Innovative Approaches in Cancer Treatment: Emphasizing the Role of Nanomaterials in Tyrosine Kinase Inhibition
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
IGA_PrF_2025_022
Palacký University Olomouc
PubMed
40574095
PubMed Central
PMC12196280
DOI
10.3390/pharmaceutics17060783
PII: pharmaceutics17060783
Knihovny.cz E-zdroje
- Klíčová slova
- anticancer treatment, drug delivery, gold nanoparticles, metal nanoparticles, nanomaterials, nanomedicine, tyrosine kinase inhibitors,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Medical research is at the forefront of addressing pressing global challenges, including preventing and treating cardiovascular, autoimmune, and oncological diseases, neurodegenerative disorders, and the growing resistance of pathogens to antibiotics. Understanding the molecular mechanisms underlying these diseases, using advanced medical approaches and cutting-edge technologies, structure-based drug design, and personalized medicine, is critical for developing effective therapies, specifically anticancer treatments. Background/Objectives: One of the key drivers of cancer at the cellular level is the abnormal activity of protein enzymes, specifically serine, threonine, or tyrosine residues, through a process known as phosphorylation. While tyrosine kinase-mediated phosphorylation constitutes a minor fraction of total cellular phosphorylation, its dysregulation is critically linked to carcinogenesis and tumor progression. Methods: Small-molecule inhibitors, such as imatinib or erlotinib, are designed to halt this process, restoring cellular equilibrium and offering targeted therapeutic approaches. However, challenges persist, including frequent drug resistance and severe side effects associated with these therapies. Nanomedicine offers a transformative potential to overcome these limitations. Results: By leveraging the unique properties of nanomaterials, it is possible to achieve precise drug delivery, enhance accumulation at target sites, and improve therapeutic efficacy. Examples include nanoparticle-based delivery systems for TKIs and the combination of nanomaterials with photothermal or photodynamic therapies to enhance treatment effectiveness. Combining nanomedicine with traditional treatments holds promise and perspective for synergistic and more effective cancer management. Conclusions: This review delves into recent advances in understanding tyrosine kinase activity, the mechanisms of their inhibition, and the innovative integration of nanomedicine to revolutionize cancer treatment strategies.
Zobrazit více v PubMed
Yaron-Barir T.M., Joughin B.A., Huntsman E.M., Kerelsky A., Cizin D.M., Cohen B.M., Regev A., Song J., Vasan N., Lin T.-Y., et al. The Intrinsic Substrate Specificity of the Human Tyrosine Kinome. Nature. 2024;629:1174–1181. doi: 10.1038/s41586-024-07407-y. PubMed DOI PMC
Hedger G., Sansom M.S.P., Koldsø H. The Juxtamembrane Regions of Human Receptor Tyrosine Kinases Exhibit Conserved Interaction Sites with Anionic Lipids. Sci. Rep. 2015;5:9198. doi: 10.1038/srep09198. PubMed DOI PMC
Kim M., Baek M., Joon Kim D. Protein Tyrosine Signaling and Its Potential Therapeutic Implications in Carcinogenesis. Curr. Pharm. Des. 2017;23:4226–4246. doi: 10.2174/1381612823666170616082125. PubMed DOI PMC
Pang K., Wang W., Qin J., Shi Z., Hao L., Ma Y., Xu H., Wu Z., Pan D., Chen Z., et al. Role of Protein Phosphorylation in Cell Signaling, Disease, and the Intervention Therapy. MedComm (2020) 2022;3:e175. doi: 10.1002/mco2.175. PubMed DOI PMC
Roskoski R. Hydrophobic and Polar Interactions of FDA-Approved Small Molecule Protein Kinase Inhibitors with Their Target Enzymes. Pharmacol. Res. 2021;169:105660. doi: 10.1016/j.phrs.2021.105660. PubMed DOI
Mingione V.R., Paung Y., Outhwaite I.R., Seeliger M.A. Allosteric Regulation and Inhibition of Protein Kinases. Biochem. Soc. Trans. 2023;51:373–385. doi: 10.1042/BST20220940. PubMed DOI PMC
Karpov O.A., Fearnley G.W., Smith G.A., Kankanala J., McPherson M.J., Tomlinson D.C., Harrison M.A., Ponnambalam S., Karpov O.A., Fearnley G.W., et al. Receptor Tyrosine Kinase Structure and Function in Health and Disease. AIMS Biophys. 2015;2:476–502. doi: 10.3934/biophy.2015.4.476. DOI
Metibemu D.S., Akinloye O.A., Akamo A.J., Ojo D.A., Okeowo O.T., Omotuyi I.O. Exploring Receptor Tyrosine Kinases-Inhibitors in Cancer Treatments. Egypt. J. Med. Hum. Genet. 2019;20:35. doi: 10.1186/s43042-019-0035-0. DOI
Smidova V., Michalek P., Goliasova Z., Eckschlager T., Hodek P., Adam V., Heger Z. Nanomedicine of Tyrosine Kinase Inhibitors. [(accessed on 14 January 2025)]. Available online: https://www.thno.org/v11p1546.htm. PubMed PMC
Wang Z., Cole P.A. Catalytic Mechanisms and Regulation of Protein Kinases. Methods Enzymol. 2014;548:1–21. doi: 10.1016/B978-0-12-397918-6.00001-X. PubMed DOI PMC
Yang Y., Li S., Wang Y., Zhao Y., Li Q. Protein Tyrosine Kinase Inhibitor Resistance in Malignant Tumors: Molecular Mechanisms and Future Perspective. Signal Transduct. Target. Ther. 2022;7:329. doi: 10.1038/s41392-022-01168-8. PubMed DOI PMC
Hubbard S.R., Till J.H. Protein Tyrosine Kinase Structure and Function. Annu. Rev. Biochem. 2000;69:373–398. doi: 10.1146/annurev.biochem.69.1.373. PubMed DOI
Solouki S., August A., Huang W. Non-Receptor Tyrosine Kinase Signaling in Autoimmunity and Therapeutic Implications. Pharmacol. Ther. 2019;201:39–50. doi: 10.1016/j.pharmthera.2019.05.008. PubMed DOI PMC
Arienti C., Pignatta S., Tesei A. Epidermal Growth Factor Receptor Family and Its Role in Gastric Cancer. Front. Oncol. 2019;9:1308. doi: 10.3389/fonc.2019.01308. PubMed DOI PMC
Choi E., Bai X.-C. The Activation Mechanism of the Insulin Receptor: A Structural Perspective. Annu. Rev. Biochem. 2023;92:247–272. doi: 10.1146/annurev-biochem-052521-033250. PubMed DOI PMC
