Innovative Approaches in Cancer Treatment: Emphasizing the Role of Nanomaterials in Tyrosine Kinase Inhibition

. 2025 Jun 16 ; 17 (6) : . [epub] 20250616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40574095

Grantová podpora
IGA_PrF_2025_022 Palacký University Olomouc

Odkazy

PubMed 40574095
PubMed Central PMC12196280
DOI 10.3390/pharmaceutics17060783
PII: pharmaceutics17060783
Knihovny.cz E-zdroje

Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge technologies, structure-based drug design, and personalized medicine, is critical for developing effective therapies, specifically anticancer treatments. Background/Objectives: One of the key drivers of cancer at the cellular level is the abnormal activity of protein enzymes, specifically serine, threonine, or tyrosine residues, through a process known as phosphorylation. While tyrosine kinase-mediated phosphorylation constitutes a minor fraction of total cellular phosphorylation, its dysregulation is critically linked to carcinogenesis and tumor progression. Methods: Small-molecule inhibitors, such as imatinib or erlotinib, are designed to halt this process, restoring cellular equilibrium and offering targeted therapeutic approaches. However, challenges persist, including frequent drug resistance and severe side effects associated with these therapies. Nanomedicine offers a transformative potential to overcome these limitations. Results: By leveraging the unique properties of nanomaterials, it is possible to achieve precise drug delivery, enhance accumulation at target sites, and improve therapeutic efficacy. Examples include nanoparticle-based delivery systems for TKIs and the combination of nanomaterials with photothermal or photodynamic therapies to enhance treatment effectiveness. Combining nanomedicine with traditional treatments holds promise and perspective for synergistic and more effective cancer management. Conclusions: This review delves into recent advances in understanding tyrosine kinase activity, the mechanisms of their inhibition, and the innovative integration of nanomedicine to revolutionize cancer treatment strategies.

Zobrazit více v PubMed

Yaron-Barir T.M., Joughin B.A., Huntsman E.M., Kerelsky A., Cizin D.M., Cohen B.M., Regev A., Song J., Vasan N., Lin T.-Y., et al. The Intrinsic Substrate Specificity of the Human Tyrosine Kinome. Nature. 2024;629:1174–1181. doi: 10.1038/s41586-024-07407-y. PubMed DOI PMC

Hedger G., Sansom M.S.P., Koldsø H. The Juxtamembrane Regions of Human Receptor Tyrosine Kinases Exhibit Conserved Interaction Sites with Anionic Lipids. Sci. Rep. 2015;5:9198. doi: 10.1038/srep09198. PubMed DOI PMC

Kim M., Baek M., Joon Kim D. Protein Tyrosine Signaling and Its Potential Therapeutic Implications in Carcinogenesis. Curr. Pharm. Des. 2017;23:4226–4246. doi: 10.2174/1381612823666170616082125. PubMed DOI PMC

Pang K., Wang W., Qin J., Shi Z., Hao L., Ma Y., Xu H., Wu Z., Pan D., Chen Z., et al. Role of Protein Phosphorylation in Cell Signaling, Disease, and the Intervention Therapy. MedComm (2020) 2022;3:e175. doi: 10.1002/mco2.175. PubMed DOI PMC

Roskoski R. Hydrophobic and Polar Interactions of FDA-Approved Small Molecule Protein Kinase Inhibitors with Their Target Enzymes. Pharmacol. Res. 2021;169:105660. doi: 10.1016/j.phrs.2021.105660. PubMed DOI

Mingione V.R., Paung Y., Outhwaite I.R., Seeliger M.A. Allosteric Regulation and Inhibition of Protein Kinases. Biochem. Soc. Trans. 2023;51:373–385. doi: 10.1042/BST20220940. PubMed DOI PMC

Karpov O.A., Fearnley G.W., Smith G.A., Kankanala J., McPherson M.J., Tomlinson D.C., Harrison M.A., Ponnambalam S., Karpov O.A., Fearnley G.W., et al. Receptor Tyrosine Kinase Structure and Function in Health and Disease. AIMS Biophys. 2015;2:476–502. doi: 10.3934/biophy.2015.4.476. DOI

Metibemu D.S., Akinloye O.A., Akamo A.J., Ojo D.A., Okeowo O.T., Omotuyi I.O. Exploring Receptor Tyrosine Kinases-Inhibitors in Cancer Treatments. Egypt. J. Med. Hum. Genet. 2019;20:35. doi: 10.1186/s43042-019-0035-0. DOI

Smidova V., Michalek P., Goliasova Z., Eckschlager T., Hodek P., Adam V., Heger Z. Nanomedicine of Tyrosine Kinase Inhibitors. [(accessed on 14 January 2025)]. Available online: https://www.thno.org/v11p1546.htm. PubMed PMC

Wang Z., Cole P.A. Catalytic Mechanisms and Regulation of Protein Kinases. Methods Enzymol. 2014;548:1–21. doi: 10.1016/B978-0-12-397918-6.00001-X. PubMed DOI PMC

Yang Y., Li S., Wang Y., Zhao Y., Li Q. Protein Tyrosine Kinase Inhibitor Resistance in Malignant Tumors: Molecular Mechanisms and Future Perspective. Signal Transduct. Target. Ther. 2022;7:329. doi: 10.1038/s41392-022-01168-8. PubMed DOI PMC

Hubbard S.R., Till J.H. Protein Tyrosine Kinase Structure and Function. Annu. Rev. Biochem. 2000;69:373–398. doi: 10.1146/annurev.biochem.69.1.373. PubMed DOI

Solouki S., August A., Huang W. Non-Receptor Tyrosine Kinase Signaling in Autoimmunity and Therapeutic Implications. Pharmacol. Ther. 2019;201:39–50. doi: 10.1016/j.pharmthera.2019.05.008. PubMed DOI PMC

Arienti C., Pignatta S., Tesei A. Epidermal Growth Factor Receptor Family and Its Role in Gastric Cancer. Front. Oncol. 2019;9:1308. doi: 10.3389/fonc.2019.01308. PubMed DOI PMC

Choi E., Bai X.-C. The Activation Mechanism of the Insulin Receptor: A Structural Perspective. Annu. Rev. Biochem. 2023;92:247–272. doi: 10.1146/annurev-biochem-052521-033250. PubMed DOI PMC

Berenstein R. Class III Receptor Tyrosine Kinases in Acute Leukemia—Biological Functions and Modern Laboratory Analysis. Biomark. Insights. 2015;10:BMI.S22433. doi: 10.4137/BMI.S22433. PubMed DOI PMC

Liu Y., Li Y., Wang Y., Lin C., Zhang D., Chen J., Ouyang L., Wu F., Zhang J., Chen L. Recent Progress on Vascular Endothelial Growth Factor Receptor Inhibitors with Dual Targeting Capabilities for Tumor Therapy. J. Hematol. Oncol. 2022;15:89. doi: 10.1186/s13045-022-01310-7. PubMed DOI PMC

