Quantification of soil microbial functional genes as potential new method in environmental risk assessment of pesticides

. 2025 Jun 27 ; () : . [epub] 20250627

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40576888

Grantová podpora
862568 Horizon 2020 Framework Programme
862568 Horizon 2020 Framework Programme
862568 Horizon 2020 Framework Programme
862568 Horizon 2020 Framework Programme
862568 Horizon 2020 Framework Programme

Odkazy

PubMed 40576888
DOI 10.1007/s10646-025-02920-w
PII: 10.1007/s10646-025-02920-w
Knihovny.cz E-zdroje

Pesticides can have adverse effects on soil microorganisms, but they are underrepresented in the currently required OECD 216 test for environmental risk assessment of plant protection products (PPP). The guideline monitors soil microbial nitrogen transformation over 28 days, potentially missing long-term effects of persistent pesticides. Additionally, nitrate alone may be not sensitive enough to detect disruptions in microbial functions. We investigated whether functional gene analysis could provide a more sensitive bioindicator of pesticide impact. To compare this method with the standard test, we conducted a microcosm experiment following the OECD 216 experimental setup. To capture long-term effects beyond the typical test period, we extended the incubation duration to 56 days. Four different concentrations of the persistent fungicide boscalid were added based on predicted environmental concentration. We also assessed microbial responses to fungicide exposure by measuring classical soil microbial parameters. According to the standard test, boscalid had no harmful long-term effects on soil microbiota. In contrast, our analysis of functional genes found an overall reduction in the acid phosphatase-encoding phoN gene abundance on Day 56, and correspondingly, in acid phosphatase activity in the highest fungicide treatment. Simultaneously, we observed a tendency towards lower fungal abundance based on measured copy numbers of an ITS region of nuclear ribosomal DNA (rDNA) and increased cumulative CO2 production. These results indicate a fungicide-related response of the microbial community and impaired microbial phosphorus cycling. Extending the experimental period to 56 days revealed long-term effects that would have otherwise been undetected under the typical 28-day test duration.

Zobrazit více v PubMed

Álvarez-Martín A, Hilton SL, Bending GD, Rodríguez-Cruz MS, Sánchez-Martín MJ (2016) Changes in activity and structure of the soil microbial community after application of azoxystrobin or pirimicarb and an organic amendment to an agricultural soil. Appl Soil Ecol 106:47–57. https://doi.org/10.1016/j.apsoil.2016.05.005 . DOI

Aristi I, Casellas M, Elosegi A, Insa S, Petrovic M, Sabater S, Acuña V (2016) Nutrients versus emerging contaminants-Or a dynamic match between subsidy and stress effects on stream biofilms. Environ Pollut 212:208–215. https://doi.org/10.1016/j.envpol.2016.01.067 . DOI

Baćmaga M, Kucharski J, Wyszkowska J (2015) Microbial and enzymatic activity of soil contaminated with azoxystrobin. Environ Monit Assess 187: 615. https://doi.org/10.1007/s10661-015-4827-5 . DOI

Baćmaga M, Wyszkowska J, Kucharski J (2016) The effect of the falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth. Ecotoxicology 25:1575–1587. https://doi.org/10.1007/s10646-016-1713-z . DOI

Baćmaga M, Wyszkowska J, Kucharski J (2018) The influence of chlorothalonil on the activity of soil microorganisms and enzymes. Ecotoxicology 27:1188–1202. https://doi.org/10.1007/s10646-018-1968-7 . DOI

Baćmaga M, Wyszkowska J, Kucharski J (2021) Bacterial diversity and enzymatic activity in a soil recently treated with tebuconazole. Ecol Indic 123: 107373. https://doi.org/10.1016/j.ecolind.2021.107373 . DOI

Bergkemper F, Kublik S, Lang F, Krüger J, Vestergaard G, Schloter M, Schulz S (2016) Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil. J Microbiol Methods 125:91–97. https://doi.org/10.1016/j.mimet.2016.04.011 . DOI

Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front Microbiol 9:1636. https://doi.org/10.3389/fmicb.2018.01636 . DOI