Berenstein R. Class III Receptor Tyrosine Kinases in Acute Leukemia—Biological Functions and Modern Laboratory Analysis. Biomark. Insights. 2015;10:BMI.S22433. doi: 10.4137/BMI.S22433. PubMed DOI PMC
Liu Y., Li Y., Wang Y., Lin C., Zhang D., Chen J., Ouyang L., Wu F., Zhang J., Chen L. Recent Progress on Vascular Endothelial Growth Factor Receptor Inhibitors with Dual Targeting Capabilities for Tumor Therapy. J. Hematol. Oncol. 2022;15:89. doi: 10.1186/s13045-022-01310-7. PubMed DOI PMC
Krook M.A., Reeser J.W., Ernst G., Barker H., Wilberding M., Li G., Chen H.-Z., Roychowdhury S. Fibroblast Growth Factor Receptors in Cancer: Genetic Alterations, Diagnostics, Therapeutic Targets and Mechanisms of Resistance. Br. J. Cancer. 2021;124:880–892. doi: 10.1038/s41416-020-01157-0. PubMed DOI PMC
Dessaux C., Ganier L., Guiraud L., Borg J.-P. Recent Insights into the Therapeutic Strategies Targeting the Pseudokinase PTK7 in Cancer. Oncogene. 2024;43:1973–1984. doi: 10.1038/s41388-024-03060-x. PubMed DOI PMC
Amatu A., Sartore-Bianchi A., Bencardino K., Pizzutilo E.G., Tosi F., Siena S. Tropomyosin Receptor Kinase (TRK) Biology and the Role of NTRK Gene Fusions in Cancer. Ann. Oncol. 2019;30:viii5–viii15. doi: 10.1093/annonc/mdz383. PubMed DOI PMC
Endo M., Kamizaki K., Minami Y. The Ror-Family Receptors in Development, Tissue Regeneration and Age-Related Disease. Front. Cell Dev. Biol. 2022;10:891763. doi: 10.3389/fcell.2022.891763. PubMed DOI PMC
Hubbard S.R., Gnanasambandan K. Structure and Activation of MuSK, a Receptor Tyrosine Kinase Central to Neuromuscular Junction Formation. Biochim. et Biophys. Acta (BBA)—Proteins Proteom. 2013;1834:2166–2169. doi: 10.1016/j.bbapap.2013.02.034. PubMed DOI PMC
Yang X., Liao H.-Y., Zhang H.-H. Roles of MET in Human Cancer. Clin. Chim. Acta. 2022;525:69–83. doi: 10.1016/j.cca.2021.12.017. PubMed DOI
Linger R.M.A., Keating A.K., Earp H.S., Graham D.K. Advances in Cancer Research. Volume 100. Academic Press; Cambridge, MA, USA: 2008. TAM Receptor Tyrosine Kinases: Biologic Functions, Signaling, and Potential Therapeutic Targeting in Human Cancer; pp. 35–83. PubMed PMC
Meltzer M., Eliash N., Azoulay Z., Hadad U., Papo N. In Vitro Inhibition of Cancer Angiogenesis and Migration by a Nanobody That Targets the Orphan Receptor Tie1. Cell. Mol. Life Sci. 2022;79:312. doi: 10.1007/s00018-022-04336-9. PubMed DOI PMC
Darling T.K., Lamb T.J. Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Front. Immunol. 2019;10:1473. doi: 10.3389/fimmu.2019.01473. PubMed DOI PMC
Ibáñez C.F. Structure and Physiology of the RET Receptor Tyrosine Kinase. Cold Spring Harb. Perspect. Biol. 2013;5:a009134. doi: 10.1101/cshperspect.a009134. PubMed DOI PMC
Zapata-García J.A., Jave-Suárez L.F., Aguilar-Lemarroy A. Delving into the Role of Receptor-like Tyrosine Kinase (RYK) in Cancer: In Silico Insights into Its Diagnostic and Prognostic Utility. J. Mol. Pathol. 2024;5:66–80. doi: 10.3390/jmp5010005. DOI
Fu H.-L., Valiathan R.R., Arkwright R., Sohail A., Mihai C., Kumarasiri M., Mahasenan K.V., Mobashery S., Huang P., Agarwal G., et al. Discoidin Domain Receptors: Unique Receptor Tyrosine Kinases in Collagen-Mediated Signaling. J. Biol. Chem. 2013;288:7430–7437. doi: 10.1074/jbc.R112.444158. PubMed DOI PMC
Kato S., Alsafar A., Walavalkar V., Hainsworth J., Kurzrock R. Cancer of Unknown Primary in the Molecular Era. Trends Cancer. 2021;7:465–477. doi: 10.1016/j.trecan.2020.11.002. PubMed DOI PMC
Mórotz G.M., Bradbury N.A., Caluseriu O., Hisanaga S., Miller C.C.J., Swiatecka-Urban A., Lenz H.-J., Moss S.J., Giamas G. A Revised Nomenclature for the Lemur Family of Protein Kinases. Commun. Biol. 2024;7:57. doi: 10.1038/s42003-023-05671-8. PubMed DOI PMC
Ueno H., Hirano N., Kozutsumi H., Sasaki K., Tanaka T., Yazaki Y., Hirai H. An Epidermal Growth Factor Receptor-Leukocyte Tyrosine Kinase Chimeric Receptor Generates Ligand-Dependent Growth Signals through the Ras Signaling Pathway. J. Biol. Chem. 1995;270:20135–20142. doi: 10.1074/jbc.270.34.20135. PubMed DOI
Du X., Shao Y., Qin H.-F., Tai Y.-H., Gao H.-J. ALK-Rearrangement in Non-Small-Cell Lung Cancer (NSCLC) Thorac. Cancer. 2018;9:423–430. doi: 10.1111/1759-7714.12613. PubMed DOI PMC
Shi W., Fu Y., Wang Y. Downregulation of GLUT3 Impairs STYK1/NOK-mediated Metabolic Reprogramming and Proliferation in NIH-3T3 Cells. Oncol. Lett. 2021;22:527. doi: 10.3892/ol.2021.12788. PubMed DOI PMC
Du Z., Lovly C.M. Mechanisms of Receptor Tyrosine Kinase Activation in Cancer. Mol. Cancer. 2018;17:58. doi: 10.1186/s12943-018-0782-4. PubMed DOI PMC
Arter C., Trask L., Ward S., Yeoh S., Bayliss R. Structural Features of the Protein Kinase Domain and Targeted Binding by Small-Molecule Inhibitors. J. Biol. Chem. 2022;298:102247. doi: 10.1016/j.jbc.2022.102247. PubMed DOI PMC
Combarel D., Dousset L., Bouchet S., Ferrer F., Tetu P., Lebbe C., Ciccolini J., Meyer N., Paci A. Tyrosine Kinase Inhibitors in Cancers: Treatment Optimization—Part I. Crit. Rev. Oncol./Hematol. 2024;199:104384. doi: 10.1016/j.critrevonc.2024.104384. PubMed DOI
Bashton M., Nobeli I., Thornton J.M. Cognate Ligand Domain Mapping for Enzymes. J. Mol. Biol. 2006;364:836–852. doi: 10.1016/j.jmb.2006.09.041. PubMed DOI
Ullrich A., Schlessinger J. Signal Transduction by Receptors with Tyrosine Kinase Activity. Cell. 1990;61:203–212. doi: 10.1016/0092-8674(90)90801-K. PubMed DOI
Knösel T., Kampmann E., Kirchner T., Altendorf-Hofmann A. Tyrosinkinasen in Weichgewebstumoren. Pathologe. 2014;35:198–201. doi: 10.1007/s00292-014-1958-3. PubMed DOI
Gnagni L., Ruscito I., Zizzari I.G., Nuti M., Napoletano C., Rughetti A. Precision Oncology Targeting FGFRs: A Systematic Review on Pre-Clinical Activity and Clinical Outcomes of Pemigatinib. Crit. Rev. Oncol./Hematol. 2024;202:104464. doi: 10.1016/j.critrevonc.2024.104464. PubMed DOI
Receptor Tyrosine Kinases (RTKs) [(accessed on 5 October 2024)]. Available online: https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=304.
