Heterogeneous protein dynamics links to mitochondrial activity, glucose transporter, and ALDH cancer stem cell properties
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MMCI 00209805
Ministerstvo Zdravotnictví Ceské Republiky
MMCI 00209805
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.01.01/00/22_008/0004644
Ministerstvo Školství, Mládeže a Tělovýchovy
21-13188S
Grantová Agentura České Republiky
PubMed
40597978
PubMed Central
PMC12210997
DOI
10.1186/s12885-025-14460-x
PII: 10.1186/s12885-025-14460-x
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer stem cells, Glucose transporter, Mitochondrial membrane potential, Protein degradation, Proteosynthesis, Squamous cell carcinoma,
- MeSH
- aldehyddehydrogenasa * metabolismus genetika MeSH
- glukosa metabolismus MeSH
- lidé MeSH
- membránový potenciál mitochondrií MeSH
- mitochondrie * metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové kmenové buňky * metabolismus patologie MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- proteiny usnadňující transport glukosy * metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- spinocelulární karcinom * metabolismus patologie genetika MeSH
- stanovení celkové genové exprese MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldehyddehydrogenasa * MeSH
- glukosa MeSH
- proteasomový endopeptidasový komplex MeSH
- proteiny usnadňující transport glukosy * MeSH
BACKGROUND: Cancer stem-like cells (CSCs) represent a subset of tumor cells that have the ability to self-renew, a long lifespan and a relatively quiescent phenotype, and show resistance to conventional therapies. Various markers are used to identify CSCs, and have shown that different CSC subtypes may be present within a tumor. One functional property of CSCs is their relative lack of proteasomal activity compared to the tumor bulk. METHODS: We introduced an unstable fluorescent molecule into FaDu oropharyngeal squamous cell carcinoma cells and analyzed the association of proteasome activity with aldehydehyde dehydrogenase (ALDH) activity as another common CSC marker, and with other stem-cell related properties of glucose metabolism. We also analyzed publicly available gene expression profiling data of ALDH+ CSCs for alterations in mRNAs associated with proteostasis. RESULTS: We show that FaDu CSCs identified by low proteasome activity are associated with the population identified by high ALDH activity. Futher characterization shows that these CSCs have a relatively high mitochondrial membrane potential and low levels of glucose transporter, indicating a non-Warburg metabolic phenotype. We also show that proteasome-low FaDu CSCs exhibit decreased rates of protein synthesis. Gene expression profiling of other cancer cell lines reveal common statistically significant differences in proteostasis in ALDH+ CSCs compared to the bulk of the tumor cells, including reduced levels of Hsp70 and/or Hsp90 in CSCs defined by ALDH, together with reduced levels of UCHL5 mRNA. CONCLUSIONS: These data provide additional insights into the functional characteristics of proteasome-low/ALDH-high CSCs, indicating a metabolic phenotype of reduced reliance on aerobic glycolysis and a decreased protein synthesis rate. We also identify specific chaperone and ubiquitin ligase activities that can be used to identify CSCs, with corresponding implications for therapeutic strategies that target CSCs through their altered metabolic properties.