Krook M.A., Reeser J.W., Ernst G., Barker H., Wilberding M., Li G., Chen H.-Z., Roychowdhury S. Fibroblast Growth Factor Receptors in Cancer: Genetic Alterations, Diagnostics, Therapeutic Targets and Mechanisms of Resistance. Br. J. Cancer. 2021;124:880–892. doi: 10.1038/s41416-020-01157-0. PubMed DOI PMC

Dessaux C., Ganier L., Guiraud L., Borg J.-P. Recent Insights into the Therapeutic Strategies Targeting the Pseudokinase PTK7 in Cancer. Oncogene. 2024;43:1973–1984. doi: 10.1038/s41388-024-03060-x. PubMed DOI PMC

Amatu A., Sartore-Bianchi A., Bencardino K., Pizzutilo E.G., Tosi F., Siena S. Tropomyosin Receptor Kinase (TRK) Biology and the Role of NTRK Gene Fusions in Cancer. Ann. Oncol. 2019;30:viii5–viii15. doi: 10.1093/annonc/mdz383. PubMed DOI PMC

Endo M., Kamizaki K., Minami Y. The Ror-Family Receptors in Development, Tissue Regeneration and Age-Related Disease. Front. Cell Dev. Biol. 2022;10:891763. doi: 10.3389/fcell.2022.891763. PubMed DOI PMC

Hubbard S.R., Gnanasambandan K. Structure and Activation of MuSK, a Receptor Tyrosine Kinase Central to Neuromuscular Junction Formation. Biochim. et Biophys. Acta (BBA)—Proteins Proteom. 2013;1834:2166–2169. doi: 10.1016/j.bbapap.2013.02.034. PubMed DOI PMC

Yang X., Liao H.-Y., Zhang H.-H. Roles of MET in Human Cancer. Clin. Chim. Acta. 2022;525:69–83. doi: 10.1016/j.cca.2021.12.017. PubMed DOI

Linger R.M.A., Keating A.K., Earp H.S., Graham D.K. Advances in Cancer Research. Volume 100. Academic Press; Cambridge, MA, USA: 2008. TAM Receptor Tyrosine Kinases: Biologic Functions, Signaling, and Potential Therapeutic Targeting in Human Cancer; pp. 35–83. PubMed PMC

Meltzer M., Eliash N., Azoulay Z., Hadad U., Papo N. In Vitro Inhibition of Cancer Angiogenesis and Migration by a Nanobody That Targets the Orphan Receptor Tie1. Cell. Mol. Life Sci. 2022;79:312. doi: 10.1007/s00018-022-04336-9. PubMed DOI PMC

Darling T.K., Lamb T.J. Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Front. Immunol. 2019;10:1473. doi: 10.3389/fimmu.2019.01473. PubMed DOI PMC

Ibáñez C.F. Structure and Physiology of the RET Receptor Tyrosine Kinase. Cold Spring Harb. Perspect. Biol. 2013;5:a009134. doi: 10.1101/cshperspect.a009134. PubMed DOI PMC

Zapata-García J.A., Jave-Suárez L.F., Aguilar-Lemarroy A. Delving into the Role of Receptor-like Tyrosine Kinase (RYK) in Cancer: In Silico Insights into Its Diagnostic and Prognostic Utility. J. Mol. Pathol. 2024;5:66–80. doi: 10.3390/jmp5010005. DOI

Fu H.-L., Valiathan R.R., Arkwright R., Sohail A., Mihai C., Kumarasiri M., Mahasenan K.V., Mobashery S., Huang P., Agarwal G., et al. Discoidin Domain Receptors: Unique Receptor Tyrosine Kinases in Collagen-Mediated Signaling. J. Biol. Chem. 2013;288:7430–7437. doi: 10.1074/jbc.R112.444158. PubMed DOI PMC

Kato S., Alsafar A., Walavalkar V., Hainsworth J., Kurzrock R. Cancer of Unknown Primary in the Molecular Era. Trends Cancer. 2021;7:465–477. doi: 10.1016/j.trecan.2020.11.002. PubMed DOI PMC

Mórotz G.M., Bradbury N.A., Caluseriu O., Hisanaga S., Miller C.C.J., Swiatecka-Urban A., Lenz H.-J., Moss S.J., Giamas G. A Revised Nomenclature for the Lemur Family of Protein Kinases. Commun. Biol. 2024;7:57. doi: 10.1038/s42003-023-05671-8. PubMed DOI PMC

Ueno H., Hirano N., Kozutsumi H., Sasaki K., Tanaka T., Yazaki Y., Hirai H. An Epidermal Growth Factor Receptor-Leukocyte Tyrosine Kinase Chimeric Receptor Generates Ligand-Dependent Growth Signals through the Ras Signaling Pathway. J. Biol. Chem. 1995;270:20135–20142. doi: 10.1074/jbc.270.34.20135. PubMed DOI

Du X., Shao Y., Qin H.-F., Tai Y.-H., Gao H.-J. ALK-Rearrangement in Non-Small-Cell Lung Cancer (NSCLC) Thorac. Cancer. 2018;9:423–430. doi: 10.1111/1759-7714.12613. PubMed DOI PMC

Shi W., Fu Y., Wang Y. Downregulation of GLUT3 Impairs STYK1/NOK-mediated Metabolic Reprogramming and Proliferation in NIH-3T3 Cells. Oncol. Lett. 2021;22:527. doi: 10.3892/ol.2021.12788. PubMed DOI PMC

Du Z., Lovly C.M. Mechanisms of Receptor Tyrosine Kinase Activation in Cancer. Mol. Cancer. 2018;17:58. doi: 10.1186/s12943-018-0782-4. PubMed DOI PMC

Arter C., Trask L., Ward S., Yeoh S., Bayliss R. Structural Features of the Protein Kinase Domain and Targeted Binding by Small-Molecule Inhibitors. J. Biol. Chem. 2022;298:102247. doi: 10.1016/j.jbc.2022.102247. PubMed DOI PMC

Combarel D., Dousset L., Bouchet S., Ferrer F., Tetu P., Lebbe C., Ciccolini J., Meyer N., Paci A. Tyrosine Kinase Inhibitors in Cancers: Treatment Optimization—Part I. Crit. Rev. Oncol./Hematol. 2024;199:104384. doi: 10.1016/j.critrevonc.2024.104384. PubMed DOI

Bashton M., Nobeli I., Thornton J.M. Cognate Ligand Domain Mapping for Enzymes. J. Mol. Biol. 2006;364:836–852. doi: 10.1016/j.jmb.2006.09.041. PubMed DOI

Ullrich A., Schlessinger J. Signal Transduction by Receptors with Tyrosine Kinase Activity. Cell. 1990;61:203–212. doi: 10.1016/0092-8674(90)90801-K. PubMed DOI

Knösel T., Kampmann E., Kirchner T., Altendorf-Hofmann A. Tyrosinkinasen in Weichgewebstumoren. Pathologe. 2014;35:198–201. doi: 10.1007/s00292-014-1958-3. PubMed DOI

Gnagni L., Ruscito I., Zizzari I.G., Nuti M., Napoletano C., Rughetti A. Precision Oncology Targeting FGFRs: A Systematic Review on Pre-Clinical Activity and Clinical Outcomes of Pemigatinib. Crit. Rev. Oncol./Hematol. 2024;202:104464. doi: 10.1016/j.critrevonc.2024.104464. PubMed DOI

Receptor Tyrosine Kinases (RTKs) [(accessed on 5 October 2024)]. Available online: https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=304.