Reinecke M., Brear P., Vornholz L., Berger B.-T., Seefried F., Wilhelm S., Samaras P., Gyenis L., Litchfield D.W., Médard G., et al. Chemical Proteomics Reveals the Target Landscape of 1,000 Kinase Inhibitors. Nat. Chem. Biol. 2024;20:577–585. doi: 10.1038/s41589-023-01459-3. PubMed DOI PMC
Ryszkiewicz P., Malinowska B., Schlicker E. Polypharmacology: Promises and New Drugs in 2022. Pharmacol. Rep. 2023;75:755–770. doi: 10.1007/s43440-023-00501-4. PubMed DOI PMC
Drake J.M., Lee J.K., Witte O.N. Clinical Targeting of Mutated and Wild-Type Protein Tyrosine Kinases in Cancer. Mol. Cell Biol. 2014;34:1722–1732. doi: 10.1128/MCB.01592-13. PubMed DOI PMC
Shawver L.K., Slamon D., Ullrich A. Smart Drugs: Tyrosine Kinase Inhibitors in Cancer Therapy. Cancer Cell. 2002;1:117–123. doi: 10.1016/S1535-6108(02)00039-9. PubMed DOI
Jiao Q., Bi L., Ren Y., Song S., Wang Q., Wang Y. Advances in Studies of Tyrosine Kinase Inhibitors and Their Acquired Resistance. Mol. Cancer. 2018;17:36. doi: 10.1186/s12943-018-0801-5. PubMed DOI PMC
Saraon P., Pathmanathan S., Snider J., Lyakisheva A., Wong V., Stagljar I. Receptor Tyrosine Kinases and Cancer: Oncogenic Mechanisms and Therapeutic Approaches. Oncogene. 2021;40:4079–4093. doi: 10.1038/s41388-021-01841-2. PubMed DOI
Roskoski R. Classification of Small Molecule Protein Kinase Inhibitors Based upon the Structures of Their Drug-Enzyme Complexes. Pharmacol. Res. 2016;103:26–48. doi: 10.1016/j.phrs.2015.10.021. PubMed DOI
Roskoski R. Properties of FDA-Approved Small Molecule Protein Kinase Inhibitors: A 2024 Update. Pharmacol. Res. 2024;200:107059. doi: 10.1016/j.phrs.2024.107059. PubMed DOI
Drugs@FDA: FDA-Approved Drugs. [(accessed on 5 October 2024)]; Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.
Medicines|European Medicines Agency (EMA) [(accessed on 5 October 2024)]. Available online: https://www.ema.europa.eu/en/medicines.
Resources for Information|Approved Drugs. WITHDRAWN: FDA Grants Accelerated Approval to Infigratinib for Metastatic Cholangiocarcinoma. [(accessed on 5 October 2024)]; Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/withdrawn-fda-grants-accelerated-approval-infigratinib-metastatic-cholangiocarcinoma.
Sarah A., Dondi E., De Francia S. Tyrosine Kinase Inhibitors: The Role of Pharmacokinetics and Pharmacogenetics. Expert Opin. Drug Metab. Toxicol. 2023;19:733–739. doi: 10.1080/17425255.2023.2277758. PubMed DOI
Di Gion P., Kanefendt F., Lindauer A., Scheffler M., Doroshyenko O., Fuhr U., Wolf J., Jaehde U. Clinical Pharmacokinetics of Tyrosine Kinase Inhibitors. Clin. Pharmacokinet. 2011;50:551–603. doi: 10.2165/11593320-000000000-00000. PubMed DOI
Dostálek M., Juřica J., Janoštíková E., Zahradníková L. Farmakokinetika (Pharmacokinetics) 1st ed. Grada Publishing; Praha, Czech Republic: 2006.
Eckstein N., Röper L., Haas B., Potthast H., Hermes U., Unkrig C., Naumann-Winter F., Enzmann H. Clinical Pharmacology of Tyrosine Kinase Inhibitors Becoming Generic Drugs: The Regulatory Perspective. J. Exp. Clin. Cancer Res. 2014;33:15. doi: 10.1186/1756-9966-33-15. PubMed DOI PMC
Hsyu P.-H., Pignataro D.S., Matschke K. Absolute Bioavailability of Bosutinib in Healthy Subjects from an Open-Label, Randomized, 2-Period Crossover Study. Clin. Pharmacol. Drug Dev. 2018;7:373–381. doi: 10.1002/cpdd.396. PubMed DOI
Cheng F., Wang H., Li W., Zhang Y. Clinical Pharmacokinetics and Drug–Drug Interactions of Tyrosine-Kinase Inhibitors in Chronic Myeloid Leukemia: A Clinical Perspective. Crit. Rev. Oncol./Hematol. 2024;195:104258. doi: 10.1016/j.critrevonc.2024.104258. PubMed DOI
Chaar M., Kamta J., Ait-Oudhia S. Mechanisms, Monitoring, and Management of Tyrosine Kinase Inhibitors-Associated Cardiovascular Toxicities. OTT. 2018;11:6227–6237. doi: 10.2147/OTT.S170138. PubMed DOI PMC
Shyam Sunder S., Sharma U.C., Pokharel S. Adverse Effects of Tyrosine Kinase Inhibitors in Cancer Therapy: Pathophysiology, Mechanisms and Clinical Management. Signal Transduct. Target. Ther. 2023;8:262. doi: 10.1038/s41392-023-01469-6. PubMed DOI PMC
Hamnvik O.-P.R., Choueiri T.K., Turchin A., McKay R.R., Goyal L., Davis M., Kaymakcalan M.D., Williams J.S. Clinical Risk Factors for the Development of Hypertension in Patients Treated with Inhibitors of the VEGF Signaling Pathway. Cancer. 2015;121:311–319. doi: 10.1002/cncr.28972. PubMed DOI PMC
Jansook P., Loftsson T., Stefánsson E. Drug-like Properties of Tyrosine Kinase Inhibitors in Ophthalmology: Formulation and Topical Availability. Int. J. Pharm. 2024;655:124018. doi: 10.1016/j.ijpharm.2024.124018. PubMed DOI
Kucharczuk C.R., Ganetsky A., Vozniak J.M. Drug-Drug Interactions, Safety, and Pharmacokinetics of EGFR Tyrosine Kinase Inhibitors for the Treatment of Non–Small Cell Lung Cancer. J. Adv. Pract. Oncol. 2018;9:189–200. PubMed PMC