Zobrazit více v PubMed
Amari K, Sasagawa S, Imayoshi N, Toda Y, Hosogi S, Imamura T, Ashihara E. The CDK4/6-UCHL5-BRD4 axis confers resistance to BET inhibitors in MLL-rearranged leukemia cells by suppressing BRD4 protein degradation. Biochem Biophys Res Commun. 2022;15(588):147–53. PubMed
Appleyard MVCL, Murray KE, Coates PJ, et al. Phenformin as prophylaxis and therapy in breast cancer xenografts. Br J Cancer. 2012;106(6):1117–22. PubMed PMC
Backe SJ, Woodford MR, Ahanin E, Sager RA, Bourboulia D, Mollapour M. Impact of Co-chaperones and Posttranslational Modifications Toward Hsp90 Drug Sensitivity. Subcell Biochem. 2023;101:319–50. PubMed PMC
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. PubMed
Blanco S, Bandiera R, Popis M, Hussain S, Lombard P, Aleksic J, et al. Stem cell function and stress response are controlled by protein synthesis. Nature. 2016;534(7607):335–40. PubMed PMC
Bocci F, Gearhart-Serna L, Boareto M, Ribeiro M, Ben-Jacob E, Devi GR, et al. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. PNAS. 2019;116(1):148–57. PubMed PMC
Boykov IN, Montgomery MM, Hagen JT, Aruleba RT, McLaughlin KL, Coalson HS, et al. Pan-tissue mitochondrial phenotyping reveals lower OXPHOS expression and function across cancer types. Sci Rep. 2023;13(1):16742. PubMed PMC
Cho KJ, Park EJ, Kim MS, Joo YH. Characterization of FaDu-R, a radioresistant head and neck cancer cell line, and cancer stem cells. Auris Nasus Larynx. 2018;45(3):566–73. PubMed
Chua BA, Van Der Werf I, Jamieson C, Signer RAJ. Post-Transcriptional Regulation of Homeostatic, Stressed, and Malignant Stem Cells. Cell Stem Cell. 2020;26(2):138–59. PubMed PMC
Chua BA, Lennan CJ, Sunshine MJ, Dreifke D, Chawla A, Bennett EJ, et al. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell. 2023;30(4):460-472.e6. PubMed PMC
Clark DW, Palle K. Aldehyde dehydrogenases in cancer stem cells: potential as therapeutic targets. Ann Transl Med. 2016;4(24):518–518. PubMed PMC
Clarke MF. Clinical and Therapeutic Implications of Cancer Stem Cells. N Engl J Med. 2019;380(23):2237–45. PubMed
Clevers H, Watt FM. Defining Adult Stem Cells by Function, not by Phenotype. Annu Rev Biochem. 2018;87(1):1015–27. PubMed
Cosset É, Ilmjärv S, Dutoit V, Elliott K, von Schalscha T, Camargo MF, Reiss A, Moroishi T, Seguin L, Gomez G, Moo JS, Preynat-Seauve O, Krause KH, Chneiweiss H, Sarkaria JN, Guan KL, Dietrich PY, Weis SM, Mischel PS, Cheresh DA. Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell. 2017;32(6):856-868.e5. PubMed PMC
Della Donna L, Lagadec C, Pajonk F. Radioresistance of prostate cancer cells with low proteasome activity. Prostate. 2012;72(8):868–74. PubMed PMC
Deol KK, Crowe SO, Du J, Bisbee HA, Guenette RG, Strieter ER. Proteasome-Bound UCH37/UCHL5 Debranches Ubiquitin Chains to Promote Degradation. Mol Cell. 2020;80(5):796-809.e9. PubMed PMC
dos Santos RV, da Silva LM. A possible explanation for the variable frequencies of cancer stem cells in tumors. PLoS ONE. 2013;8(8):e69131. PubMed PMC
Dou Q, Zonder J. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. CCDT. 2014;14(6):517–36. PubMed PMC
Du J, Babik S, Li Y, Deol KK, Eyles SJ, Fejzo J, Tonelli M, Strieter E. A cryptic K48 ubiquitin chain binding site on UCH37 is required for its role in proteasomal degradation. Elife. 2022;22(11):e76100. PubMed PMC
Fendt SM. 100 years of the Warburg effect: A cancer metabolism endeavor. Cell. 2024;187(15):3824–8. PubMed
Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, Weil RJ, Nakano I, Sarkaria JN, Stringer BW, Day BW, Li M, Lathia JD, Rich JN, Hjelmeland AB. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 2013;16(10):1373–82. PubMed PMC
Ganapathy-Kanniappan S, Geschwind JFH. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12(1):152. PubMed PMC
Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, Barretina J, Gelfand ET, Bielski CM, Li H, Hu K, Andreev-Drakhlin AY, Kim J, Hess JM, Haas BJ, Aguet F, Weir BA, Rothberg MV, Paolella BR, Lawrence MS, Akbani R, Lu Y, Tiv HL, Gokhale PC, de Weck A, Mansour AA, Oh C, Shih J, Hadi K, Rosen Y, Bistline J, Venkatesan K, Reddy A, Sonkin D, Liu M, Lehar J, Korn JM, Porter DA, Jones MD, Golji J, Caponigro G, Taylor JE, Dunning CM, Creech AL, Warren AC, McFarland JM, Zamanighomi M, Kauffmann A, Stransky N, Imielinski M, Maruvka YE, Cherniack AD, Tsherniak A, Vazquez F, Jaffe JD, Lane AA, Weinstock DM, Johannessen CM, Morrissey MP, Stegmeier F, Schlegel R, Hahn WC, Getz G, Mills GB, Boehm JS, Golub TR, Garraway LA, Sellers WR. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569(7757):503–8. PubMed PMC
Gil Vazquez E, Nasreddin N, Valbuena GN, Mulholland EJ, Belnoue-Davis HL, Eggington HR, et al. Dynamic and adaptive cancer stem cell population admixture in colorectal neoplasia. Cell Stem Cell. 2022;29(8):1213-1228.e8. PubMed PMC
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell. 2007;1(5):555–67. PubMed PMC
Goodwin PJ, Chen BE, Gelmon KA, Whelan TJ, Ennis M, Lemieux J, et al. Effect of Metformin vs placebo on invasive disease-free survival in patients with breast cancer: the MA.32 randomized clinical trial. JAMA. 2022;327(20):1963. PubMed PMC
Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C. Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. Cell Stem Cell. 2019;24(1):65–78. PubMed PMC
Hadad SM, Coates P, Jordan LB, Dowling RJO, Chang MC, Done SJ, et al. Evidence for biological effects of metformin in operable breast cancer: biomarker analysis in a pre-operative window of opportunity randomized trial. Breast Cancer Res Treat. 2015;150(1):149–55. PubMed
Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell. 2013;23(3):302–15. PubMed PMC
Hardie DG. 100 years of the Warburg effect: a historical perspective. Endocr-Relat Cancer. 2022;29(12):T1-13. PubMed
Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med. 2007;36(10):594–603. PubMed
Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16(10):635–49. PubMed PMC
Hayashi K, Tamari K, Ishii H, Konno M, Nishida N, Kawamoto K, et al. Visualization and characterization of cancer stem-like cells in cervical cancer. Int J Oncol. 2014;45(6):2468–74. PubMed
Hidalgo San Jose L, Signer RAJ. Cell-type-specific quantification of protein synthesis in vivo. Nat Protoc. 2019;14(2):441–60. PubMed PMC
Ito S. Proteasome Inhibitors for the Treatment of Multiple Myeloma. Cancers. 2020;12(2):265. PubMed PMC
Jarzebowski L, Le Bouteiller M, Coqueran S, Raveux A, Vandormael-Pournin S, David A, et al. Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA. RNA. 2018;24(12):1803–12. PubMed PMC
Keysar SB, Gomes N, Miller B, Jackson BC, Le PN, Morton JJ, et al. Inhibiting translation elongation with SVC112 suppresses cancer stem cells and inhibits growth in head and neck squamous carcinoma. Cancer Res. 2020;80(5):1183–98. PubMed PMC
Kim J, Villadsen R, Sørlie T, Fogh L, Grønlund SZ, Fridriksdottir AJ, et al. Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. PNAS. 2012;109(16):6124–9. PubMed PMC
Kurth I, Hein L, Mäbert K, Peitzsch C, Koi L, Cojoc M, Kunz-Schughart L, Baumann M, Dubrovska A. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget. 2015;6(33):34494–509. PubMed PMC
Lagadec C, Vlashi E, Bhuta S, Lai C, Mischel P, Werner M, et al. Tumor cells with low proteasome subunit expression predict overall survival in head and neck cancer patients. BMC Cancer. 2014;14(1): 152. PubMed PMC
Lagadec C, Vlashi E, Frohnen P, Alhiyari Y, Chan M, Pajonk F. The RNA-Binding Protein Musashi-1 Regulates Proteasome Subunit Expression in Breast Cancer- and Glioma-Initiating Cells. Stem Cells. 2014;32(1):135–44. PubMed PMC
Laham-Karam N, Pinto GP, Poso A, Kokkonen P. Transcription and Translation Inhibitors in Cancer Treatment. Front Chem. 2020;8:276. PubMed PMC