Reinecke M., Brear P., Vornholz L., Berger B.-T., Seefried F., Wilhelm S., Samaras P., Gyenis L., Litchfield D.W., Médard G., et al. Chemical Proteomics Reveals the Target Landscape of 1,000 Kinase Inhibitors. Nat. Chem. Biol. 2024;20:577–585. doi: 10.1038/s41589-023-01459-3. PubMed DOI PMC

Ryszkiewicz P., Malinowska B., Schlicker E. Polypharmacology: Promises and New Drugs in 2022. Pharmacol. Rep. 2023;75:755–770. doi: 10.1007/s43440-023-00501-4. PubMed DOI PMC

Drake J.M., Lee J.K., Witte O.N. Clinical Targeting of Mutated and Wild-Type Protein Tyrosine Kinases in Cancer. Mol. Cell Biol. 2014;34:1722–1732. doi: 10.1128/MCB.01592-13. PubMed DOI PMC

Shawver L.K., Slamon D., Ullrich A. Smart Drugs: Tyrosine Kinase Inhibitors in Cancer Therapy. Cancer Cell. 2002;1:117–123. doi: 10.1016/S1535-6108(02)00039-9. PubMed DOI

Jiao Q., Bi L., Ren Y., Song S., Wang Q., Wang Y. Advances in Studies of Tyrosine Kinase Inhibitors and Their Acquired Resistance. Mol. Cancer. 2018;17:36. doi: 10.1186/s12943-018-0801-5. PubMed DOI PMC

Saraon P., Pathmanathan S., Snider J., Lyakisheva A., Wong V., Stagljar I. Receptor Tyrosine Kinases and Cancer: Oncogenic Mechanisms and Therapeutic Approaches. Oncogene. 2021;40:4079–4093. doi: 10.1038/s41388-021-01841-2. PubMed DOI

Roskoski R. Classification of Small Molecule Protein Kinase Inhibitors Based upon the Structures of Their Drug-Enzyme Complexes. Pharmacol. Res. 2016;103:26–48. doi: 10.1016/j.phrs.2015.10.021. PubMed DOI

Roskoski R. Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors: A 2024 Update. Pharmacol. Res. 2024;200:107059. doi: 10.1016/j.phrs.2024.107059. PubMed DOI

Drugs@FDA: FDA-Approved Drugs. [(accessed on 5 October 2024)]; Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.

Medicines|European Medicines Agency (EMA) [(accessed on 5 October 2024)]. Available online: https://www.ema.europa.eu/en/medicines.

Resources for Information|Approved Drugs. WITHDRAWN: FDA Grants Accelerated Approval to Infigratinib for Metastatic Cholangiocarcinoma. [(accessed on 5 October 2024)]; Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/withdrawn-fda-grants-accelerated-approval-infigratinib-metastatic-cholangiocarcinoma.

Sarah A., Dondi E., De Francia S. Tyrosine Kinase Inhibitors: The Role of Pharmacokinetics and Pharmacogenetics. Expert Opin. Drug Metab. Toxicol. 2023;19:733–739. doi: 10.1080/17425255.2023.2277758. PubMed DOI

Di Gion P., Kanefendt F., Lindauer A., Scheffler M., Doroshyenko O., Fuhr U., Wolf J., Jaehde U. Clinical Pharmacokinetics of Tyrosine Kinase Inhibitors. Clin. Pharmacokinet. 2011;50:551–603. doi: 10.2165/11593320-000000000-00000. PubMed DOI

Dostálek M., Juřica J., Janoštíková E., Zahradníková L. Farmakokinetika (Pharmacokinetics) 1st ed. Grada Publishing; Praha, Czech Republic: 2006.

Eckstein N., Röper L., Haas B., Potthast H., Hermes U., Unkrig C., Naumann-Winter F., Enzmann H. Clinical Pharmacology of Tyrosine Kinase Inhibitors Becoming Generic Drugs: The Regulatory Perspective. J. Exp. Clin. Cancer Res. 2014;33:15. doi: 10.1186/1756-9966-33-15. PubMed DOI PMC

Hsyu P.-H., Pignataro D.S., Matschke K. Absolute Bioavailability of Bosutinib in Healthy Subjects from an Open-Label, Randomized, 2-Period Crossover Study. Clin. Pharmacol. Drug Dev. 2018;7:373–381. doi: 10.1002/cpdd.396. PubMed DOI

Cheng F., Wang H., Li W., Zhang Y. Clinical Pharmacokinetics and Drug–Drug Interactions of Tyrosine-Kinase Inhibitors in Chronic Myeloid Leukemia: A Clinical Perspective. Crit. Rev. Oncol./Hematol. 2024;195:104258. doi: 10.1016/j.critrevonc.2024.104258. PubMed DOI

Chaar M., Kamta J., Ait-Oudhia S. Mechanisms, Monitoring, and Management of Tyrosine Kinase Inhibitors-Associated Cardiovascular Toxicities. OTT. 2018;11:6227–6237. doi: 10.2147/OTT.S170138. PubMed DOI PMC

Shyam Sunder S., Sharma U.C., Pokharel S. Adverse Effects of Tyrosine Kinase Inhibitors in Cancer Therapy: Pathophysiology, Mechanisms and Clinical Management. Signal Transduct. Target. Ther. 2023;8:262. doi: 10.1038/s41392-023-01469-6. PubMed DOI PMC

Hamnvik O.-P.R., Choueiri T.K., Turchin A., McKay R.R., Goyal L., Davis M., Kaymakcalan M.D., Williams J.S. Clinical Risk Factors for the Development of Hypertension in Patients Treated with Inhibitors of the VEGF Signaling Pathway. Cancer. 2015;121:311–319. doi: 10.1002/cncr.28972. PubMed DOI PMC

Jansook P., Loftsson T., Stefánsson E. Drug-like Properties of Tyrosine Kinase Inhibitors in Ophthalmology: Formulation and Topical Availability. Int. J. Pharm. 2024;655:124018. doi: 10.1016/j.ijpharm.2024.124018. PubMed DOI

Kucharczuk C.R., Ganetsky A., Vozniak J.M. Drug-Drug Interactions, Safety, and Pharmacokinetics of EGFR Tyrosine Kinase Inhibitors for the Treatment of Non–Small Cell Lung Cancer. J. Adv. Pract. Oncol. 2018;9:189–200. PubMed PMC