Kozuki T. Skin Problems and EGFR-Tyrosine Kinase Inhibitor. Jpn. J. Clin. Oncol. 2016;46:291–298. doi: 10.1093/jjco/hyv207. PubMed DOI PMC
Zuo R.C., Apolo A.B., DiGiovanna J.J., Parnes H.L., Keen C.M., Nanda S., Dahut W.L., Cowen E.W. Cutaneous Adverse Effects Associated with the Tyrosine-Kinase Inhibitor Cabozantinib. JAMA Dermatol. 2015;151:170–177. doi: 10.1001/jamadermatol.2014.2734. PubMed DOI PMC
Alemán J.O., Farooki A., Girotra M. Effects of Tyrosine Kinase Inhibition on Bone Metabolism: Untargeted Consequences of Targeted Therapies. Endocr. Relat. Cancer. 2014;21:R247–R259. doi: 10.1530/ERC-12-0400. PubMed DOI
Lin W., Wang X., Diao M., Wang Y., Zhao R., Chen J., Liao Y., Long Q., Meng Y. Promoting Reactive Oxygen Species Accumulation to Overcome Tyrosine Kinase Inhibitor Resistance in Cancer. Cancer Cell Int. 2024;24:239. doi: 10.1186/s12935-024-03418-x. PubMed DOI PMC
Jiang Z., Gu Z., Yu X., Cheng T., Liu B. Research Progress on the Role of Bypass Activation Mechanisms in Resistance to Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. Front. Oncol. 2024;14:1447678. doi: 10.3389/fonc.2024.1447678. PubMed DOI PMC
Huang L., Jiang S., Shi Y. Tyrosine Kinase Inhibitors for Solid Tumors in the Past 20 Years (2001–2020) J. Hematol. Oncol. 2020;13:143. doi: 10.1186/s13045-020-00977-0. PubMed DOI PMC
Rahban M., Joushi S., Bashiri H., Saso L., Sheibani V. Characterization of Prevalent Tyrosine Kinase Inhibitors and Their Challenges in Glioblastoma Treatment. Front. Chem. 2024;11:1325214. doi: 10.3389/fchem.2023.1325214. PubMed DOI PMC
Jin H., Wang L., Bernards R. Rational Combinations of Targeted Cancer Therapies: Background, Advances and Challenges. Nat. Rev. Drug Discov. 2023;22:213–234. doi: 10.1038/s41573-022-00615-z. PubMed DOI
Wu P., Han J., Gong Y., Liu C., Yu H., Xie N. Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications. Pharmaceutics. 2022;14:1990. doi: 10.3390/pharmaceutics14101990. PubMed DOI PMC
Rana I., Oh J., Baig J., Moon J.H., Son S., Nam J. Nanocarriers for Cancer Nano-Immunotherapy. Drug Deliv. Transl. Res. 2023;13:1936–1954. doi: 10.1007/s13346-022-01241-3. PubMed DOI PMC
Russo E., Spallarossa A., Tasso B., Villa C., Brullo C. Nanotechnology of Tyrosine Kinase Inhibitors in Cancer Therapy: A Perspective. Int. J. Mol. Sci. 2021;22:6538. doi: 10.3390/ijms22126538. PubMed DOI PMC
Golombek S.K., May J.-N., Theek B., Appold L., Drude N., Kiessling F., Lammers T. Tumor Targeting via EPR: Strategies to Enhance Patient Responses. Adv. Drug Deliv. Rev. 2018;130:17–38. doi: 10.1016/j.addr.2018.07.007. PubMed DOI PMC
Waghmare P.S., Chabukswar A.R., Raut K.G., Gaikwad-Pawar B., Jagdale S.C. Nanoparticle-Based Targeted Therapy through EGFR Tyrosine Kinase Inhibitors and Their Recent Advances in Lung Cancer Therapy. Explor. Med. 2024;5:513–529. doi: 10.37349/emed.2024.00236. DOI
Bofinger R., Weitsman G., Evans R., Glaser M., Sander K., Allan H., Hochhauser D., Kalber T.L., Årstad E., Hailes H.C., et al. Drug Delivery, Biodistribution and Anti-EGFR Activity: Theragnostic Nanoparticles for Simultaneous in Vivo Delivery of Tyrosine Kinase Inhibitors and Kinase Activity Biosensors. Nanoscale. 2021;13:18520–18535. doi: 10.1039/D1NR02770K. PubMed DOI PMC
Alexander-Bryant A.A., Vanden Berg-Foels W.S., Wen X. Chapter One—Bioengineering Strategies for Designing Targeted Cancer Therapies. In: Tew K.D., Fisher P.B., editors. Advances in Cancer Research. Volume 118. Academic Press; Cambridge, MA, USA: 2013. pp. 1–59. PubMed PMC
Shinde V.R., Revi N., Murugappan S., Singh S.P., Rengan A.K. Enhanced Permeability and Retention Effect: A Key Facilitator for Solid Tumor Targeting by Nanoparticles. Photodiagn. Photodyn. Ther. 2022;39:102915. doi: 10.1016/j.pdpdt.2022.102915. PubMed DOI
Xu W., Ye C., Qing X., Liu S., Lv X., Wang W., Dong X., Zhang Y. Multi-Target Tyrosine Kinase Inhibitor Nanoparticle Delivery Systems for Cancer Therapy. Mater. Today Bio. 2022;16:100358. doi: 10.1016/j.mtbio.2022.100358. PubMed DOI PMC
Dilliard S.A., Siegwart D.J. Passive, Active and Endogenous Organ-Targeted Lipid and Polymer Nanoparticles for Delivery of Genetic Drugs. Nat. Rev. Mater. 2023;8:282–300. doi: 10.1038/s41578-022-00529-7. PubMed DOI PMC
Narum S.M., Le T., Le D.P., Lee J.C., Donahue N.D., Yang W., Wilhelm S. Chapter 4—Passive Targeting in Nanomedicine: Fundamental Concepts, Body Interactions, and Clinical Potential. In: Chung E.J., Leon L., Rinaldi C., editors. Nanoparticles for Biomedical Applications. Elsevier; Amsterdam, The Netherlands: 2020. pp. 37–53. Micro and Nano Technologies.
