Glycosphingolipid synthesis is impaired in SLC35A2-CDG and improves with galactose supplementation

. 2025 Jun 27 ; 82 (1) : 257. [epub] 20250627

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40576648

Grantová podpora
G049220N Fonds Wetenschappelijk Onderzoek
18B4322N Fonds Wetenschappelijk Onderzoek
K200523N Fonds Wetenschappelijk Onderzoek
RVO-VFN 64165 Ministerstvo Zdravotnictví Ceské Republiky
AZV MZ CR NU22-07-00474 Czech Health Research Council

Odkazy

PubMed 40576648
PubMed Central PMC12204976
DOI 10.1007/s00018-025-05759-w
PII: 10.1007/s00018-025-05759-w
Knihovny.cz E-zdroje

SLC35A2-CDG is an X-linked congenital disorder of glycosylation (CDG), characterized by defective UDP-galactose transport into the Golgi and endoplasmic reticulum and consequent insufficient galactosylation of glycans. Clinically, this translates into a range of predominantly neurological symptoms. Although the pathomechanism of this disorder is not fully understood, oral galactose supplementation has led to clinical and biochemical improvement in some patients. Here, we show that protein glycosylation (N- and O-linked) was only minimally disturbed in SLC35A2-CDG patient-derived fibroblasts. However, lipid glycosylation was significantly impaired, with accumulation of glucosylceramide and deficiency of digalactosylated glycosphingolipids (GSLs) and complex gangliosides. Galactose supplementation increased UDP-galactose, its transport into the Golgi, and improved deficient GSL synthesis through direct incorporation of the provided galactose. This improved GSL homeostasis in all patient-derived fibroblasts and in another SLC35A2 deficient cell model (CHO-Lec8). Additionally, SLC35A2-CDG serum analysis identified hydroxylated GSLs, particularly GM3, as potential disease biomarkers. Given the essential role of gangliosides in central nervous system function, their deficiency is likely a key factor in the neurological involvement of this disorder. These findings pave the way for new nutritional therapies with GSL supplements and highlight the importance of studying lipid glycosylation to better understand the complex pathophysiology of CDG.

Center for Metabolic Diseases Department of Paediatrics University Hospitals Leuven Leuven 3000 Belgium

Center for Pediatric and Adolescent Medicine Department Pediatrics 1 Heidelberg University 69120 Heidelberg Germany

Child Neurology and Psychiatry Unit Department of Clinical and Experimental Medicine University of Catania Catania 95131 Italy

Clinical Department of Laboratory Medicine University Hospitals Leuven Leuven 3000 Belgium

Department of Cardiovascular Sciences KU Leuven Leuven 3000 Belgium

Department of Chronic Diseases Metabolism and Ageing KU Leuven Leuven 3000 Belgium

Department of Development and Regeneration KU Leuven Leuven 3000 Belgium

Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York NY 10029 USA

Department of Hepatology University Hospitals Leuven Leuven 3000 Belgium

Department of Paediatrics and Inherited Metabolic Disorders 1st Medical Faculty Charles University and General University Hospital Prague Prague 2 CZ 121 08 Czech Republic

Laboratory of Applied Mass Spectrometry Department of Cellular and Molecular Medicine KU Leuven Leuven 3000 Belgium

Laboratory of Lipid Metabolism and Cancer Department of Oncology Leuven Cancer Institute KU Leuven Leuven 3000 Belgium

Metabolic Center University Hospitals Leuven Leuven 3000 Belgium

Metabolomics Expertise Center Center for Cancer Biology VIB Leuven 3000 Belgium

Pediatric Neurology Department Hospital Sant Joan de Déu Esplugues de Llobregat Barcelona 08950 Spain

Research Unit of Rare Diseases and Neurodevelopmental Disorders Oasi Research Institute IRCCS Troina 94018 Italy

UMR 8576 UGSF Unité de Glycobiologie Structurale et Fonctionnelle CNRS University of Lille Lille F 59000 France

Zobrazit více v PubMed

Ng BG, Buckingham KJ, Raymond K et al (2013) Mosaicism of the UDP-Galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am J Hum Genet 92:632–636. 10.1016/j.ajhg.2013.03.012 PubMed DOI PMC