Davenport EK, Call DR, Beyenal H (2014) Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrob Agents Chemother 58:4755–4761. https://doi.org/10.1128/AAC.03071-14 . DOI

Deborah BV, Mohiddin MJ, Madhuri RJ (2013) Interaction effects of selected pesticides on soil enzymes. Toxicol Int 20:195–200. https://doi.org/10.4103/0971-6580.121665 . DOI

Della Mónica IF, Godoy MS, Godeas AM, Scervino JM (2018) Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability. J Appl Microbiol 124:155–165. https://doi.org/10.1111/jam.13620 . DOI

Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY (2018) Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42:335–352. https://doi.org/10.1093/femsre/fuy008 . DOI

Duarte Hospital C, Tête A, Debizet K, Imler J, Tomkiewicz-Raulet C, Blanc EB, Barouki R, Coumoul X, Bortoli S (2023) SDHi fungicides: an example of mitotoxic pesticides targeting the succinate dehydrogenase complex. Environ Int 180: 108219. https://doi.org/10.1016/j.envint.2023.108219 . DOI

EFSA (2010) Scientific opinion on the development of specific protection goal options for environmental risk assessment of pesticides, in particular in relation to the revision of the guidance documents on aquatic and terrestrial ecotoxicology (SANCO/3268/2001 and SA. EFSA J 8:1821. https://doi.org/10.2903/j.efsa.2010.1821 .

EFSA (2017) Scientific opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA J 15:e04690. https://doi.org/10.2903/j.efsa.2017.4690 . DOI

EU (2009) Regulation (EC) No 1107/2009 of the European parliament and of the council of 21 October 2009 concerning the placing of plant protection products on the market and repealing council directives 79/117/EEC and 91/414/EEC. URL: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC103352/ . Accessed April 2025

EU (2018) Draft renewal assessment report under regulation (EC) 1107/2009: boscalid, list of endpoints. URL: https://www.efsa.europa.eu/en/consultations/call/190125 . Accessed April 2025

Fang W, Wang X, Huang B, Zhang D, Liu J, Zhu J, Yan D, Wang Q, Cao A, Han Q (2020) Comparative analysis of the effects of five soil fumigants on the abundance of denitrifying microbes and changes in bacterial community composition. Ecotoxicol Environ Saf 187: 109850. https://doi.org/10.1016/j.ecoenv.2019.109850 . DOI

Feld L, Hjelmsø MH, Nielsen MS, Jacobsen AD, Rønn R, Ekelund F, Krogh PH, Strobel BW, Jacobsen CS (2015) Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes. PLoS ONE 10:e0126080. https://doi.org/10.1371/journal.pone.0126080 . DOI

Han L, Xu M, Kong X, Liu X, Wang Q, Chen G, Xu K, Nie J (2022) Deciphering the diversity, composition, function, and network complexity of the soil microbial community after repeated exposure to a fungicide boscalid. Environ Pollut 312:120060. https://doi.org/10.1016/j.envpol.2022.120060 . DOI

Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value. Soil Biol Biochem 28:25–31. https://doi.org/10.1016/0038-0717(95)00102-6 . DOI

Jofré-Fernández I, Matus-Baeza F, Merino-Guzmán C (2023) White-rot fungi scavenge reactive oxygen species, which drives pH-dependent exo-enzymatic mechanisms and promotes CO2 efflux. Front Microbiol 14:1148750. https://doi.org/10.3389/fmicb.2023.1148750 . DOI

Kalwasińska A, Tarnawska P, Latos M, Pałubicka K, Janik A, Brzezinska MS (2022) New p-coumaric acid formulation in sustainable pest management; impact on soil bacterial diversity and N-cycle. Appl Soil Ecol 180:104634. https://doi.org/10.1016/j.apsoil.2022.104634 . DOI