Kaushik N., Borkar S.B., Nandanwar S.K., Panda P.K., Choi E.H., Kaushik N.K. Nanocarrier Cancer Therapeutics with Functional Stimuli-Responsive Mechanisms. J. Nanobiotechnol. 2022;20:152. doi: 10.1186/s12951-022-01364-2. PubMed DOI PMC
Wang Y., Deng T., Liu X., Fang X., Mo Y., Xie N., Nie G., Zhang B., Fan X. Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy. Int. J. Nanomed. 2024;19:6253–6277. doi: 10.2147/IJN.S459710. PubMed DOI PMC
Fatima M., Almalki W.H., Khan T., Sahebkar A., Kesharwani P. Harnessing the Power of Stimuli-Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System. Adv. Mater. 2024;36:2312939. doi: 10.1002/adma.202312939. PubMed DOI
Zhu W., Wei Z., Han C., Weng X. Nanomaterials as Promising Theranostic Tools in Nanomedicine and Their Applications in Clinical Disease Diagnosis and Treatment. Nanomaterials. 2021;11:3346. doi: 10.3390/nano11123346. PubMed DOI PMC
Raj S., Khurana S., Choudhari R., Kesari K.K., Kamal M.A., Garg N., Ruokolainen J., Das B.C., Kumar D. Specific Targeting Cancer Cells with Nanoparticles and Drug Delivery in Cancer Therapy. Semin. Cancer Biol. 2021;69:166–177. doi: 10.1016/j.semcancer.2019.11.002. PubMed DOI
Tang F., Li L., Chen D. Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Adv. Mater. 2012;24:1504–1534. doi: 10.1002/adma.201104763. PubMed DOI
Yang Q., Jones S.W., Parker C.L., Zamboni W.C., Bear J.E., Lai S.K. Evading Immune Cell Uptake and Clearance Requires PEG Grafting at Densities Substantially Exceeding the Minimum for Brush Conformation. Mol. Pharm. 2014;11:1250–1258. doi: 10.1021/mp400703d. PubMed DOI
Li N., Kuang J., Ren Y., Li X., Li C. Fabrication of Transparent Super-Hydrophilic Coatings with Self-Cleaning and Anti-Fogging Properties by Using Dendritic Nano-Silica. Ceram. Int. 2021;47:18743–18750. doi: 10.1016/j.ceramint.2021.03.209. DOI
Hawthorne D., Pannala A., Sandeman S., Lloyd A. Sustained and Targeted Delivery of Hydrophilic Drug Compounds: A Review of Existing and Novel Technologies from Bench to Bedside. J. Drug Deliv. Sci. Technol. 2022;78:103936. doi: 10.1016/j.jddst.2022.103936. DOI
Ferris D.P., Lu J., Gothard C., Yanes R., Thomas C.R., Olsen J.-C., Stoddart J.F., Tamanoi F., Zink J.I. Synthesis of Biomolecule-Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells. Small. 2011;7:1816–1826. doi: 10.1002/smll.201002300. PubMed DOI PMC
Pearson R.M., Juettner V.V., Hong S. Biomolecular Corona on Nanoparticles: A Survey of Recent Literature and Its Implications in Targeted Drug Delivery. Front. Chem. 2014;2:108. doi: 10.3389/fchem.2014.00108. PubMed DOI PMC
Zielińska A., Cano A., Andreani T., Martins-Gomes C., Silva A.M., Szalata M., Słomski R., Souto E.B. Lipid-Drug Conjugates and Nanoparticles for the Cutaneous Delivery of Cannabidiol. Int. J. Mol. Sci. 2022;23:6165. doi: 10.3390/ijms23116165. PubMed DOI PMC
Shah S., Rangaraj N., Singh S.B., Srivastava S. Exploring the Unexplored Avenues of Surface Charge in Nano-Medicine. Colloid Interface Sci. Commun. 2021;42:100406. doi: 10.1016/j.colcom.2021.100406. DOI
Zhang Y.-N., Poon W., Tavares A.J., McGilvray I.D., Chan W.C.W. Nanoparticle–Liver Interactions: Cellular Uptake and Hepatobiliary Elimination. J. Control. Release. 2016;240:332–348. doi: 10.1016/j.jconrel.2016.01.020. PubMed DOI
Longmire M., Choyke P.L., Kobayashi H. Clearance Properties of Nano-Sized Particles and Molecules as Imaging Agents: Considerations and Caveats. Nanomedicine. 2008;3:703–717. doi: 10.2217/17435889.3.5.703. PubMed DOI PMC
Lu B., Wang J., Hendriks A.J., Nolte T.M. Clearance of Nanoparticles from Blood: Effects of Hydrodynamic Size and Surface Coatings. Environ. Sci. Nano. 2024;11:406–417. doi: 10.1039/D3EN00812F. DOI
Desai N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J. 2012;14:282–295. doi: 10.1208/s12248-012-9339-4. PubMed DOI PMC
Sadauskas E., Danscher G., Stoltenberg M., Vogel U., Larsen A., Wallin H. Protracted Elimination of Gold Nanoparticles from Mouse Liver. Nanomed. Nanotechnol. Biol. Med. 2009;5:162–169. doi: 10.1016/j.nano.2008.11.002. PubMed DOI
Murthy S.K. Nanoparticles in Modern Medicine: State of the Art and Future Challenges. Int. J. Nanomed. 2007;2:129–141. PubMed PMC
Markman J.L., Rekechenetskiy A., Holler E., Ljubimova J.Y. Nanomedicine Therapeutic Approaches to Overcome Cancer Drug Resistance. Adv. Drug Deliv. Rev. 2013;65:1866–1879. doi: 10.1016/j.addr.2013.09.019. PubMed DOI PMC
Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC
Mehta M., Bui T.A., Yang X., Aksoy Y., Goldys E.M., Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater. Au. 2023;3:600–619. doi: 10.1021/acsmaterialsau.3c00032. PubMed DOI PMC
Wang Y., Grainger D.W. Regulatory Considerations Specific to Liposome Drug Development as Complex Drug Products. Front. Drug Deliv. 2022;2:901281. doi: 10.3389/fddev.2022.901281. DOI
Barenholz Y. (Chezy) Doxil®—The First FDA-Approved Nano-Drug: Lessons Learned. J. Control. Release. 2012;160:117–134. doi: 10.1016/j.jconrel.2012.03.020. PubMed DOI
Waheed I., Ali A., Tabassum H., Khatoon N., Lai W.-F., Zhou X. Lipid-Based Nanoparticles as Drug Delivery Carriers for Cancer Therapy. Front. Oncol. 2024;14:1296091. doi: 10.3389/fonc.2024.1296091. PubMed DOI PMC
Ali S.R., Deori C., Gogoi G.K., Borah N.J., Kalita P.P., Chowdhury R., Kaur S., Kakoti B.B. Liposomic Nano Particles in the Treatment of Colorectal and Ovarian Cancer. Eur. J. Med. Chem. Rep. 2024;11:100149. doi: 10.1016/j.ejmcr.2024.100149. DOI