Kabuß R, Ashikov A, Oelmann S et al (2005) Endoplasmic reticulum retention of the large splice variant of the UDP-galactose transporter is caused by a Dilysine motif. Glycobiology 15:905–911. 10.1093/glycob/cwi085 PubMed DOI

Kodríková R, Pakanová Z, Krchňák M et al (2023) N-Glycoprofiling of SLC35A2-CDG: patient with a novel hemizygous variant. Biomedicines 11:580. 10.3390/biomedicines11020580 PubMed DOI PMC

Witters P, Tahata S, Barone R et al (2020) Clinical and biochemical improvement with galactose supplementation in SLC35A2-CDG. Genet Med 22:1102–1107. 10.1038/s41436-020-0767-8 PubMed DOI PMC

Dörre K, Olczak M, Wada Y et al (2015) A new case of UDP-galactose transporter deficiency (SLC35A2‐CDG): molecular basis, clinical phenotype, and therapeutic approach. J Inherit Metab Dis 38:931–940. 10.1007/s10545-015-9828-6 PubMed DOI

Quelhas D, Correia J, Jaeken J et al (2021) SLC35A2-CDG: novel variant and review. Mol Genet Metab Rep 26:100717. 10.1016/j.ymgmr.2021.100717 PubMed DOI PMC

Vals M, Ashikov A, Ilves P et al (2019) Clinical, neuroradiological, and biochemical features of SLC35A2-CDG patients. J Inherit Metab Dis 42:553–564. 10.1002/jimd.12055 PubMed DOI

Jáñez Pedrayes A, Rymen D, Ghesquière B, Witters P (2024) Glycosphingolipids in congenital disorders of glycosylation (CDG). Mol Genet Metab 142:108434. 10.1016/j.ymgme.2024.108434 PubMed DOI

De Posse E, Sipione S (2010) Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 584:1748–1759. 10.1016/j.febslet.2009.12.010 PubMed DOI

Schnaar RL, Gerardy-Schahn R, Hildebrandt H (2014) Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 94:461–518. 10.1152/physrev.00033.2013 PubMed DOI PMC

Ng BG, Sosicka P, Agadi S et al (2019) SLC35A2-CDG: functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported individuals. Hum Mut 40:908–925. 10.1002/humu.23731 PubMed DOI PMC

Barba C, Blumcke I, Winawer MR et al (2023) Clinical features, neuropathology, and surgical outcome in patients with refractory epilepsy and brain somatic variants in the SLC35A2 gene. Neurology 100:e528–e542. 10.1212/WNL.0000000000201471 PubMed DOI PMC

Sim NS, Seo Y, Lim JS et al (2018) Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N-glycosylation. Neurol Genet 4:e294. 10.1212/NXG.0000000000000294 PubMed DOI PMC

Winawer MR, Griffin NG, Samanamud J et al (2018) Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83:1133–1146. 10.1002/ana.25243 PubMed DOI PMC

Bonduelle T, Hartlieb T, Baldassari S et al (2021) Frequent SLC35A2 brain mosaicism in mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). Acta Neuropathol Commun 9:3. 10.1186/s40478-020-01085-3 PubMed DOI PMC

Elziny S, Crino PB, Winawer M (2023) SLC35A2 somatic variants in drug resistant epilepsy: FCD and MOGHE. Neurobiol Dis 187:106299. 10.1016/j.nbd.2023.106299 PubMed DOI PMC

Kang H-J, Kim D-S, Kim SH et al (2022) Epilepsy with SLC35A2 brain somatic mutations in mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). Ann Child Neurol 30:88–94. 10.26815/acn.2022.00073 DOI

Aledo-Serrano Á, Valls-Carbó A, Fenger CD et al (2023) D-galactose supplementation for the treatment of mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE): A pilot trial of precision medicine after epilepsy surgery. Neurotherapeutics 20:1294–1304. 10.1007/s13311-023-01395-z PubMed DOI PMC

Radenkovic S, Bird MJ, Emmerzaal TL et al (2019) The metabolic map into the pathomechanism and treatment of PGM1-CDG. Am J Hum Genet 104:835–846. 10.1016/j.ajhg.2019.03.003 PubMed DOI PMC

Ligezka AN, Radenkovic S, Saraswat M et al (2021) Sorbitol is a severity biomarker for PMM2-CDG with therapeutic implications. Ann Neurol 90:887–900. 10.1002/ana.26245 PubMed DOI PMC