Kozuki T. Skin Problems and EGFR-Tyrosine Kinase Inhibitor. Jpn. J. Clin. Oncol. 2016;46:291–298. doi: 10.1093/jjco/hyv207. PubMed DOI PMC

Zuo R.C., Apolo A.B., DiGiovanna J.J., Parnes H.L., Keen C.M., Nanda S., Dahut W.L., Cowen E.W. Cutaneous Adverse Effects Associated with the Tyrosine-Kinase Inhibitor Cabozantinib. JAMA Dermatol. 2015;151:170–177. doi: 10.1001/jamadermatol.2014.2734. PubMed DOI PMC

Alemán J.O., Farooki A., Girotra M. Effects of Tyrosine Kinase Inhibition on Bone Metabolism: Untargeted Consequences of Targeted Therapies. Endocr. Relat. Cancer. 2014;21:R247–R259. doi: 10.1530/ERC-12-0400. PubMed DOI

Lin W., Wang X., Diao M., Wang Y., Zhao R., Chen J., Liao Y., Long Q., Meng Y. Promoting Reactive Oxygen Species Accumulation to Overcome Tyrosine Kinase Inhibitor Resistance in Cancer. Cancer Cell Int. 2024;24:239. doi: 10.1186/s12935-024-03418-x. PubMed DOI PMC

Jiang Z., Gu Z., Yu X., Cheng T., Liu B. Research Progress on the Role of Bypass Activation Mechanisms in Resistance to Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. Front. Oncol. 2024;14:1447678. doi: 10.3389/fonc.2024.1447678. PubMed DOI PMC

Huang L., Jiang S., Shi Y. Tyrosine Kinase Inhibitors for Solid Tumors in the Past 20 Years (2001–2020) J. Hematol. Oncol. 2020;13:143. doi: 10.1186/s13045-020-00977-0. PubMed DOI PMC

Rahban M., Joushi S., Bashiri H., Saso L., Sheibani V. Characterization of Prevalent Tyrosine Kinase Inhibitors and Their Challenges in Glioblastoma Treatment. Front. Chem. 2024;11:1325214. doi: 10.3389/fchem.2023.1325214. PubMed DOI PMC

Jin H., Wang L., Bernards R. Rational Combinations of Targeted Cancer Therapies: Background, Advances and Challenges. Nat. Rev. Drug Discov. 2023;22:213–234. doi: 10.1038/s41573-022-00615-z. PubMed DOI

Wu P., Han J., Gong Y., Liu C., Yu H., Xie N. Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications. Pharmaceutics. 2022;14:1990. doi: 10.3390/pharmaceutics14101990. PubMed DOI PMC

Rana I., Oh J., Baig J., Moon J.H., Son S., Nam J. Nanocarriers for Cancer Nano-Immunotherapy. Drug Deliv. Transl. Res. 2023;13:1936–1954. doi: 10.1007/s13346-022-01241-3. PubMed DOI PMC

Russo E., Spallarossa A., Tasso B., Villa C., Brullo C. Nanotechnology of Tyrosine Kinase Inhibitors in Cancer Therapy: A Perspective. Int. J. Mol. Sci. 2021;22:6538. doi: 10.3390/ijms22126538. PubMed DOI PMC

Golombek S.K., May J.-N., Theek B., Appold L., Drude N., Kiessling F., Lammers T. Tumor Targeting via EPR: Strategies to Enhance Patient Responses. Adv. Drug Deliv. Rev. 2018;130:17–38. doi: 10.1016/j.addr.2018.07.007. PubMed DOI PMC

Waghmare P.S., Chabukswar A.R., Raut K.G., Gaikwad-Pawar B., Jagdale S.C. Nanoparticle-Based Targeted Therapy through EGFR Tyrosine Kinase Inhibitors and Their Recent Advances in Lung Cancer Therapy. Explor. Med. 2024;5:513–529. doi: 10.37349/emed.2024.00236. DOI

Bofinger R., Weitsman G., Evans R., Glaser M., Sander K., Allan H., Hochhauser D., Kalber T.L., Årstad E., Hailes H.C., et al. Drug Delivery, Biodistribution and Anti-EGFR Activity: Theragnostic Nanoparticles for Simultaneous in Vivo Delivery of Tyrosine Kinase Inhibitors and Kinase Activity Biosensors. Nanoscale. 2021;13:18520–18535. doi: 10.1039/D1NR02770K. PubMed DOI PMC

Alexander-Bryant A.A., Vanden Berg-Foels W.S., Wen X. Chapter One—Bioengineering Strategies for Designing Targeted Cancer Therapies. In: Tew K.D., Fisher P.B., editors. Advances in Cancer Research. Volume 118. Academic Press; Cambridge, MA, USA: 2013. pp. 1–59. PubMed PMC

Shinde V.R., Revi N., Murugappan S., Singh S.P., Rengan A.K. Enhanced Permeability and Retention Effect: A Key Facilitator for Solid Tumor Targeting by Nanoparticles. Photodiagn. Photodyn. Ther. 2022;39:102915. doi: 10.1016/j.pdpdt.2022.102915. PubMed DOI

Xu W., Ye C., Qing X., Liu S., Lv X., Wang W., Dong X., Zhang Y. Multi-Target Tyrosine Kinase Inhibitor Nanoparticle Delivery Systems for Cancer Therapy. Mater. Today Bio. 2022;16:100358. doi: 10.1016/j.mtbio.2022.100358. PubMed DOI PMC

Dilliard S.A., Siegwart D.J. Passive, Active and Endogenous Organ-Targeted Lipid and Polymer Nanoparticles for Delivery of Genetic Drugs. Nat. Rev. Mater. 2023;8:282–300. doi: 10.1038/s41578-022-00529-7. PubMed DOI PMC

Narum S.M., Le T., Le D.P., Lee J.C., Donahue N.D., Yang W., Wilhelm S. Chapter 4—Passive Targeting in Nanomedicine: Fundamental Concepts, Body Interactions, and Clinical Potential. In: Chung E.J., Leon L., Rinaldi C., editors. Nanoparticles for Biomedical Applications. Elsevier; Amsterdam, The Netherlands: 2020. pp. 37–53. Micro and Nano Technologies.