Shah N.N., Schafer E.S., Heym K.M., Place A.E., Burns M.A., Gossai N., Shaw P., Burke M.J., Chang B.H., Hermiston M.L., et al. Vincristine Sulfate Liposome Injection (VSLI, Marqibo®) in Combination with UK ALL-R3 Induction Chemotherapy for Children, Adolescents and Young Adults with Relapsed Acute Lymphoblastic Leukemia (ALL): A Therapeutic Advances in Childhood Leukemia and Lymphoma (TACL) Consortium Trial. Blood. 2021;138:3402. doi: 10.1182/blood-2021-149365. DOI
Zhao M., Zhu X., Li B., Yan C., Wu C., He L., Cao J., Lu F., Chen H., Li W. Potent Cancer Therapy by Liposome Microstructure Tailoring with Active-to-Passive Targeting and Shell-to-Core Thermosensitive Features. Mater. Today Bio. 2024;26:101035. doi: 10.1016/j.mtbio.2024.101035. PubMed DOI PMC
Parveen S., Gupta P., Kumar S., Banerjee M. Lipid Polymer Hybrid Nanoparticles as Potent Vehicles for Drug Delivery in Cancer Therapeutics. Med. Drug Discov. 2023;20:100165. doi: 10.1016/j.medidd.2023.100165. DOI
Khan M.M., Madni A., Torchilin V., Filipczak N., Pan J., Tahir N., Shah H. Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin. Drug Deliv. 2019;26:765–772. doi: 10.1080/10717544.2019.1642420. PubMed DOI PMC
Shao H., Liu M., Jiang H., Zhang Y. Polysaccharide-Based Drug Delivery Targeted Approach for Colon Cancer Treatment: A Comprehensive Review. Int. J. Biol. Macromol. 2025;302:139177. doi: 10.1016/j.ijbiomac.2024.139177. PubMed DOI
Beach M.A., Nayanathara U., Gao Y., Zhang C., Xiong Y., Wang Y., Such G.K. Polymeric Nanoparticles for Drug Delivery. Chem. Rev. 2024;124:5505–5616. doi: 10.1021/acs.chemrev.3c00705. PubMed DOI PMC
Bobo D., Robinson K.J., Islam J., Thurecht K.J., Corrie S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016;33:2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI
Yuan H., Guo H., Luan X., He M., Li F., Burnett J., Truchan N., Sun D. Albumin Nanoparticle of Paclitaxel (Abraxane) Decreases While Taxol Increases Breast Cancer Stem Cells in Treatment of Triple Negative Breast Cancer. Mol. Pharm. 2020;17:2275–2286. doi: 10.1021/acs.molpharmaceut.9b01221. PubMed DOI PMC
Blackwell C.W., Castillo H.L. Injectable Cabotegravir: A New Approach to HIV Pre-Exposure Prophylaxis. J. Nurse Pract. 2022;18:947–950. doi: 10.1016/j.nurpra.2022.08.007. DOI
APRETUDE (Cabotegravir Extended-Release Injectable Suspension) 2024. [(accessed on 5 October 2024)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/215499s008lbl.pdf.
Mayer K.H., Molina J.-M., Thompson M.A., Anderson P.L., Mounzer K.C., De Wet J.J., DeJesus E., Jessen H., Grant R.M., Ruane P.J., et al. Emtricitabine and Tenofovir Alafenamide vs Emtricitabine and Tenofovir Disoproxil Fumarate for HIV Pre-Exposure Prophylaxis (DISCOVER): Primary Results from a Randomised, Double-Blind, Multicentre, Active-Controlled, Phase 3, Non-Inferiority Trial. Lancet. 2020;396:239–254. doi: 10.1016/S0140-6736(20)31065-5. PubMed DOI PMC
ESTRASORB® (Estradiol Topical Emulsion) 2024. [(accessed on 5 October 2024)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/021371s009lbl.pdf.
Lee E., Anselmo M., Tahsin C.T., Vanden Noven M., Stokes W., Carter J.R., Keller-Ross M.L. Vasomotor Symptoms of Menopause, Autonomic Dysfunction, and Cardiovascular Disease. Am. J. Physiol. Heart Circ. Physiol. 2022;323:H1270–H1280. doi: 10.1152/ajpheart.00477.2022. PubMed DOI PMC
Hheidari A., Mohammadi J., Ghodousi M., Mahmoodi M., Ebrahimi S., Pishbin E., Rahdar A. Metal-Based Nanoparticle in Cancer Treatment: Lessons Learned and Challenges. Front. Bioeng. Biotechnol. 2024;12:1436297. doi: 10.3389/fbioe.2024.1436297. PubMed DOI PMC
Roshani M., Rezaian-Isfahni A., Lotfalizadeh M.H., Khassafi N., Abadi M.H.J.N., Nejati M. Metal Nanoparticles as a Potential Technique for the Diagnosis and Treatment of Gastrointestinal Cancer: A Comprehensive Review. Cancer Cell Int. 2023;23:280. doi: 10.1186/s12935-023-03115-1. PubMed DOI PMC
Horikoshi S., Serpone N. Microwaves in Nanoparticle Synthesis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2013. Introduction to Nanoparticles; pp. 1–24.
Gutiérrez de la Rosa S.Y., Muñiz Diaz R., Villalobos Gutiérrez P.T., Patakfalvi R., Gutiérrez Coronado Ó. Functionalized Platinum Nanoparticles with Biomedical Applications. Int. J. Mol. Sci. 2022;23:9404. doi: 10.3390/ijms23169404. PubMed DOI PMC
Beirne D.F., Dalla Via M., Velasco-Torrijos T., Montagner D. Metal-Tyrosine Kinase Inhibitors: Targeted Metal-Drug Conjugates. Coord. Chem. Rev. 2022;469:214655. doi: 10.1016/j.ccr.2022.214655. DOI
Kao H.-F., Liao B.-C., Huang Y.-L., Huang H.-C., Chen C.-N., Chen T.-C., Hong Y.-J., Chan C.-Y., Chia J.-S., Hong R.-L. Afatinib and Pembrolizumab for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma (ALPHA Study): A Phase II Study with Biomarker Analysis. Clin. Cancer Res. 2022;28:1560–1571. doi: 10.1158/1078-0432.CCR-21-3025. PubMed DOI PMC
Ji X., Liu Y., Mei F., Li X., Zhang M., Yao B., Wu R., You J., Pei F. SPP1 Overexpression Is Associated with Poor Outcomes in ALK Fusion Lung Cancer Patients without Receiving Targeted Therapy. Sci. Rep. 2021;11:14031. doi: 10.1038/s41598-021-93484-2. PubMed DOI PMC
Kim H.S., Kim S.-M., Kim H., Pyo K.-H., Sun J.-M., Ahn M.-J., Park K., Keam B., Kwon N.-J., Yun H.J., et al. Phase II Clinical and Exploratory Biomarker Study of Dacomitinib in Recurrent and/or Metastatic Esophageal Squamous Cell Carcinoma. Oncotarget. 2015;6:44971–44984. doi: 10.18632/oncotarget.6056. PubMed DOI PMC
