A, Berezhnoy G, et al. Image‐guided metabolomics and transcriptomics reveal tumour heterogeneity in luminal A and B human breast cancer beyond glucose tracer uptake. Clin Transl Med. 2024;14(2):e1550. PubMed PMC

Andre F, Ismaila N, Allison KH, Barlow WE, Collyar DE, Damodaran S, et al. Biomarkers for adjuvant endocrine and chemotherapy in early‐stage breast cancer: ASCO guideline update. J Clin Oncol. 2022;40(16):1816–1837. PubMed

Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki‐67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol. 2011;29(32):4273–4278. PubMed

Haque W, Verma V, Hatch S, Suzanne Klimberg V, Brian Butler E, Teh BS. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy. Breast Cancer Res Treat. 2018;170(3):559–567. PubMed

Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38. PubMed PMC

Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J. Functional miRNAs in breast cancer drug resistance. Onco Targets Ther. 2018;11:1529–1541. PubMed PMC

Brynychova V, Hlavac V, Ehrlichova M, Vaclavikova R, Pecha V, Trnkova M, et al. Importance of transcript levels of caspase‐2 isoforms S and L for breast carcinoma progression. Future Oncol. 2013;9(3):427–438. PubMed

Tavassoli FA, Devilee P. The WHO classification of tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 10–112.

Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME)‐toward standards for microarray data. Nat Genet. 2001;29(4):365–371. PubMed

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real‐time quantitative RT‐PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034. PubMed PMC

Andersen CL, Jensen JL, Orntoft TF. Normalization of real‐time quantitative reverse transcription‐PCR data: a model‐based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–5250. PubMed

Hlavac V, Brynychova V, Vaclavikova R, Ehrlichova M, Vrana D, Pecha V, et al. The expression profile of ATP‐binding cassette transporter genes in breast carcinoma. Pharmacogenomics. 2013;14(5):515–529. PubMed

Johnson G, Nolan T, Bustin SA. Real‐time quantitative PCR, pathogen detection and MIQE. Methods Mol Biol. 2013;943:1–16. PubMed

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300.

Schmittgen TD, Livak KJ. Analyzing real‐time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. PubMed

Tastsoglou S, Alexiou A, Karagkouni D, Skoufos G, Zacharopoulou E, Hatzigeorgiou AG. DIANA‐microT 2023: including predicted targets of virally encoded miRNAs. Nucleic Acids Res. 2023;51(W1):W148–W153. PubMed PMC

Vejnar CE, Zdobnov EM. MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012;40(22):11673–11683. PubMed PMC

Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One. 2018;13(10):e0206239. PubMed PMC

Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216–W221. PubMed PMC

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein‐protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–D646. PubMed PMC

Farabaugh SM, Boone DN, Lee AV. Role of IGF1R in breast cancer subtypes, Stemness, and lineage differentiation. Front Endocrinol. 2015;6:59. PubMed PMC

Yang W, Feng W, Wu F, Gao Y, Sun Q, Hu N, et al. MiR‐135‐5p inhibits TGF‐beta‐induced epithelial‐mesenchymal transition and metastasis by targeting SMAD3 in breast cancer. J Cancer. 2020;11(21):6402–6412. PubMed PMC

Luo G, He K, Xia Z, Liu S, Liu H, Xiang G. Regulation of microRNA‐497 expression in human cancer. Oncol Lett. 2021;21(1):23. PubMed PMC

Wu J, Ji A, Wang X, Zhu Y, Yu Y, Lin Y, et al. MicroRNA‐195‐5p, a new regulator of Fra‐1, suppresses the migration and invasion of prostate cancer cells. J Transl Med. 2015;13:289. PubMed PMC

Sun M, Song H, Wang S, Zhang C, Zheng L, Chen F, et al. Integrated analysis identifies microRNA‐195 as a suppressor of hippo‐YAP pathway in colorectal cancer. J Hematol Oncol. 2017;10(1):79. PubMed PMC

Furuta M, Kozaki K, Tanimoto K, Tanaka S, Arii S, Shimamura T, et al. The tumor‐suppressive miR‐497‐195 cluster targets multiple cell‐cycle regulators in hepatocellular carcinoma. PLoS One. 2013;8(3):e60155. PubMed PMC

Gan Y, Fang W, Zeng Y, Wang P, Shan R, Zhang L. Identification of a novel survival‐related circRNA‐miRNA‐mRNA regulatory network related to immune infiltration in liver hepatocellular carcinoma. Front Genet. 2022;13:800537. PubMed PMC

Liu B, Qu J, Xu F, Guo Y, Wang Y, Yu H, et al. MiR‐195 suppresses non‐small cell lung cancer by targeting CHEK1. Oncotarget. 2015;6(11):9445–9456. PubMed PMC

Bargiela‐Iparraguirre J, Prado‐Marchal L, Fernandez‐Fuente M, Gutierrez‐Gonzalez A, Moreno‐Rubio J, Munoz‐Fernandez M, et al. CHK1 expression in gastric cancer is modulated by p53 and RB1/E2F1: implications in chemo/radiotherapy response. Sci Rep. 2016;6:21519. PubMed PMC

