Heterogeneity of glucose metabolism and uptake identifies distinct cancer cell and cancer stem cell phenotypes
Status In-Process Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 21-13188S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004644
H2020 European Research Council
MMCI
Ministerstvo Zdravotnictví Ceské Republiky
00209805
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.01.01/00/22_008/0004644
the State Budget of the Czech Republic
PubMed
41547734
PubMed Central
PMC12829025
DOI
10.1186/s11658-025-00837-0
PII: 10.1186/s11658-025-00837-0
Knihovny.cz E-zdroje
- Klíčová slova
- ALDH, Cancer stem cells, GLUT1, Glucose metabolism, LDH, Mitochondria, SDH,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Tumor cells show phenotypic heterogeneity, including a small subpopulation of cancer stem-like cells (CSCs) that are responsible for maintaining tumor growth and metastasis. Altered glucose metabolism is a characteristic feature of cancer cells, which often display increased aerobic glycolysis alongside mitochondrial oxidative respiration (the Warburg effect). However, there is evidence that CSCs exhibit distinct glucose metabolism compared with the tumor cell bulk, with increased mitochondrial activity and oxidative respiration. Thus, identifying individual cells with different modes of glucose metabolism may serve as a common identifier of CSCs, and these metabolic differences would allow selective therapeutic targeting. METHODS: We investigated the levels of enzymes involved in glycolysis and oxidative respiration, together with glucose uptake and mitochondrial membrane potential in individual cancer cells. These parameters were correlated with each other and with CSC markers. RESULTS: We show considerable heterogeneity of metabolic markers in individual tumor cells. Surprisingly, high glucose uptake correlates with high mitochondrial membrane potential, indicating that increased oxidative respiration and aerobic glycolysis coexist rather than showing an inverse correlation. We also show that colonies derived from cells with high mitochondrial membrane potential exhibit heterogeneous metabolic parameters, demonstrating that metabolic profiles are not hard-wired. Public gene expression profiling data indicated similar inconsistent metabolic features of CSCs. CONCLUSIONS: The data reveal inherent heterogeneity and plasticity of glucose metabolism and mitochondrial membrane potential in tumor cells, with evidence for a subpopulation that possesses both increased glucose uptake and increased mitochondrial membrane potential, with implications for therapeutic targeting of metabolism in cancer. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11658-025-00837-0.
Zobrazit více v PubMed
Clarke MF. Clinical and therapeutic implications of cancer stem cells. N Engl J Med. 2019;380(23):2237–45. PubMed
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. PubMed
Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. J Clin Oncol. 2008;26(17):2862–70. PubMed
Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, et al. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell. 2010;7(3):279–82. PubMed PMC
Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, et al. Cancer stem cell markers in common cancers-therapeutic implications. Trends Mol Med. 2008;14(10):450–60. PubMed
Liu Y, Nenutil R, Appleyard MV, Murray K, Boylan M, Thompson AM, et al. Lack of correlation of stem cell markers in breast cancer stem cells. Br J Cancer. 2014;110(8):2063–71. PubMed PMC
Kim J, Villadsen R, Sørlie T, Fogh L, Grønlund SZ, Fridriksdottir AJ, et al. Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity. Proc Natl Acad Sci USA. 2012;109(16):6124–9. PubMed PMC
Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2014;2(1):78–91. PubMed PMC
Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer. 2017;16(1):41. PubMed PMC
Lenos KJ, Miedema DM, Lodestijn SC, Nijman LE, van den Bosch T, Romero Ros X, et al. Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nat Cell Biol. 2018;20(10):1193–202. PubMed PMC
Gola A, Fuchs E. Environmental control of lineage plasticity and stem cell memory. Curr Opin Cell Biol. 2021;69:88–95. PubMed PMC
Beaver CM, Ahmed A, Masters JR. Clonogenicity: holoclones and meroclones contain stem cells. PLoS ONE. 2014;9(2):e89834. PubMed PMC
Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA. 1987;84(8):2302–6. PubMed PMC
Meacham CE, DeVilbiss AW, Morrison SJ. Metabolic regulation of somatic stem cells in vivo. Nat Rev Mol Cell Biol. 2022;23(6):428–43. PubMed
Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16(10):635–49. PubMed PMC
Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: still emerging. Cell Metab. 2022;34(3):355–77. PubMed PMC
Liberti MV, Locasale JW. The warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–8. PubMed PMC
Adekola K, Rosen ST, Shanmugam M. Glucose transporters in cancer metabolism. Curr Opin Oncol. 2012;24(6):650–4. PubMed PMC
Szablewski L. Expression of glucose transporters in cancers. Biochimica et Biophysica Acta (BBA). 2013;1835(2):164–9. PubMed
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47. PubMed PMC
Dupuy F, Tabariès S, Andrzejewski S, Dong Z, Blagih J, Annis MG, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 2015;22(4):577–89. PubMed
Thoudam T, Chanda D, Sinam IS, Kim BG, Kim MJ, Oh CJ, et al. Noncanonical PDK4 action alters mitochondrial dynamics to affect the cellular respiratory status. Proc Natl Acad Sci USA. 2022;119(34):e2120157119. PubMed PMC
Nguyen NTB, Gevers S, Kok RNU, Burgering LM, Neikes H, Akkerman N, et al. Lactate controls cancer stemness and plasticity through epigenetic regulation. Cell Metab. 2025;37(4):903-919.e10. PubMed
Banerjee A, Arvinrad P, Darley M, Laversin SA, Parker R, Rose-Zerilli MJJ, et al. The effects of restricted glycolysis on stem-cell like characteristics of breast cancer cells. Oncotarget. 2018;9(33):23274–88. PubMed PMC
Farnie G, Sotgia F, Lisanti MP. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget. 2015;6(31):30472–86. PubMed PMC
Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP. Cancer stem cell metabolism. Breast Cancer Res. 2016;18(1):55. PubMed PMC
Vlashi E, Lagadec C, Vergnes L, Reue K, Frohnen P, Chan M, et al. Metabolic differences in breast cancer stem cells and differentiated progeny. Breast Cancer Res Treat. 2014;146(3):525–34. PubMed PMC
Ye XQ, Li Q, Wang GH, Sun FF, Huang GJ, Bian XW, et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer. 2011;129(4):820–31. PubMed
Sukumar M, Liu J, Mehta GU, Patel SJ, Roychoudhuri R, Crompton JG, et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 2016;23(1):63–76. PubMed PMC
Courtois S, Durán RV, Giraud J, Sifré E, Izotte J, Mégraud F, et al. Metformin targets gastric cancer stem cells. Eur J Cancer. 2017;84:193–201. PubMed
Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69(19):7507–11. PubMed PMC
Janzer A, German NJ, Gonzalez-Herrera KN, Asara JM, Haigis MC, Struhl K. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci USA. 2014;111(29):10574–9. PubMed PMC
Lonardo E, Cioffi M, Sancho P, Sanchez-Ripoll Y, Trabulo SM, Dorado J, et al. Metformin targets the metabolic Achille’s heel of human pancreatic cancer stem cells. PLoS ONE. 2013;8(10):e76518. PubMed PMC
Brown JR, Chan DK, Shank JJ, Griffith KA, Fan H, Szulawski R, et al. Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer. JCI Insight. 2020;5(11):e133247. PubMed PMC
Pajak B, Siwiak E, Sołtyka M, Priebe A, Zieliński R, Fokt I, et al. 2-deoxy-D-glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci. 2019;21(1):234. PubMed PMC
Schmidt MC, O’Donnell AF. ‘Sugarcoating’ 2-deoxyglucose: mechanisms that suppress its toxic effects. Curr Genet. 2021;67(1):107–14. PubMed PMC
Zhang D, Li J, Wang F, Hu J, Wang S, Sun Y. 2-deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett. 2014;355(2):176–83. PubMed
Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med. 2007;36(10):594–603. PubMed
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67. PubMed PMC
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8(10):755–68. PubMed
Van Noorden CJF. Imaging enzymes at work: metabolic mapping by enzyme histochemistry. J Histochem Cytochem. 2010;58(6):481–97. PubMed PMC
Lee KS, Su X, Huan T. Metabolites are not genes—avoiding the misuse of pathway analysis in metabolomics. Nat Metab. 2025;7(5):858–61. PubMed
Schatton D, Rugarli EI. A concert of RNA-binding proteins coordinates mitochondrial function. Crit Rev Biochem Mol Biol. 2018;53(6):652–66. PubMed
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin. 2024;45(8):1533–55. PubMed PMC