Karas PA, Baguelin C, Pertile G, Papadopoulou ES, Nikolaki S, Storck V, Ferrari F, Trevisan M, Ferrarini A, Fornasier F, Vasileiadis S, Tsiamis G, Martin-Laurent F, Karpouzas DG (2018) Assessment of the impact of three pesticides on microbial dynamics and functions in a lab-to-field experimental approach. Sci Total Environ 637-638:636–646. https://doi.org/10.1016/j.scitotenv.2018.05.073 . DOI

Karlsson AS, Weihermüller L, Tappe W, Mukherjee S, Spielvogel S (2016) Field scale boscalid residues and dissipation half-life estimation in a sandy soil. Chemosphere 145:163–173. https://doi.org/10.1016/j.chemosphere.2015.11.026 . DOI

Karpouzas DG, Vryzas Z, Martin-Laurent F (2022) Pesticide soil microbial toxicity: setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report). Pure Appl Chem 94:1161–1194. https://doi.org/10.1515/pac-2022-0201 . DOI

Knight TR, Dick RP (2004) Differentiating microbial and stabilized β-glucosidase activity relative to soil quality. Soil Biol Biochem 36:2089–2096. https://doi.org/10.1016/j.soilbio.2004.06.007 . DOI

Lews K, Tzilivakis J, Green A, Warner, D (2006) Pesticide properties database (PPDB). Database, University of Hertfordshire. URL: https://sitem.herts.ac.uk/aeru/ppdb/ Accessed April 2025

Loffredo E, Carnimeo C, D’Orazio V, Colatorti N (2024) Sorption and release of the pesticides oxyfluorfen and boscalid in digestate from olive pomace and in digestate-amended soil. J Soils Sediment 24:1489–1506. https://doi.org/10.1007/s11368-024-03748-3 . DOI

Ma G, Gao X, Nan J, Zhang T, Xie X, Cai Q (2021) Fungicides alter the distribution and diversity of bacterial and fungal communities in ginseng fields. Bioengineered 12:8043–8056. https://doi.org/10.1080/21655979.2021.1982277 . DOI

Marx M-C, Wood M, Jarvis S (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640. https://doi.org/10.1016/s0038-0717(01)00079-7 . DOI

Masunga RH, Uzokwe VN, Mlay PD, Odeh I, Singh A, Buchan D, de Neve S (2016) Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl Soil Ecol 101:185–193. https://doi.org/10.1016/j.apsoil.2016.01.006 . DOI

Meena R, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma M, Yadav G, Jhariya M, Jangir C, Pathan S, Dokulilova T, Pecina V, Marfo T (2020) Impact of agrochemicals on soil microbiota and management: A review. Land 9:34. https://doi.org/10.3390/land9020034 . DOI

Meyer C, Jeanbille M, Breuil M-C, Bru D, Höfer K, Screpanti C, Philippot L (2024) Soil microbial community fragmentation reveals indirect effects of fungicide exposure mediated by biotic interactions between microorganisms. J Hazard Mater 470:134231. https://doi.org/10.1016/j.jhazmat.2024.134231 . DOI

Morales SE, Cosart T, Holben WE (2010) Bacterial gene abundances as indicators of greenhouse gas emission in soils. ISME J 4:799–808. https://doi.org/10.1038/ismej.2010.8 . DOI

Muñoz-Leoz B, Garbisu C, Antigüedad I, Ruiz-Romera E (2012) Fertilization can modify the non-target effects of pesticides on soil microbial communities. Soil Biol Biochem 48:125–134. https://doi.org/10.1016/j.soilbio.2012.01.021 . DOI

Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762. https://doi.org/10.1007/s00374-012-0723-0 . DOI

Nannipieri P, Trasar-Cepeda C, Dick RP (2018) Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol Fertil Soils 54:11–19. https://doi.org/10.1007/s00374-017-1245-6 . DOI

OECD., 2000. OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris.