Lee JH, Jung KH, Park JW, Moon SH, Cho YS, Lee KH. Targeting poor proteasomal function with radioiodine eliminates CT26 colon cancer stem cells resistant to bortezomib therapy. Sci Rep. 2020;10(1):14308. PubMed PMC
Lenos KJ, Vermeulen L. Cancer stem cells don’t waste their time cleaning—low proteasome activity, a marker for cancer stem cell function. Ann Transl Med. 2016;4(24):519–519. PubMed PMC
Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG. PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res. 2008;68(6):1820–5. PubMed
Lindqvist LM, Vikström I, Chambers JM, McArthur K, Ann Anderson M, Henley KJ, et al. Translation inhibitors induce cell death by multiple mechanisms and Mcl-1 reduction is only a minor contributor. Cell Death Dis. 2012;3(10):e409–e409. PubMed PMC
Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast Cancer Stem Cells Transition between Epithelial and Mesenchymal States Reflective of their Normal Counterparts. Stem Cell Rep. 2014;2(1):78–91. PubMed PMC
Liu Y, Nenutil R, Appleyard MV, Murray K, Boylan M, Thompson AM, et al. Lack of correlation of stem cell markers in breast cancer stem cells. Br J Cancer. 2014;110(8):2063–71. PubMed PMC
Liu Y, Nekulova M, Nenutil R, Horakova I, Appleyard MV, Murray K, et al. ∆Np63/p40 correlates with the location and phenotype of basal/mesenchymal cancer stem-like cells in human ER PubMed PMC
Mah V, Elshimali Y, Chu A, Moatamed NA, Uzzell JP, Tsui J, et al. ALDH1 expression predicts progression of premalignant lesions to cancer in Type I endometrial carcinomas. Sci Rep. 2021;11(1):11949. PubMed PMC
Maitland NJ, Collins AT. Prostate Cancer Stem Cells: A New Target for Therapy. J Clin Oncol. 2008;26(17):2862–70. PubMed
Mansell E, Sigurdsson V, Deltcheva E, Brown J, James C, Miharada K, et al. Mitochondrial Potentiation Ameliorates Age-Related Heterogeneity in Hematopoietic Stem Cell Function. Cell Stem Cell. 2021;28(2):241-256.e6. PubMed
Mauro-Lizcano M, Di Pisa F, Larrea Murillo L, Sugden CJ, Sotgia F, Lisanti MP. High mitochondrial DNA content is a key determinant of stemness, proliferation, cell migration, and cancer metastasis in vivo. Cell Death Dis. 2024;15(10):745. PubMed PMC
Mistrik M, Skrott Z, Muller P, Panacek A, Hochvaldova L, Chroma K, Buchtova T, Vandova V, Kvitek L, Bartek J. Microthermal-induced subcellular-targeted protein damage in cells on plasmonic nanosilver-modified surfaces evokes a two-phase HSP-p97/VCP response. Nat Commun. 2021;12(1):713. PubMed PMC
Morral C, Stanisavljevic J, Hernando-Momblona X, Mereu E, Álvarez-Varela A, Cortina C, et al. Zonation of Ribosomal DNA Transcription Defines a Stem Cell Hierarchy in Colorectal Cancer. Cell Stem Cell. 2020;26(6):845-861.e12. PubMed PMC
Muller P, Ruckova E, Halada P, Coates PJ, Hrstka R, Lane DP, Vojtesek B. C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene. 2013;32(25):3101–10. PubMed
Munakata K, Uemura M, Tanaka S, Kawai K, Kitahara T, Miyo M, et al. Cancer stem-like properties in colorectal cancer cells with low proteasome activity. Clin Cancer Res. 2016;22(21):5277–86. PubMed
Nimmakayala RK, Leon F, Rachagani S, Rauth S, Nallasamy P, Marimuthu S, et al. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene. 2021;40(1):215–31. PubMed PMC
Oshimori N, Guo Y, Taniguchi S. An emerging role for cellular crosstalk in the cancer stem cell niche. J Pathol. 2021;254(4):384–94. PubMed PMC
Pan J, Zhang Q, Wang Y, You M. 26S Proteasome Activity Is Down-Regulated in Lung Cancer Stem-Like Cells Propagated In Vitro. Wang X, editor. PLoS ONE. 2010;5(10):e13298. PubMed PMC
Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab. 2022;34(3):355–77. PubMed PMC
Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25(34):4633–46. PubMed