Xie AX, Tansey W, Reznik E. UnitedMet harnesses RNA-metabolite covariation to impute metabolite levels in clinical samples. Nat Cancer. 2025;6(5):892–906. PubMed PMC
Yamada K, Saito M, Matsuoka H, Inagaki N. A real-time method of imaging glucose uptake in single, living mammalian cells. Nat Protoc. 2007;2(3):753–62. PubMed
Locke M, Heywood M, Fawell S, Mackenzie IC. Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res. 2005;65(19):8944–50. PubMed
Poot M, Zhang YZ, Krämer JA, Wells KS, Jones LJ, Hanzel DK, et al. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem. 1996;44(12):1363–72. PubMed
Schieke SM, McCoy JP, Finkel T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle. 2008;7(12):1782–7. PubMed PMC
Hirusaki K, Yokoyama K, Cho K, Ohta Y. Temporal depolarization of mitochondria during M phase. Sci Rep. 2017;7(1):16044. PubMed PMC
Liu J, Peng Y, Shi L, Wan L, Inuzuka H, Long J, et al. Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Res. 2021;31(1):80–93. PubMed PMC
DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200. PubMed PMC
Sighel D, Notarangelo M, Aibara S, Re A, Ricci G, Guida M, et al. Inhibition of mitochondrial translation suppresses glioblastoma stem cell growth. Cell Rep. 2021;35(4):109024. PubMed PMC
Nimmakayala RK, Rauth S, Chirravuri Venkata R, Marimuthu S, Nallasamy P, Vengoji R, et al. PGC1α-mediated metabolic reprogramming drives the stemness of pancreatic precursor lesions. Clin Cancer Res. 2021;27(19):5415–29. PubMed PMC
Berlin C, Mauerer B, Cauchy P, Luenstedt J, Sankowski R, Marx L, et al. Single-cell deconvolution reveals high lineage- and location-dependent heterogeneity in mesenchymal multivisceral stage 4 colorectal cancer. J Clin Invest. 2024;134(5):e169576. PubMed PMC
Noh JK, Woo SR, Kong M, Lee MK, Lee JW, Lee YC, et al. Gene signature predicting recurrence in oral squamous cell carcinoma is characterized by increased oxidative phosphorylation. Mol Oncol. 2023;17(1):134–49. PubMed PMC
Chen CL, Uthaya Kumar DB, Punj V, Xu J, Sher L, Tahara SM, et al. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab. 2016;23(1):206–19. PubMed PMC
Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13(4):215. PubMed PMC
dos Santos RV, da Silva LM. A possible explanation for the variable frequencies of cancer stem cells in tumors. PLoS ONE. 2013;8(8):e69131. PubMed PMC
Ali D, Alhattab D, Jafar H, Alzubide M, Sharar N, Bdour S, et al. Differential marker expression between keratinocyte stem cells and their progeny generated from a single colony. Int J Mol Sci. 2021;22(19):10810. PubMed PMC
Ricardo S, Vieira AF, Gerhard R, Leitao D, Pinto R, Cameselle-Teijeiro JF, et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol. 2011;64(11):937–46. PubMed
Nimmakayala RK, Leon F, Rachagani S, Rauth S, Nallasamy P, Marimuthu S, et al. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene. 2021;40(1):215–31. PubMed PMC
Gammon L, Biddle A, Heywood HK, Johannessen AC, Mackenzie IC. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS ONE. 2013;8(4):e62493. PubMed PMC
Krkoška M, Tylichová Z, Zatloukalová P, Müller P, Vojtěšek B, Coates PJ. Heterogeneous protein dynamics links to mitochondrial activity, glucose transporter, and ALDH cancer stem cell properties. BMC Cancer. 2025;25(1):1085. PubMed PMC
Liu CC, Chou KT, Hsu JW, Lin JH, Hsu TW, Yen DHT, et al. High metabolic rate and stem cell characteristics of esophageal cancer stem-like cells depend on the Hsp27-AKT-HK2 pathway. Int J Cancer. 2019;145(8):2144–56. PubMed
Kondo H, Ratcliffe CDH, Hooper S, Ellis J, MacRae JI, Hennequart M, et al. Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Rep. 2021;34(7):108750. PubMed PMC
Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR, et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature. 2021;593(7858):282–8. PubMed PMC
Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, et al. Metabolic heterogeneity in human lung tumors. Cell. 2016;164(4):681–94. PubMed PMC
Fendt SM, Frezza C, Erez A. Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 2020;10(12):1797–807. PubMed PMC
McGuirk S, Audet-Delage Y, St-Pierre J. Metabolic fitness and plasticity in cancer progression. Trends Cancer. 2020;6(1):49–61. PubMed
DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. 2020;2(2):127–9. PubMed