Olagoke FK, Kaiser K, Mikutta R, Kalbitz K, Vogel C (2020) Persistent activities of extracellular enzymes adsorbed to soil minerals. Microorganisms 8:1796. https://doi.org/10.3390/microorganisms8111796 . DOI

Osburn ED, Yang G, Rillig MC, Strickland MS (2023) Evaluating the role of bacterial diversity in supporting soil ecosystem functions under anthropogenic stress. ISME Commun 3:66. https://doi.org/10.1038/s43705-023-00273-1 . DOI

Pedrinho A, Karas PA, Kanellopoulos A, Feray E, Korman I, Wittenberg G, Ramot O, Karpouzas DG (2024) The effect of natural products used as pesticides on the soil microbiota: OECD 216 nitrogen transformation test fails to identify effects that were detected via q-PCR microbial abundance measurement. Pest Manag Sci 80(6):2563–2576. https://doi.org/10.1002/ps.7961 . DOI

Pereira P, Bogunovic I, Muñoz-Rojas M, Brevik EC (2018) Soil ecosystem services, sustainability, valuation and management. Curr Opin Environ Sci Health 5:7–13. https://doi.org/10.1016/j.coesh.2017.12.003 . DOI

Piepho HP, Williams ER, Fleck M (2006) A note on the analysis of designed experiments with complex treatment structure. HortSci 41:446–452. https://doi.org/10.21273/HORTSCI.41.2.446 . DOI

Pinheiro J, Bates D, R Core Team (2023) nlme. R Core Team. https://svn.r-project.org/R-packages/trunk/nlme/

Poll C, Marhan S, Ingwersen J, Kandeler E (2008) Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere. Soil Biol Biochem 40:1306–1321. https://doi.org/10.1016/j.soilbio.2007.04.002 . DOI

R Core Team., 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ .

Romdhane S, Devers-Lamrani M, Beguet J, Bertrand C, Calvayrac C, Salvia M-V, Jrad AB, Dayan FE, Spor A, Barthelmebs L, Martin-Laurent F (2019) Assessment of the ecotoxicological impact of natural and synthetic β-triketone herbicides on the diversity and activity of the soil bacterial community using omic approaches. Sci Total Environ 651:241–249. https://doi.org/10.1016/j.scitotenv.2018.09.159 . DOI

Rossolini GM, Schippa S, Riccio ML, Berlutti F, Macaskie LE, Thaller MC (1998) Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell Mol Life Sci 54:833–850. https://doi.org/10.1007/s000180050212 . DOI

Sabzevari S, Hofman J (2022) A worldwide review of currently used pesticides’ monitoring in agricultural soils. Sci Total Environ 812:152344. https://doi.org/10.1016/j.scitotenv.2021.152344 . DOI

Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88(6):1386–1394. https://doi.org/10.1890/06-0219 . DOI

Schöler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M (2017) Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol Fertil Soils 53:485–489. https://doi.org/10.1007/s00374-017-1205-1 . DOI

Silva V, Mol HGJ, Zomer P, Tienstra M, Ritsema CJ, Geissen V (2019) Pesticide residues in European agricultural soils - A hidden reality unfolded. Sci Total Environ 653:1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441 . DOI

Sim JXF, Drigo B, Doolette CL, Vasileiadis S, Karpouzas DG, Lombi E (2022) Impact of twenty pesticides on soil carbon microbial functions and community composition. Chemosphere 307:135820. https://doi.org/10.1016/j.chemosphere.2022.135820 . DOI

Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI, Sobocká J, Harper R, Pan G, West PC, Gerber JS, Clark JM, Adhya T, Scholes RJ, Scholes MC (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. SOIL 1:665–685. https://doi.org/10.5194/soil-1-665-2015 . DOI

Steffan BN, Venkatesh N, Keller NP (2020) Let’s get physical: Bacterial-fungal interactions and their consequences in agriculture and health. J Fungi 6:243. https://doi.org/10.3390/jof6040243 . DOI

Steiner M, Falquet L, Fragnière A-L, Brown A, Bacher S (2024) Effects of pesticides on soil bacterial, fungal and protist communities, soil functions and grape quality in vineyards. Ecol Solut Evid 5:e12327. https://doi.org/10.1002/2688-8319.12327 . DOI