Kaushik N., Borkar S.B., Nandanwar S.K., Panda P.K., Choi E.H., Kaushik N.K. Nanocarrier Cancer Therapeutics with Functional Stimuli-Responsive Mechanisms. J. Nanobiotechnol. 2022;20:152. doi: 10.1186/s12951-022-01364-2. PubMed DOI PMC

Wang Y., Deng T., Liu X., Fang X., Mo Y., Xie N., Nie G., Zhang B., Fan X. Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy. Int. J. Nanomed. 2024;19:6253–6277. doi: 10.2147/IJN.S459710. PubMed DOI PMC

Fatima M., Almalki W.H., Khan T., Sahebkar A., Kesharwani P. Harnessing the Power of Stimuli-Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System. Adv. Mater. 2024;36:2312939. doi: 10.1002/adma.202312939. PubMed DOI

Zhu W., Wei Z., Han C., Weng X. Nanomaterials as Promising Theranostic Tools in Nanomedicine and Their Applications in Clinical Disease Diagnosis and Treatment. Nanomaterials. 2021;11:3346. doi: 10.3390/nano11123346. PubMed DOI PMC

Raj S., Khurana S., Choudhari R., Kesari K.K., Kamal M.A., Garg N., Ruokolainen J., Das B.C., Kumar D. Specific Targeting Cancer Cells with Nanoparticles and Drug Delivery in Cancer Therapy. Semin. Cancer Biol. 2021;69:166–177. doi: 10.1016/j.semcancer.2019.11.002. PubMed DOI

Tang F., Li L., Chen D. Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Adv. Mater. 2012;24:1504–1534. doi: 10.1002/adma.201104763. PubMed DOI

Yang Q., Jones S.W., Parker C.L., Zamboni W.C., Bear J.E., Lai S.K. Evading Immune Cell Uptake and Clearance Requires PEG Grafting at Densities Substantially Exceeding the Minimum for Brush Conformation. Mol. Pharm. 2014;11:1250–1258. doi: 10.1021/mp400703d. PubMed DOI

Li N., Kuang J., Ren Y., Li X., Li C. Fabrication of Transparent Super-Hydrophilic Coatings with Self-Cleaning and Anti-Fogging Properties by Using Dendritic Nano-Silica. Ceram. Int. 2021;47:18743–18750. doi: 10.1016/j.ceramint.2021.03.209. DOI

Hawthorne D., Pannala A., Sandeman S., Lloyd A. Sustained and Targeted Delivery of Hydrophilic Drug Compounds: A Review of Existing and Novel Technologies from Bench to Bedside. J. Drug Deliv. Sci. Technol. 2022;78:103936. doi: 10.1016/j.jddst.2022.103936. DOI

Ferris D.P., Lu J., Gothard C., Yanes R., Thomas C.R., Olsen J.-C., Stoddart J.F., Tamanoi F., Zink J.I. Synthesis of Biomolecule-Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells. Small. 2011;7:1816–1826. doi: 10.1002/smll.201002300. PubMed DOI PMC

Pearson R.M., Juettner V.V., Hong S. Biomolecular Corona on Nanoparticles: A Survey of Recent Literature and Its Implications in Targeted Drug Delivery. Front. Chem. 2014;2:108. doi: 10.3389/fchem.2014.00108. PubMed DOI PMC

Zielińska A., Cano A., Andreani T., Martins-Gomes C., Silva A.M., Szalata M., Słomski R., Souto E.B. Lipid-Drug Conjugates and Nanoparticles for the Cutaneous Delivery of Cannabidiol. Int. J. Mol. Sci. 2022;23:6165. doi: 10.3390/ijms23116165. PubMed DOI PMC

Shah S., Rangaraj N., Singh S.B., Srivastava S. Exploring the Unexplored Avenues of Surface Charge in Nano-Medicine. Colloid Interface Sci. Commun. 2021;42:100406. doi: 10.1016/j.colcom.2021.100406. DOI

Zhang Y.-N., Poon W., Tavares A.J., McGilvray I.D., Chan W.C.W. Nanoparticle–Liver Interactions: Cellular Uptake and Hepatobiliary Elimination. J. Control. Release. 2016;240:332–348. doi: 10.1016/j.jconrel.2016.01.020. PubMed DOI

Longmire M., Choyke P.L., Kobayashi H. Clearance Properties of Nano-Sized Particles and Molecules as Imaging Agents: Considerations and Caveats. Nanomedicine. 2008;3:703–717. doi: 10.2217/17435889.3.5.703. PubMed DOI PMC

Lu B., Wang J., Hendriks A.J., Nolte T.M. Clearance of Nanoparticles from Blood: Effects of Hydrodynamic Size and Surface Coatings. Environ. Sci. Nano. 2024;11:406–417. doi: 10.1039/D3EN00812F. DOI

Desai N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J. 2012;14:282–295. doi: 10.1208/s12248-012-9339-4. PubMed DOI PMC

Sadauskas E., Danscher G., Stoltenberg M., Vogel U., Larsen A., Wallin H. Protracted Elimination of Gold Nanoparticles from Mouse Liver. Nanomed. Nanotechnol. Biol. Med. 2009;5:162–169. doi: 10.1016/j.nano.2008.11.002. PubMed DOI

Murthy S.K. Nanoparticles in Modern Medicine: State of the Art and Future Challenges. Int. J. Nanomed. 2007;2:129–141. PubMed PMC

Markman J.L., Rekechenetskiy A., Holler E., Ljubimova J.Y. Nanomedicine Therapeutic Approaches to Overcome Cancer Drug Resistance. Adv. Drug Deliv. Rev. 2013;65:1866–1879. doi: 10.1016/j.addr.2013.09.019. PubMed DOI PMC

Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC

Mehta M., Bui T.A., Yang X., Aksoy Y., Goldys E.M., Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater. Au. 2023;3:600–619. doi: 10.1021/acsmaterialsau.3c00032. PubMed DOI PMC

Wang Y., Grainger D.W. Regulatory Considerations Specific to Liposome Drug Development as Complex Drug Products. Front. Drug Deliv. 2022;2:901281. doi: 10.3389/fddev.2022.901281. DOI

Barenholz Y. (Chezy) Doxil®—The First FDA-Approved Nano-Drug: Lessons Learned. J. Control. Release. 2012;160:117–134. doi: 10.1016/j.jconrel.2012.03.020. PubMed DOI

Waheed I., Ali A., Tabassum H., Khatoon N., Lai W.-F., Zhou X. Lipid-Based Nanoparticles as Drug Delivery Carriers for Cancer Therapy. Front. Oncol. 2024;14:1296091. doi: 10.3389/fonc.2024.1296091. PubMed DOI PMC

Ali S.R., Deori C., Gogoi G.K., Borah N.J., Kalita P.P., Chowdhury R., Kaur S., Kakoti B.B. Liposomic Nano Particles in the Treatment of Colorectal and Ovarian Cancer. Eur. J. Med. Chem. Rep. 2024;11:100149. doi: 10.1016/j.ejmcr.2024.100149. DOI

Shah N.N., Schafer E.S., Heym K.M., Place A.E., Burns M.A., Gossai N., Shaw P., Burke M.J., Chang B.H., Hermiston M.L., et al. Vincristine Sulfate Liposome Injection (VSLI, Marqibo®) in Combination with UK ALL-R3 Induction Chemotherapy for Children, Adolescents and Young Adults with Relapsed Acute Lymphoblastic Leukemia (ALL): A Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) Consortium Trial. Blood. 2021;138:3402. doi: 10.1182/blood-2021-149365. DOI