Dolman M.E.M., Harmsen S., Pieters E.H., Sparidans R.W., Lacombe M., Szokol B., Őrfi L., Kéri G., Storm G., Hennink W.E., et al. Targeting of a Platinum-Bound Sunitinib Analog to Renal Proximal Tubular Cells. IJN. 2012;7:417–433. doi: 10.2147/IJN.S26485. PubMed DOI PMC
Meher A., Tandi A., Moharana S., Chakroborty S., Mohapatra S.S., Mondal A., Dey S., Chandra P. Silver Nanoparticle for Biomedical Applications: A Review. Hybrid Adv. 2024;6:100184. doi: 10.1016/j.hybadv.2024.100184. DOI
Sakthi Devi R., Girigoswami A., Siddharth M., Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl. Biochem. Biotechnol. 2022;194:4187–4219. doi: 10.1007/s12010-022-03963-z. PubMed DOI PMC
Janith G.I., Herath H.S., Hendeniya N., Attygalle D., Amarasinghe D.A.S., Logeeshan V., Wickramasinghe P.M.T.B., Wijayasinghe Y.S. Advances in Surface Plasmon Resonance Biosensors for Medical Diagnostics: An Overview of Recent Developments and Techniques. J. Pharm. Biomed. Anal. Open. 2023;2:100019. doi: 10.1016/j.jpbao.2023.100019. DOI
Piergies N., Oćwieja M., Paluszkiewicz C., Kwiatek W. Identification of Erlotinib Adsorption Pattern onto Silver Nanoparticles: SERS Studies. J. Raman Spectrosc. 2018;49:1265–1273. doi: 10.1002/jrs.5384. DOI
Abdelhafez O.H., Fahim J.R., Masri R.R.E., Salem M.A., Desoukey S.Y., Ahmed S., Kamel M.S., Pimentel-Elardo S.M., Nodwell J.R., Abdelmohsen U.R. Chemical and Biological Studies on the Soft Coral Nephthea Sp. RSC Adv. 2021;11:23654–23663. doi: 10.1039/D1RA03045K. PubMed DOI PMC
Kundu N., Mukherjee D., Maiti T.K., Sarkar N. Protein-Guided Formation of Silver Nanoclusters and Their Assembly with Graphene Oxide as an Improved Bioimaging Agent with Reduced Toxicity. J. Phys. Chem. Lett. 2017;8:2291–2297. doi: 10.1021/acs.jpclett.7b00600. PubMed DOI
Hu X., Zhang Y., Ding T., Liu J., Zhao H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front. Bioeng. Biotechnol. 2020;8:990. doi: 10.3389/fbioe.2020.00990. PubMed DOI PMC
Vial S., Reis R.L., Oliveira J.M. Recent Advances Using Gold Nanoparticles as a Promising Multimodal Tool for Tissue Engineering and Regenerative Medicine. Curr. Opin. Solid State Mater. Sci. 2017;21:92–112. doi: 10.1016/j.cossms.2016.03.006. DOI
Han H.S., Choi K.Y. Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines. 2021;9:305. doi: 10.3390/biomedicines9030305. PubMed DOI PMC
Wu X., Suo Y., Shi H., Liu R., Wu F., Wang T., Ma L., Liu H., Cheng Z. Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. Nano-Micro Lett. 2020;12:38. doi: 10.1007/s40820-020-0378-6. PubMed DOI PMC
Hwang H.S., Shin H., Han J., Na K. Combination of Photodynamic Therapy (PDT) and Anti-Tumor Immunity in Cancer Therapy. J. Pharm. Investig. 2018;48:143–151. doi: 10.1007/s40005-017-0377-x. PubMed DOI PMC
García Calavia P., Bruce G., Pérez-García L., Russell D.A. Photosensitiser-Gold Nanoparticle Conjugates for Photodynamic Therapy of Cancer. Photochem. Photobiol. Sci. 2018;17:1534–1552. doi: 10.1039/c8pp00271a. PubMed DOI
Munteanu R.-A., Tigu A.B., Feder R., Tatar A.-S., Gulei D., Tomuleasa C., Boca S. In Vivo Imaging System (IVIS) Therapeutic Assessment of Tyrosine Kinase Inhibitor-Loaded Gold Nanocarriers for Acute Myeloid Leukemia: A Pilot Study. Front. Pharmacol. 2024;15:1382399. doi: 10.3389/fphar.2024.1382399. PubMed DOI PMC
Zhao L., Chang F., Tong Y., Yin J., Xu J., Li H., Du L., Jiang Y. A Multifunctional Bimetallic Nanoplatform for Synergic Local Hyperthermia and Chemotherapy Targeting HER2-Positive Breast Cancer. Adv. Sci. 2024;11:2308316. doi: 10.1002/advs.202308316. PubMed DOI PMC
Xuhong J.-C., Qi X.-W., Zhang Y., Jiang J. Mechanism, Safety and Efficacy of Three Tyrosine Kinase Inhibitors Lapatinib, Neratinib and Pyrotinib in HER2-Positive Breast Cancer. Am. J. Cancer Res. 2019;9:2103–2119. PubMed PMC
Wilson F.R., Coombes M.E., Brezden-Masley C., Yurchenko M., Wylie Q., Douma R., Varu A., Hutton B., Skidmore B., Cameron C. Herceptin® (Trastuzumab) in HER2-Positive Early Breast Cancer: A Systematic Review and Cumulative Network Meta-Analysis. Syst. Rev. 2018;7:191. doi: 10.1186/s13643-018-0854-y. PubMed DOI PMC
Lv W., Wu H., Zhang Y., Li H., Shu H., Su C., Zhu Y., Wang T., Nie F. cRGD-Targeted Gold-Based Nanoparticles Overcome EGFR-TKI Resistance of NSCLC via Low-Temperature Photothermal Therapy Combined with Sonodynamic Therapy. Biomater. Sci. 2023;11:1677–1691. doi: 10.1039/D2BM01825J. PubMed DOI
Kang S., Yim G., Min D.-H., Jang H. Wavelength Independent Photo-Chemo Tri-Modal Combinatorial Renal Cell Carcinoma Therapy with Biocompatible Gold-Titania Nanostars. Adv. Ther. 2022;5:2100204. doi: 10.1002/adtp.202100204. DOI
Molinari A., Iovenitti G., Mancini A., Gravina G.L., Chebbi M., Caruana M., Vignaroli G., Orofino F., Rango E., Angelucci A., et al. AuNP Pyrazolo[3,4-d]Pyrimidine Nanosystem in Combination with Radiotherapy against Glioblastoma. ACS Med. Chem. Lett. 2020;11:664–670. doi: 10.1021/acsmedchemlett.9b00538. PubMed DOI PMC
Gauld S.B., Cambier J.C. Src-Family Kinases in B-Cell Development and Signaling. Oncogene. 2004;23:8001–8006. doi: 10.1038/sj.onc.1208075. PubMed DOI
Coelho S.C., Reis D.P., Pereira M.C., Coelho M.A.N. Doxorubicin and Varlitinib Delivery by Functionalized Gold Nanoparticles Against Human Pancreatic Adenocarcinoma. Pharmaceutics. 2019;11:551. doi: 10.3390/pharmaceutics11110551. PubMed DOI PMC
Liu A. Fierce Pharma Asia—Hengrui’s FDA Reprimands; Sanofi’s India Site Expansion; Aslan’s Downfall|Fierce Pharma. [(accessed on 5 October 2024)]. Available online: https://www.fiercepharma.com/pharma/hengrui-fda-reprimands-sanofi-india-site-expansion-aslan-downfall.