Pendergrass W, Wolf N, Poot M. Efficacy of MitoTracker Green™ and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytom A. 2004;61A(2):162–9. PubMed
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. Nat Cancer. 2023;4(8):1063–82. PubMed PMC
Poturnajova M, Kozovska Z, Matuskova M. Aldehyde dehydrogenase 1A1 and 1A3 isoforms – mechanism of activation and regulation in cancer. Cell Signal. 2021;87: 110120. PubMed PMC
Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer. 2017;16(1): 41. PubMed PMC
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol. 2021;22(10):671–90. PubMed
Sancho P, Barneda D, Heeschen C. Hallmarks of cancer stem cell metabolism. Br J Cancer. 2016;114(12):1305–12. PubMed PMC
Sharrow AC, Perkins B, Collector MI, Yu W, Simons BW, Jones RJ. Characterization of aldehyde dehydrogenase 1 high ovarian cancer cells: towards targeted stem cell therapy. Gynecol Oncol. 2016;142(2):341–8. PubMed PMC
Sica V, Bravo-San Pedro JM, Stoll G, Kroemer G. Oxidative phosphorylation as a potential therapeutic target for cancer therapy. Int J Cancer. 2020;146(1):10–7. PubMed
Signer RAJ, Qi L, Zhao Z, Thompson D, Sigova AA, Fan ZP, et al. The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs. Genes Dev. 2016;30(15):1698–703. PubMed PMC
Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S. Cancer Stem Cell Metabolism and Potential Therapeutic Targets. Front Oncol. 2018;8:203. PubMed PMC
Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A. 1999;96(16):9118–23. PubMed PMC
Sukumar M, Liu J, Mehta GU, Patel SJ, Roychoudhuri R, Crompton JG, et al. Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metab. 2016;23(1):63–76. PubMed PMC
Szablewski L. Expression of glucose transporters in cancers. BBA - Reviews on Cancer. 2013;1835(2):164–9. PubMed
Tamari K, Hayashi K, Ishii H, Kano Y, Konno M, Kawamoto K, et al. Identification of chemoradiation-resistant osteosarcoma stem cells using an imaging system for proteasome activity. Int J Oncol. 2014;45(6):2349–54. PubMed
Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478(7368):255–9. PubMed PMC
Tsvetkov P, Adler J, Myers N, Biran A, Reuven N, Shaul Y. Oncogenic addiction to high 26S proteasome level. Cell Death Dis. 2018;9(7):773. PubMed PMC
Vassalli G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int. 2019;2019:1–15. PubMed PMC
Viale A, Draetta GF. Sugar? No thank you, just a deep breath of oxygen for cancer stem cells. Cell Metab. 2015;22(4):543–5. PubMed
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68. PubMed
Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28. PubMed
Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, et al. In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst. 2009;101(5):350–9. PubMed PMC
Vlashi E, Lagadec C, Chan M, Frohnen P, McDonald AJ, Pajonk F. Targeted elimination of breast cancer cells with low proteasome activity is sufficient for tumor regression. Breast Cancer Res Treat. 2013;141(2):197–203. PubMed PMC
Vitiello GA, Medina BD, Zeng S, Bowler TG, Zhang JQ, Loo JK, et al. Mitochondrial Inhibition Augments the Efficacy of Imatinib by Resetting the Metabolic Phenotype of Gastrointestinal Stromal Tumor. Clin Cancer Res. 2018;24(4):972–84. PubMed PMC
Wan B, Cheng M, He T, Zhang L. UCHL5 promotes hepatocellular carcinoma progression by promoting glycolysis through activating Wnt/β-catenin pathway. BMC Cancer. 2024;24(1):618. PubMed PMC
Yadav UP, Singh T, Kumar P, Sharma P, Kaur H, Sharma S, et al. Metabolic Adaptations in Cancer Stem Cells. Front Oncol. 2020;10:1010. PubMed PMC
Yasuda T, Ishimoto T, Baba H. Conflicting metabolic alterations in cancer stem cells and regulation by the stromal niche. Regener Ther. 2021;17:8–12. PubMed PMC
Yeo SK, Zhu X, Okamoto T, Hao M, Wang C, Lu P, et al. Single-cell RNA-sequencing reveals distinct patterns of cell state heterogeneity in mouse models of breast cancer. eLife. 2020;9:e58810. PubMed PMC