Zhao M., Zhu X., Li B., Yan C., Wu C., He L., Cao J., Lu F., Chen H., Li W. Potent Cancer Therapy by Liposome Microstructure Tailoring with Active-to-Passive Targeting and Shell-to-Core Thermosensitive Features. Mater. Today Bio. 2024;26:101035. doi: 10.1016/j.mtbio.2024.101035. PubMed DOI PMC

Parveen S., Gupta P., Kumar S., Banerjee M. Lipid Polymer Hybrid Nanoparticles as Potent Vehicles for Drug Delivery in Cancer Therapeutics. Med. Drug Discov. 2023;20:100165. doi: 10.1016/j.medidd.2023.100165. DOI

Khan M.M., Madni A., Torchilin V., Filipczak N., Pan J., Tahir N., Shah H. Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin. Drug Deliv. 2019;26:765–772. doi: 10.1080/10717544.2019.1642420. PubMed DOI PMC

Shao H., Liu M., Jiang H., Zhang Y. Polysaccharide-Based Drug Delivery Targeted Approach for Colon Cancer Treatment: A Comprehensive Review. Int. J. Biol. Macromol. 2025;302:139177. doi: 10.1016/j.ijbiomac.2024.139177. PubMed DOI

Beach M.A., Nayanathara U., Gao Y., Zhang C., Xiong Y., Wang Y., Such G.K. Polymeric Nanoparticles for Drug Delivery. Chem. Rev. 2024;124:5505–5616. doi: 10.1021/acs.chemrev.3c00705. PubMed DOI PMC

Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI

Yuan H., Guo H., Luan X., He M., Li F., Burnett J., Truchan N., Sun D. Albumin Nanoparticle of Paclitaxel (Abraxane) Decreases While Taxol Increases Breast Cancer Stem Cells in Treatment of Triple Negative Breast Cancer. Mol. Pharm. 2020;17:2275–2286. doi: 10.1021/acs.molpharmaceut.9b01221. PubMed DOI PMC

Blackwell C.W., Castillo H.L. Injectable Cabotegravir: A New Approach to HIV Pre-Exposure Prophylaxis. J. Nurse Pract. 2022;18:947–950. doi: 10.1016/j.nurpra.2022.08.007. DOI

APRETUDE (Cabotegravir Extended-Release Injectable Suspension) 2024. [(accessed on 5 October 2024)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/215499s008lbl.pdf.

Mayer K.H., Molina J.-M., Thompson M.A., Anderson P.L., Mounzer K.C., De Wet J.J., DeJesus E., Jessen H., Grant R.M., Ruane P.J., et al. Emtricitabine and Tenofovir Alafenamide vs Emtricitabine and Tenofovir Disoproxil Fumarate for HIV Pre-Exposure Prophylaxis (DISCOVER): Primary Results from a Randomised, Double-Blind, Multicentre, Active-Controlled, Phase 3, Non-Inferiority Trial. Lancet. 2020;396:239–254. doi: 10.1016/S0140-6736(20)31065-5. PubMed DOI PMC

ESTRASORB® (Estradiol Topical Emulsion) 2024. [(accessed on 5 October 2024)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/021371s009lbl.pdf.

Lee E., Anselmo M., Tahsin C.T., Vanden Noven M., Stokes W., Carter J.R., Keller-Ross M.L. Vasomotor Symptoms of Menopause, Autonomic Dysfunction, and Cardiovascular Disease. Am. J. Physiol. Heart Circ. Physiol. 2022;323:H1270–H1280. doi: 10.1152/ajpheart.00477.2022. PubMed DOI PMC

Hheidari A., Mohammadi J., Ghodousi M., Mahmoodi M., Ebrahimi S., Pishbin E., Rahdar A. Metal-Based Nanoparticle in Cancer Treatment: Lessons Learned and Challenges. Front. Bioeng. Biotechnol. 2024;12:1436297. doi: 10.3389/fbioe.2024.1436297. PubMed DOI PMC

Roshani M., Rezaian-Isfahni A., Lotfalizadeh M.H., Khassafi N., Abadi M.H.J.N., Nejati M. Metal Nanoparticles as a Potential Technique for the Diagnosis and Treatment of Gastrointestinal Cancer: A Comprehensive Review. Cancer Cell Int. 2023;23:280. doi: 10.1186/s12935-023-03115-1. PubMed DOI PMC

Horikoshi S., Serpone N. Microwaves in Nanoparticle Synthesis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2013. Introduction to Nanoparticles; pp. 1–24.

Gutiérrez de la Rosa S.Y., Muñiz Diaz R., Villalobos Gutiérrez P.T., Patakfalvi R., Gutiérrez Coronado Ó. Functionalized Platinum Nanoparticles with Biomedical Applications. Int. J. Mol. Sci. 2022;23:9404. doi: 10.3390/ijms23169404. PubMed DOI PMC

Beirne D.F., Dalla Via M., Velasco-Torrijos T., Montagner D. Metal-Tyrosine Kinase Inhibitors: Targeted Metal-Drug Conjugates. Coord. Chem. Rev. 2022;469:214655. doi: 10.1016/j.ccr.2022.214655. DOI

Kao H.-F., Liao B.-C., Huang Y.-L., Huang H.-C., Chen C.-N., Chen T.-C., Hong Y.-J., Chan C.-Y., Chia J.-S., Hong R.-L. Afatinib and Pembrolizumab for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma (ALPHA Study): A Phase II Study with Biomarker Analysis. Clin. Cancer Res. 2022;28:1560–1571. doi: 10.1158/1078-0432.CCR-21-3025. PubMed DOI PMC

Ji X., Liu Y., Mei F., Li X., Zhang M., Yao B., Wu R., You J., Pei F. SPP1 Overexpression Is Associated with Poor Outcomes in ALK Fusion Lung Cancer Patients without Receiving Targeted Therapy. Sci. Rep. 2021;11:14031. doi: 10.1038/s41598-021-93484-2. PubMed DOI PMC

Kim H.S., Kim S.-M., Kim H., Pyo K.-H., Sun J.-M., Ahn M.-J., Park K., Keam B., Kwon N.-J., Yun H.J., et al. Phase II Clinical and Exploratory Biomarker Study of Dacomitinib in Recurrent and/or Metastatic Esophageal Squamous Cell Carcinoma. Oncotarget. 2015;6:44971–44984. doi: 10.18632/oncotarget.6056. PubMed DOI PMC

Dolman M.E.M., Harmsen S., Pieters E.H., Sparidans R.W., Lacombe M., Szokol B., Őrfi L., Kéri G., Storm G., Hennink W.E., et al. Targeting of a Platinum-Bound Sunitinib Analog to Renal Proximal Tubular Cells. IJN. 2012;7:417–433. doi: 10.2147/IJN.S26485. PubMed DOI PMC

Meher A., Tandi A., Moharana S., Chakroborty S., Mohapatra S.S., Mondal A., Dey S., Chandra P. Silver Nanoparticle for Biomedical Applications: A Review. Hybrid Adv. 2024;6:100184. doi: 10.1016/j.hybadv.2024.100184. DOI