Šudoma M, Neuwirthová N, Hvězdová M, Svobodová M, Bílková Z, Scherr KE, Hofman J (2019) Fate and bioavailability of four conazole fungicides in twelve different arable soils - effects of soil and pesticide properties. Chemosphere 230:347–359. https://doi.org/10.1016/j.Chemosphere.2019.04.227 . DOI

Sun R, Guo X, Wang D, Chu H (2015) Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl Soil Ecol 95:171–178. https://doi.org/10.1016/j.apsoil.2015.06.010 . DOI

Sweeney CJ, Bottoms M, Ellis S, Ernst G, Kimmel S, Loutseti S, Schimera A, Carniel LSC, Sharples A, Staab F, Marx MT (2022) Arbuscular mycorrhizal fungi and the need for a meaningful regulatory plant protection product testing strategy. Environ Toxicol Chem 41:1808–1823. https://doi.org/10.1002/etc.5400 . DOI

Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs L (2019) Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers?. Sci Total Environ 684:314–325. https://doi.org/10.1016/j.scitotenv.2019.05.230 . DOI

Ullah M, Dijkstra F (2019) Fungicide and bactericide effects on carbon and nitrogen cycling in soils: A meta-analysis. Soil Syst 3:23. https://doi.org/10.3390/soilsystems3020023 . DOI

Walder F, Schmid MW, Riedo J, Valzano-Held AY, Banerjee S, Büchi L, Bucheli TD, van der Heijden MG (2022) Soil microbiome signatures are associated with pesticide residues in arable landscapes. Soil Biol Biochem 174:108830. https://doi.org/10.1016/j.soilbio.2022.108830 . DOI

Wang S, Seiwert B, Kästner M, Miltner A, Schäffer A, Reemtsma T, Yang Q, Nowak KM (2016a) (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach. Water Res 99:91–100. https://doi.org/10.1016/j.watres.2016.04.041 . DOI

Wang C, Wang F, Zhang Q, Liang W (2016b) Individual and combined effects of tebuconazole and carbendazim on soil microbial activity. Eur J Soil Biol 72:6–13. https://doi.org/10.1016/j.ejsobi.2015.12.005 . DOI

Wang Y, Lai A, Latino D, Fenner K, Helbling DE (2018) Evaluating the environmental parameters that determine aerobic biodegradation half-lives of pesticides in soil with a multivariable approach. Chemosphere 209:430–438. https://doi.org/10.1016/j.chemosphere.2018.06.077 . DOI

Wang X, Lu Z, Miller H, Liu J, Hou Z, Liang S, Zhao X, Zhang H, Borch T (2020) Fungicide azoxystrobin induced changes on the soil microbiome. Appl Soil Ecol 145:103343. https://doi.org/10.1016/j.apsoil.2019.08.005 . DOI

Wirsching J, Rodriguez LC, Ditterich F, Pagel H, He R, Uksa M, Zwiener C, Kandeler E, Poll C (2023) Temperature and soil moisture change microbial allocation of pesticide-derived carbon. Eur J Soil Sci 74:e13417. https://doi.org/10.1111/ejss.13417 . DOI

Xiong D, Li Y, Xiong Y, Li X, Xiao Y, Qin Z, Xiao Y (2014) Influence of boscalid on the activities of soil enzymes and soil respiration. Eur J Soil Biol 61:1–5. https://doi.org/10.1016/j.ejsobi.2013.12.006 . DOI

Yao X, Liu Y, Liu X, Qiao Z, Sun S, Li X, Wang J, Zhang F, Jiang X (2022) Effects of thifluzamide on soil fungal microbial ecology. J Hazard Mater 431:128626. https://doi.org/10.1016/j.jhazmat.2022.128626 . DOI

Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J (2018) QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci 61:1451–1462. https://doi.org/10.1007/s11427-018-9364-7 . DOI

Zhou Y, Wang H, Xu S, Liu K, Qi H, Wang M, Chen X, Berg G, Ma Z, Cernava T, Chen Y (2022) Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions. Stress Biol 2:22. https://doi.org/10.1007/s44154-022-00046-1 . DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...