Potelle S, Morelle W, Dulary E et al (2016) Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in golgi manganese homeostasis. Hum Mol Genet 25:1489–1500. 10.1093/hmg/ddw026 PubMed DOI

De Craemer S, Driesen K, Ghesquière B (2022) TraVis pies: A guide for stable isotope metabolomics interpretation using an intuitive visualization. Metabolites 12:593. 10.3390/metabo12070593 PubMed DOI PMC

Berry GT, Nissim I, Lin Z et al (1995) Endogenous synthesis of galactose in normal men and patients with hereditary galactosaemia. Lancet 346:1073–1074. 10.1016/s0140-6736(95)91745-4 PubMed DOI

Kudelka MR, Antonopoulos A, Wang Y et al (2016) Cellular O-Glycome reporter/amplification to explore O-glycans of living cells. Nat Methods 13:81–86. 10.1038/nmeth.3675 PubMed DOI PMC

Reza S, Ugorski M, Suchański J (2021) Glucosylceramide and Galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology 31:1416–1434. 10.1093/glycob/cwab046 PubMed DOI PMC

Oelmann S, Stanley P, Gerardy-Schahn R (2001) Point mutations identified in Lec8 Chinese hamster ovary glycosylation mutants that inactivate both the UDP-galactose and CMP-sialic acid transporters. J Biol Chem 276:26291–26300. 10.1074/jbc.M011124200 PubMed DOI

Szulc B, Sosicka P, Maszczak-Seneczko D et al (2020) Biosynthesis of GlcNAc-rich N- and O-glycans in the golgi apparatus does not require the nucleotide sugar transporter SLC35A3. J Biol Chem 295:16445–16463. 10.1074/jbc.RA119.012362 PubMed DOI PMC

Maszczak-Seneczko D, Olczak T, Jakimowicz P, Olczak M (2011) Overexpression of UDP-GlcNAc transporter partially corrects galactosylation defect caused by UDP-Gal transporter mutation. FEBS Lett 585:3090–3094. 10.1016/j.febslet.2011.08.038 PubMed DOI

Van Der Bijl P, Strous GJ, Lopes-Cardozo M et al (1996) Synthesis of non-hydroxy-galactosylceramides and galactosyldiglycerides by hydroxy-ceramide galactosyltransferase. Biochem J 317:589–597. 10.1042/bj3170589 PubMed DOI PMC

Radenkovic S, Ligezka AN, Mokashi SS et al (2023) Tracer metabolomics reveals the role of aldose reductase in glycosylation. Cell Rep Med 4:101056. 10.1016/j.xcrm.2023.101056 PubMed DOI PMC

Foulquier F, Legrand D (2020) Biometals and glycosylation in humans: congenital disorders of glycosylation shed lights into the crucial role of golgi manganese homeostasis. Bioch Biophys Acta Gen Subj 1864:129674. 10.1016/j.bbagen.2020.129674 PubMed DOI

Sosicka P, Ng BG, Freeze HH (2022) Chemical therapies for congenital disorders of glycosylation. ACS Chem Biol 17:2962–2971. 10.1021/acschembio.1c00601 PubMed DOI PMC

Morelle W, Potelle S, Witters P et al (2017) Galactose supplementation in patients with TMEM165-CDG rescues the glycosylation defects. J Clin Endocrinol Metab 102:1375–1386. 10.1210/jc.2016-3443 PubMed DOI PMC

Sala G, Dupré T, Seta N et al (2002) Increased biosynthesis of glycosphingolipids in congenital disorder of glycosylation Ia (CDG-Ia) fibroblasts. Pediatr Res 52:645–651. 10.1203/00006450-200211000-00007 PubMed DOI

Schnaar RL (2004) Glycolipid-mediated cell–cell recognition in inflammation and nerve regeneration. Arch Biochem Biophys 426:163–172. 10.1016/j.abb.2004.02.019 PubMed DOI

Sipione S, Monyror J, Galleguillos D et al (2020) Gangliosides in the brain: physiology, pathophysiology and therapeutic applications. Front Neurosci 14:572965. 10.3389/fnins.2020.572965 PubMed DOI PMC

Marcus J, Popko B (2002) Galactolipids are molecular determinants of Myelin development and axo–glial organization. Biochim Biophys Acta Gen Subj 1573:406–413. 10.1016/S0304-4165(02)00410-5 PubMed DOI