Sakthi Devi R., Girigoswami A., Siddharth M., Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl. Biochem. Biotechnol. 2022;194:4187–4219. doi: 10.1007/s12010-022-03963-z. PubMed DOI PMC

Janith G.I., Herath H.S., Hendeniya N., Attygalle D., Amarasinghe D.A.S., Logeeshan V., Wickramasinghe P.M.T.B., Wijayasinghe Y.S. Advances in Surface Plasmon Resonance Biosensors for Medical Diagnostics: An Overview of Recent Developments and Techniques. J. Pharm. Biomed. Anal. Open. 2023;2:100019. doi: 10.1016/j.jpbao.2023.100019. DOI

Piergies N., Oćwieja M., Paluszkiewicz C., Kwiatek W. Identification of Erlotinib Adsorption Pattern onto Silver Nanoparticles: SERS Studies. J. Raman Spectrosc. 2018;49:1265–1273. doi: 10.1002/jrs.5384. DOI

Abdelhafez O.H., Fahim J.R., Masri R.R.E., Salem M.A., Desoukey S.Y., Ahmed S., Kamel M.S., Pimentel-Elardo S.M., Nodwell J.R., Abdelmohsen U.R. Chemical and Biological Studies on the Soft Coral Nephthea Sp. RSC Adv. 2021;11:23654–23663. doi: 10.1039/D1RA03045K. PubMed DOI PMC

Kundu N., Mukherjee D., Maiti T.K., Sarkar N. Protein-Guided Formation of Silver Nanoclusters and Their Assembly with Graphene Oxide as an Improved Bioimaging Agent with Reduced Toxicity. J. Phys. Chem. Lett. 2017;8:2291–2297. doi: 10.1021/acs.jpclett.7b00600. PubMed DOI

Hu X., Zhang Y., Ding T., Liu J., Zhao H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front. Bioeng. Biotechnol. 2020;8:990. doi: 10.3389/fbioe.2020.00990. PubMed DOI PMC

Vial S., Reis R.L., Oliveira J.M. Recent Advances Using Gold Nanoparticles as a Promising Multimodal Tool for Tissue Engineering and Regenerative Medicine. Curr. Opin. Solid State Mater. Sci. 2017;21:92–112. doi: 10.1016/j.cossms.2016.03.006. DOI

Han H.S., Choi K.Y. Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines. 2021;9:305. doi: 10.3390/biomedicines9030305. PubMed DOI PMC

Wu X., Suo Y., Shi H., Liu R., Wu F., Wang T., Ma L., Liu H., Cheng Z. Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. Nano-Micro Lett. 2020;12:38. doi: 10.1007/s40820-020-0378-6. PubMed DOI PMC

Hwang H.S., Shin H., Han J., Na K. Combination of Photodynamic Therapy (PDT) and Anti-Tumor Immunity in Cancer Therapy. J. Pharm. Investig. 2018;48:143–151. doi: 10.1007/s40005-017-0377-x. PubMed DOI PMC

García Calavia P., Bruce G., Pérez-García L., Russell D.A. Photosensitiser-Gold Nanoparticle Conjugates for Photodynamic Therapy of Cancer. Photochem. Photobiol. Sci. 2018;17:1534–1552. doi: 10.1039/c8pp00271a. PubMed DOI

Munteanu R.-A., Tigu A.B., Feder R., Tatar A.-S., Gulei D., Tomuleasa C., Boca S. In Vivo Imaging System (IVIS) Therapeutic Assessment of Tyrosine Kinase Inhibitor-Loaded Gold Nanocarriers for Acute Myeloid Leukemia: A Pilot Study. Front. Pharmacol. 2024;15:1382399. doi: 10.3389/fphar.2024.1382399. PubMed DOI PMC

Zhao L., Chang F., Tong Y., Yin J., Xu J., Li H., Du L., Jiang Y. A Multifunctional Bimetallic Nanoplatform for Synergic Local Hyperthermia and Chemotherapy Targeting HER2-Positive Breast Cancer. Adv. Sci. 2024;11:2308316. doi: 10.1002/advs.202308316. PubMed DOI PMC

Xuhong J.-C., Qi X.-W., Zhang Y., Jiang J. Mechanism, Safety and Efficacy of Three Tyrosine Kinase Inhibitors Lapatinib, Neratinib and Pyrotinib in HER2-Positive Breast Cancer. Am. J. Cancer Res. 2019;9:2103–2119. PubMed PMC

Wilson F.R., Coombes M.E., Brezden-Masley C., Yurchenko M., Wylie Q., Douma R., Varu A., Hutton B., Skidmore B., Cameron C. Herceptin® (Trastuzumab) in HER2-Positive Early Breast Cancer: A Systematic Review and Cumulative Network Meta-Analysis. Syst. Rev. 2018;7:191. doi: 10.1186/s13643-018-0854-y. PubMed DOI PMC

Lv W., Wu H., Zhang Y., Li H., Shu H., Su C., Zhu Y., Wang T., Nie F. cRGD-Targeted Gold-Based Nanoparticles Overcome EGFR-TKI Resistance of NSCLC via Low-Temperature Photothermal Therapy Combined with Sonodynamic Therapy. Biomater. Sci. 2023;11:1677–1691. doi: 10.1039/D2BM01825J. PubMed DOI

Kang S., Yim G., Min D.-H., Jang H. Wavelength Independent Photo-Chemo Tri-Modal Combinatorial Renal Cell Carcinoma Therapy with Biocompatible Gold-Titania Nanostars. Adv. Ther. 2022;5:2100204. doi: 10.1002/adtp.202100204. DOI

Molinari A., Iovenitti G., Mancini A., Gravina G.L., Chebbi M., Caruana M., Vignaroli G., Orofino F., Rango E., Angelucci A., et al. AuNP Pyrazolo[3,4-d]Pyrimidine Nanosystem in Combination with Radiotherapy against Glioblastoma. ACS Med. Chem. Lett. 2020;11:664–670. doi: 10.1021/acsmedchemlett.9b00538. PubMed DOI PMC

Gauld S.B., Cambier J.C. Src-Family Kinases in B-Cell Development and Signaling. Oncogene. 2004;23:8001–8006. doi: 10.1038/sj.onc.1208075. PubMed DOI

Coelho S.C., Reis D.P., Pereira M.C., Coelho M.A.N. Doxorubicin and Varlitinib Delivery by Functionalized Gold Nanoparticles Against Human Pancreatic Adenocarcinoma. Pharmaceutics. 2019;11:551. doi: 10.3390/pharmaceutics11110551. PubMed DOI PMC

Liu A. Fierce Pharma Asia—Hengrui’s FDA Reprimands; Sanofi’s India Site Expansion; Aslan’s Downfall|Fierce Pharma. [(accessed on 5 October 2024)]. Available online: https://www.fiercepharma.com/pharma/hengrui-fda-reprimands-sanofi-india-site-expansion-aslan-downfall.