Liu A. 20 Years in, Singapore Still Searches for Its Biotech Success Story. [(accessed on 5 October 2024)]. Available online: https://www.fiercebiotech.com/biotech/20-years-singapore-still-searches-its-biotech-success-story.
Codullo V., Cova E., Pandolfi L., Breda S., Morosini M., Frangipane V., Malatesta M., Calderan L., Cagnone M., Pacini C., et al. Imatinib-Loaded Gold Nanoparticles Inhibit Proliferation of Fibroblasts and Macrophages from Systemic Sclerosis Patients and Ameliorate Experimental Bleomycin-Induced Lung Fibrosis. J. Control. Release. 2019;310:198–208. doi: 10.1016/j.jconrel.2019.08.015. PubMed DOI
Cryer A.M., Chan C., Eftychidou A., Maksoudian C., Mahesh M., Tetley T.D., Spivey A.C., Thorley A.J. Tyrosine Kinase Inhibitor Gold Nanoconjugates for the Treatment of Non-Small Cell Lung Cancer. ACS Appl. Mater. Interfaces. 2019;11:16336–16346. doi: 10.1021/acsami.9b02986. PubMed DOI
Bloom A.N., Tian H., Schoen C., Winograd N. Label-Free Visualization of Nilotinib-Functionalized Gold Nanoparticles within Single Mammalian Cells by C60- SIMS Imaging. Anal. Bioanal. Chem. 2017;409:3067–3076. doi: 10.1007/s00216-017-0262-5. PubMed DOI
Sarkar S., Konar S., Prasad P.N., Rajput S., Kumar B.N.P., Rao R.R., Pathak A., Fisher P.B., Mandal M. Micellear Gold Nanoparticles as Delivery Vehicles for Dual Tyrosine Kinase Inhibitor ZD6474 for Metastatic Breast Cancer Treatment. Langmuir. 2017;33:7649–7659. doi: 10.1021/acs.langmuir.7b01072. PubMed DOI
Vinhas R., Fernandes A.R., Baptista P.V. Gold Nanoparticles for BCR-ABL1Gene Silencing: Improving Tyrosine Kinase Inhibitor Efficacy in Chronic Myeloid Leukemia. Mol. Ther. Nucleic Acids. 2017;7:408–416. doi: 10.1016/j.omtn.2017.05.003. PubMed DOI PMC
Schiller G.J., Tuttle P., Desai P. Allogeneic Hematopoietic Stem Cell Transplantation in FLT3-ITD–Positive Acute Myelogenous Leukemia: The Role for FLT3 Tyrosine Kinase Inhibitors Post-Transplantation. Biol. Blood Marrow Transplant. 2016;22:982–990. doi: 10.1016/j.bbmt.2016.01.013. PubMed DOI
Suarasan S., Simon T., Boca S., Tomuleasa C., Astilean S. Gelatin-Coated Gold Nanoparticles as Carriers of FLT3 Inhibitors for Acute Myeloid Leukemia Treatment. Chem. Biol. Drug Des. 2016;87:927–935. doi: 10.1111/cbdd.12725. PubMed DOI
Gossai N.P., Naumann J.A., Li N.-S., Zamora E.A., Gordon D.J., Piccirilli J.A., Gordon P.M. Drug Conjugated Nanoparticles Activated by Cancer Cell Specific mRNA. Oncotarget. 2016;7:38243–38256. doi: 10.18632/oncotarget.9430. PubMed DOI PMC
Liu J., Abshire C., Carry C., Sholl A.B., Mandava S.H., Datta A., Ranjan M., Callaghan C., Peralta D.V., Williams K.S., et al. Nanotechnology Combined Therapy: Tyrosine Kinase-Bound Gold Nanorod and Laser Thermal Ablation Produce a Synergistic Higher Treatment Response of Renal Cell Carcinoma in a Murine Model. BJU Int. 2017;119:342–348. doi: 10.1111/bju.13590. PubMed DOI
Ding H.X., Liu K.K.-C., Sakya S.M., Flick A.C., O’Donnell C.J. Synthetic Approaches to the 2011 New Drugs. Bioorganic Med. Chem. 2013;21:2795–2825. doi: 10.1016/j.bmc.2013.02.061. PubMed DOI
Lian S., Gao X., Song C., Li H., Lin J. Chemical Enhancement Effect of Icotinib–Au Complex Studied by Combined Density Functional Theory and Surface-Enhanced Raman Scattering. Langmuir. 2021;37:12907–12918. doi: 10.1021/acs.langmuir.1c01957. PubMed DOI
Castelo-Soccio L., Kim H., Gadina M., Schwartzberg P.L., Laurence A., O’Shea J.J. Protein Kinases: Drug Targets for Immunological Disorders. Nat. Rev. Immunol. 2023;23:787–806. doi: 10.1038/s41577-023-00877-7. PubMed DOI PMC
Li J., Gong C., Zhou H., Liu J., Xia X., Ha W., Jiang Y., Liu Q., Xiong H. Kinase Inhibitors and Kinase-Targeted Cancer Therapies: Recent Advances and Future Perspectives. Int. J. Mol. Sci. 2024;25:5489. doi: 10.3390/ijms25105489. PubMed DOI PMC
Taherdoost H., Ghofrani A. AI’s Role in Revolutionizing Personalized Medicine by Reshaping Pharmacogenomics and Drug Therapy. Intell. Pharm. 2024;2:643–650. doi: 10.1016/j.ipha.2024.08.005. DOI
Ghebrehiwet I., Zaki N., Damseh R., Mohamad M.S. Revolutionizing Personalized Medicine with Generative AI: A Systematic Review. Artif. Intell. Rev. 2024;57:128. doi: 10.1007/s10462-024-10768-5. DOI
Fattahi M.R., Dehghani M., Paknahad S., Rahiminia S., Zareie D., Hoseini B., Oroomi T.R., Motedayyen H., Arefnezhad R. Clinical Insights into Nanomedicine and Biosafety: Advanced Therapeutic Approaches for Common Urological Cancers. Front. Oncol. 2024;14:1438297. doi: 10.3389/fonc.2024.1438297. PubMed DOI PMC
Patra J.K., Das G., Fraceto L.F., Campos E.V.R., del Pilar Rodriguez-Torres M., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC
de Souza Cardoso Delfino C., de Paula Pereira M.C., dos Santos Oliveira M., de Carvalho Favareto I., Valladão V.S., de Oliveira Mota M., Costa M.V.B., Sousa-Batista A.J., Balbino T.A. Scaling Nanopharmaceutical Production for Personalized Medicine: Challenges and Strategies. J. Nanopart. Res. 2025;27:108. doi: 10.1007/s11051-025-06293-3. DOI
Shao K., Singha S., Clemente-Casares X., Tsai S., Yang Y., Santamaria P. Nanoparticle-Based Immunotherapy for Cancer. ACS Nano. 2015;9:16–30. doi: 10.1021/nn5062029. PubMed DOI