Russo D, Della Ragione F, Rizzo R et al (2018) Glycosphingolipid metabolic reprogramming drives neural differentiation. EMBO J 37:e97674. 10.15252/embj.201797674 PubMed DOI PMC

Bowser LE, Young M, Wenger OK et al (2019) Recessive GM3 synthase deficiency: natural history, biochemistry, and therapeutic frontier. Mol Genet Metab 126:475–488. 10.1016/j.ymgme.2019.01.013 PubMed DOI

Edvardson S, Baumann A-M, Mühlenhoff M et al (2013) West syndrome caused by ST3Gal-III deficiency. Epilepsia 54:e24–27. 10.1111/epi.12050 PubMed DOI

Izumi T, Ogawa T, Koizumi H, Fukuyama Y (1993) Low levels of CSF gangliotetraose-series gangliosides in West syndrome: implication of brain maturation disturbance. Pediatr Neurol 9:293–296. 10.1016/0887-8994(93)90066-L PubMed DOI

Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue-based map of the human proteome. Science 347:1260419. 10.1126/science.1260419 PubMed DOI

Jaeken J, Péanne R (2017) What is new in CDG? J Inherit Metab Dis 40:569–586. 10.1007/s10545-017-0050-6 PubMed DOI

Mizumoto S, Janecke AR, Sadeghpour A et al (2020) CSGALNACT1-congenital disorder of glycosylation: A mild skeletal dysplasia with advanced bone age. Hum Mutat 41:655–667. 10.1002/humu.23952 PubMed DOI PMC

Sasaki E, Hamamura K, Mishima Y et al (2022) Attenuation of bone formation through a decrease in osteoblasts in mutant mice lacking the GM2/GD2 synthase gene. Int J Mol Sci 23:9044. 10.3390/ijms23169044 PubMed DOI PMC

Yang HJ, Jung KY, Kwak DH et al (2011) Inhibition of ganglioside GD1a synthesis suppresses the differentiation of human mesenchymal stem cells into osteoblasts. Dev Growth Differ 53:323–332. 10.1111/j.1440-169X.2010.01240.x PubMed DOI

Wiertelak W, Sosicka P, Olczak M, Maszczak-Seneczko D (2020) Analysis of homologous and heterologous interactions between UDP-galactose transporter and beta-1,4-galactosyltransferase 1 using nanobit. Anal Biochem 593:113599. 10.1016/j.ab.2020.113599 PubMed DOI

Wiertelak W, Chabowska K, Szulc B et al (2023) SLC35A2 deficiency reduces protein levels of core 1 β-1,3-galactosyltransferase 1 (C1GalT1) and its chaperone Cosmc and affects their subcellular localization. Bioch Biophy Acta Mol Cell Res 1870:119462. 10.1016/j.bbamcr.2023.119462 PubMed DOI

Nakazawa K, Furukawa K, Narimatsu H, Kobata A (1993) Kinetic study of human beta-1,4-galactosyltransferase expressed in E. coli. J Biochem 113:747–753. 10.1093/oxfordjournals.jbchem.a124115 PubMed DOI

Amado M, Almeida R, Carneiro F et al (1998) A family of human β3-Galactosyltransferases. J Biol Chem 273:12770–12778. 10.1074/jbc.273.21.12770 PubMed DOI

Stults LM, Larsen D, Macher A (1995) Alpha l,4galactosyltransferase activity and Gb3Cer expression in human leukaemia/lymphoma cell lines. Glycoconj J 12:680–689. 10.1007/BF00731265 PubMed DOI

Chatterjee S, Castiglione E (1987) UDP-galactose:glucosylceramide Β1 4-galactosyltransferase activity in human proximal tubular cells from normal and Familial hypercholesterolemic homozygotes. Biochim Biophys Acta Gen Subj 923:136–142. 10.1016/0304-4165(87)90136-x PubMed DOI

Maszczak-Seneczko D, Sosicka P, Majkowski M et al (2012) UDP- N ‐acetylglucosamine transporter and UDP‐galactose transporter form heterologous complexes in the golgi membrane. FEBS Lett 586:4082–4087. 10.1016/j.febslet.2012.10.016 PubMed DOI