Hui W, Yuntao L, Lun L, WenSheng L, ChaoFeng L, HaiYong H, et al. MicroRNA‐195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1. PLoS One. 2013;8(1):e54932. PubMed PMC

Luo Q, Wei C, Li X, Li J, Chen L, Huang Y, et al. MicroRNA‐195‐5p is a potential diagnostic and therapeutic target for breast cancer. Oncol Rep. 2014;31(3):1096–1102. PubMed PMC

Chen L, Miao X, Si C, Qin A, Zhang Y, Chu C, et al. Long non‐coding RNA SENP3‐EIF4A1 functions as a sponge of miR‐195‐5p to drive triple‐negative breast cancer Progress by overexpressing CCNE1. Front Cell Dev Biol. 2021;9:647527. PubMed PMC

Neizer‐Ashun F, Bhattacharya R. Reality CHEK: understanding the biology and clinical potential of CHK1. Cancer Lett. 2021;497:202–211. PubMed

Nicoletto RE, Ofner CM 3rd. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol. 2022;89(3):285–311. PubMed

Ghelli Luserna Di Rora A, Ghetti M, Ledda L, Ferrari A, Bocconcelli M, Padella A, et al. Exploring the ATR‐CHK1 pathway in the response of doxorubicin‐induced DNA damages in acute lymphoblastic leukemia cells. Cell Biol Toxicol. 2023;39(3):795–811. PubMed PMC

Lezina L, Purmessur N, Antonov AV, Ivanova T, Karpova E, Krishan K, et al. miR‐16 and miR‐26a target checkpoint kinases Wee1 and Chk1 in response to p53 activation by genotoxic stress. Cell Death Dis. 2013;4(12):e953. PubMed PMC

Mei Z, Su T, Ye J, Yang C, Zhang S, Xie C. The miR‐15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiat Res. 2015;183(2):196–207. PubMed

Xu J, Li Y, Wang F, Wang X, Cheng B, Ye F, et al. Suppressed miR‐424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer. Oncogene. 2013;32(8):976–987. PubMed

Knudsen ES, Witkiewicz AK, Rubin SM. Cancer takes many paths through G1/S. Trends Cell Biol. 2024;34(8):636–645. PubMed PMC

Wang FZ, Fei HR, Cui YJ, Sun YK, Li ZM, Wang XY, et al. The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis. 2014;19(9):1389–1398. PubMed

Laquente B, Lopez‐Martin J, Richards D, Illerhaus G, Chang DZ, Kim G, et al. A phase II study to evaluate LY2603618 in combination with gemcitabine in pancreatic cancer patients. BMC Cancer. 2017;17(1):137. PubMed PMC

Gorecki L, Andrs M, Korabecny J. Clinical candidates targeting the ATR‐CHK1‐WEE1 Axis in cancer. Cancers. 2021;13(4):795. PubMed PMC

Tian Y, Chen ZH, Wu P, Zhang D, Ma Y, Liu XF, et al. MIR497HG‐derived miR‐195 and miR‐497 mediate tamoxifen resistance via PI3K/AKT signaling in breast cancer. Adv Sci. 2023;10(12):e2204819. PubMed PMC

Fenizia C, Bottino C, Corbetta S, Fittipaldi R, Floris P, Gaudenzi G, et al. SMYD3 promotes the epithelial‐mesenchymal transition in breast cancer. Nucleic Acids Res. 2019;47(3):1278–1293. PubMed PMC

Ren Y, Wu L, Frost AR, Grizzle W, Cao X, Wan M. Dual effects of TGF‐beta on ERalpha‐mediated estrogenic transcriptional activity in breast cancer. Mol Cancer. 2009;8:111. PubMed PMC

Milioli HH, Alexandrou S, Lim E, Caldon CE. Cyclin E1 and cyclin E2 in ER+ breast cancer: prospects as biomarkers and therapeutic targets. Endocr Relat Cancer. 2020;27(5):R93–R112. PubMed

Luo Q, Li X, Li J, Kong X, Zhang J, Chen L, et al. MiR‐15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int J Oncol. 2013;43(4):1212–1218. PubMed

Shukla K, Sharma AK, Ward A, Will R, Hielscher T, Balwierz A, et al. MicroRNA‐30c‐2‐3p negatively regulates NF‐kappaB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer. Mol Oncol. 2015;9(6):1106–1119. PubMed PMC

Huang X, Lyu J. Tumor suppressor function of miR‐483‐3p on breast cancer via targeting of the cyclin E1 gene. Exp Ther Med. 2018;16(3):2615–2620. PubMed PMC

Zhao ZM, Yost SE, Hutchinson KE, Li SM, Yuan YC, Noorbakhsh J, et al. CCNE1 amplification is associated with poor prognosis in patients with triple negative breast cancer. BMC Cancer. 2019;19(1):96. PubMed PMC

Prat A, Karginova O, Parker JS, Fan C, He X, Bixby L, et al. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes. Breast Cancer Res Treat. 2013;142(2):237–255. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...