Liu A. 20 Years in, Singapore Still Searches for Its Biotech Success Story. [(accessed on 5 October 2024)]. Available online: https://www.fiercebiotech.com/biotech/20-years-singapore-still-searches-its-biotech-success-story.

Codullo V., Cova E., Pandolfi L., Breda S., Morosini M., Frangipane V., Malatesta M., Calderan L., Cagnone M., Pacini C., et al. Imatinib-Loaded Gold Nanoparticles Inhibit Proliferation of Fibroblasts and Macrophages from Systemic Sclerosis Patients and Ameliorate Experimental Bleomycin-Induced Lung Fibrosis. J. Control. Release. 2019;310:198–208. doi: 10.1016/j.jconrel.2019.08.015. PubMed DOI

Cryer A.M., Chan C., Eftychidou A., Maksoudian C., Mahesh M., Tetley T.D., Spivey A.C., Thorley A.J. Tyrosine Kinase Inhibitor Gold Nanoconjugates for the Treatment of Non-Small Cell Lung Cancer. ACS Appl. Mater. Interfaces. 2019;11:16336–16346. doi: 10.1021/acsami.9b02986. PubMed DOI

Bloom A.N., Tian H., Schoen C., Winograd N. Label-Free Visualization of Nilotinib-Functionalized Gold Nanoparticles within Single Mammalian Cells by C60- SIMS Imaging. Anal. Bioanal. Chem. 2017;409:3067–3076. doi: 10.1007/s00216-017-0262-5. PubMed DOI

Sarkar S., Konar S., Prasad P.N., Rajput S., Kumar B.N.P., Rao R.R., Pathak A., Fisher P.B., Mandal M. Micellear Gold Nanoparticles as Delivery Vehicles for Dual Tyrosine Kinase Inhibitor ZD6474 for Metastatic Breast Cancer Treatment. Langmuir. 2017;33:7649–7659. doi: 10.1021/acs.langmuir.7b01072. PubMed DOI

Vinhas R., Fernandes A.R., Baptista P.V. Gold Nanoparticles for BCR-ABL1Gene Silencing: Improving Tyrosine Kinase Inhibitor Efficacy in Chronic Myeloid Leukemia. Mol. Ther. Nucleic Acids. 2017;7:408–416. doi: 10.1016/j.omtn.2017.05.003. PubMed DOI PMC

Schiller G.J., Tuttle P., Desai P. Allogeneic Hematopoietic Stem Cell Transplantation in FLT3-ITD–Positive Acute Myelogenous Leukemia: The Role for FLT3 Tyrosine Kinase Inhibitors Post-Transplantation. Biol. Blood Marrow Transplant. 2016;22:982–990. doi: 10.1016/j.bbmt.2016.01.013. PubMed DOI

Suarasan S., Simon T., Boca S., Tomuleasa C., Astilean S. Gelatin-Coated Gold Nanoparticles as Carriers of FLT3 Inhibitors for Acute Myeloid Leukemia Treatment. Chem. Biol. Drug Des. 2016;87:927–935. doi: 10.1111/cbdd.12725. PubMed DOI

Gossai N.P., Naumann J.A., Li N.-S., Zamora E.A., Gordon D.J., Piccirilli J.A., Gordon P.M. Drug Conjugated Nanoparticles Activated by Cancer Cell Specific mRNA. Oncotarget. 2016;7:38243–38256. doi: 10.18632/oncotarget.9430. PubMed DOI PMC

Liu J., Abshire C., Carry C., Sholl A.B., Mandava S.H., Datta A., Ranjan M., Callaghan C., Peralta D.V., Williams K.S., et al. Nanotechnology Combined Therapy: Tyrosine Kinase-Bound Gold Nanorod and Laser Thermal Ablation Produce a Synergistic Higher Treatment Response of Renal Cell Carcinoma in a Murine Model. BJU Int. 2017;119:342–348. doi: 10.1111/bju.13590. PubMed DOI

Ding H.X., Liu K.K.-C., Sakya S.M., Flick A.C., O’Donnell C.J. Synthetic Approaches to the 2011 New Drugs. Bioorganic Med. Chem. 2013;21:2795–2825. doi: 10.1016/j.bmc.2013.02.061. PubMed DOI

Lian S., Gao X., Song C., Li H., Lin J. Chemical Enhancement Effect of Icotinib–Au Complex Studied by Combined Density Functional Theory and Surface-Enhanced Raman Scattering. Langmuir. 2021;37:12907–12918. doi: 10.1021/acs.langmuir.1c01957. PubMed DOI

Castelo-Soccio L., Kim H., Gadina M., Schwartzberg P.L., Laurence A., O’Shea J.J. Protein Kinases: Drug Targets for Immunological Disorders. Nat. Rev. Immunol. 2023;23:787–806. doi: 10.1038/s41577-023-00877-7. PubMed DOI PMC

Li J., Gong C., Zhou H., Liu J., Xia X., Ha W., Jiang Y., Liu Q., Xiong H. Kinase Inhibitors and Kinase-Targeted Cancer Therapies: Recent Advances and Future Perspectives. Int. J. Mol. Sci. 2024;25:5489. doi: 10.3390/ijms25105489. PubMed DOI PMC

Taherdoost H., Ghofrani A. AI’s Role in Revolutionizing Personalized Medicine by Reshaping Pharmacogenomics and Drug Therapy. Intell. Pharm. 2024;2:643–650. doi: 10.1016/j.ipha.2024.08.005. DOI

Ghebrehiwet I., Zaki N., Damseh R., Mohamad M.S. Revolutionizing Personalized Medicine with Generative AI: A Systematic Review. Artif. Intell. Rev. 2024;57:128. doi: 10.1007/s10462-024-10768-5. DOI

Fattahi M.R., Dehghani M., Paknahad S., Rahiminia S., Zareie D., Hoseini B., Oroomi T.R., Motedayyen H., Arefnezhad R. Clinical Insights into Nanomedicine and Biosafety: Advanced Therapeutic Approaches for Common Urological Cancers. Front. Oncol. 2024;14:1438297. doi: 10.3389/fonc.2024.1438297. PubMed DOI PMC

Patra J.K., Das G., Fraceto L.F., Campos E.V.R., del Pilar Rodriguez-Torres M., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC

de Souza Cardoso Delfino C., de Paula Pereira M.C., dos Santos Oliveira M., de Carvalho Favareto I., Valladão V.S., de Oliveira Mota M., Costa M.V.B., Sousa-Batista A.J., Balbino T.A. Scaling Nanopharmaceutical Production for Personalized Medicine: Challenges and Strategies. J. Nanopart. Res. 2025;27:108. doi: 10.1007/s11051-025-06293-3. DOI

Shao K., Singha S., Clemente-Casares X., Tsai S., Yang Y., Santamaria P. Nanoparticle-Based Immunotherapy for Cancer. ACS Nano. 2015;9:16–30. doi: 10.1021/nn5062029. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...