Conte F, Van Buuringen N, Voermans NC, Lefeber DJ (2021) Galactose in human metabolism, glycosylation and congenital metabolic diseases: time for a closer look. Biochim Biophys Acta Gen Subj 1865:129898. 10.1016/j.bbagen.2021.129898 PubMed DOI

Ghidoni R, Riboni L, Tettamanti G (1989) Metabolism of exogenous gangliosides in cerebellar granule cells, differentiated in culture. J Neurochem 53:1567–1574. 10.1111/j.1471-4159.1989.tb08553.x PubMed DOI

Ghidoni R, Fiorilli A, Trinchera M et al (1989) Uptake, cell penetration and metabolic processing of exogenously administered GM1 ganglioside in rat brain. Neurochem Int 15:455–465. 10.1016/0197-0186(89)90164-2 PubMed DOI

Spiegel S, Schlessinger J, Fishman PH (1984) Incorporation of fluorescent gangliosides into human fibroblasts: mobility, fate, and interaction with fibronectin. J Cell Biol 99:699–704. 10.1083/jcb.99.2.699 PubMed DOI PMC

Trinchera M, Ghidoni R (1990) Precursor-product relationship between GM1 and GD1a biosynthesized from exogenous GM2 ganglioside in rat liver. J Biochem 107:619–623. 10.1093/oxfordjournals.jbchem.a123096 PubMed DOI

Park EJ, Suh M, Ramanujam K et al (2005) Diet-induced changes in membrane gangliosides in rat intestinal mucosa, plasma and brain. J Pediatr Gastroenterol Nutr 40. 10.1097/01.mpg.0000157199.25923.64 PubMed

Wu G, Lu Z, Kulkarni N, Ledeen RW (2012) Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res 90:1997–2008. 10.1002/jnr.23090 PubMed DOI

Wang H, Sency V, McJarrow P et al (2018) Oral ganglioside supplement improves growth and development in patients with ganglioside GM3 synthase deficiency. JIMD Rep 45:9–20. 10.1007/8904_2018_134 PubMed DOI PMC

Revunov E, Johnström P, Arakawa R et al (2020) First radiolabeling of a ganglioside with a positron emitting radionuclide: in vivo PET demonstrates low exposure of radiofluorinated GM1 in non-human primate brain. ACS Chem Neurosci 11:1245–1249. 10.1021/acschemneuro.0c00161 PubMed DOI

Wu G, Lu Z-H, Wang J et al (2005) Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA 20, a membrane-permeant analog of GM1. J Neurosci 25:11014–11022. 10.1523/JNEUROSCI.3635-05.2005 PubMed DOI PMC

Lefeber DJ, Morava E, Jaeken J (2011) How to find and diagnose a CDG due to defective N-glycosylation. J Inherit Metab Dis 34:849–852. 10.1007/s10545-011-9370-0 PubMed DOI PMC

Kodera H, Nakamura K, Osaka H et al (2013) De Novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Hum Mutat 34:1708–1714. 10.1002/humu.22446 PubMed DOI

Eckhardt M (2023) Fatty acid 2-hydroxylase and 2-hydroxylated sphingolipids: metabolism and function in health and diseases. Int J Mol Sci 24:4908. 10.3390/ijms24054908 PubMed DOI PMC

Hama H (2010) Fatty acid 2-hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta Mol Cell Biol Lip 1801:405–414. 10.1016/j.bbalip.2009.12.004 PubMed DOI PMC

Alderson NL, Rembiesa BM, Walla MD et al (2004) The human FA2H gene encodes a fatty acid 2-hydroxylase. J Biol Chem 279:48562–48568. 10.1074/jbc.M406649200 PubMed DOI

Riboni L, Acquotti D, Casellato R et al (1992) Changes of the human liver GM3 ganglioside molecular species during aging. Eur J Biochem 203:107–113. 10.1111/j.1432-1033.1992.tb19834.x PubMed DOI

Lee H, An HJ, Lerno LA Jr. et al (2011) Rapid profiling of bovine and human milk gangliosides by matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry. Int J Mass Spectrom 305:138–150. 10.1016/j.ijms.2010.10.020 PubMed DOI PMC

Liyanage OT, Xia C, Ringler S et al (2023) Defining the ceramide composition of bovine and human milk gangliosides by direct infusion ESI-CID tandem mass spectrometry of native and permethylated molecular species. Anal Chem 95:16465–16473. 10.1021/acs.analchem.3c00737 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...