Synergistic Drying Solutions: Combining Vacuum and Infrared Techniques for Optimal Persimmon Preservation

. 2025 Jul ; 90 (7) : e70347.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40616350

This study evaluated vacuum drying (VD) and infrared drying (IRD) methods for persimmon, including individual and two-step sequential processes (VD followed by IRD and vice versa). The combined drying strategies were selected to harness the rapid surface heating of IRD and the low-temperature, low-oxygen benefits of VD, aiming to overcome limitations of single drying methods such as extended drying times and nutrient degradation. Drying experiments were conducted using laboratory-scale equipment at 50-70°C, for VD, with a vacuum pressure of 50 mbar (absolute pressure) and a pump speed of 2 L/s. Results showed a significant effect of drying combination strategies on drying rate, duration, effective moisture diffusivity, shrinkage, activation energy, color characteristics, microstructure, and phytochemical constituents of persimmon. The shortest drying times were recorded for IRD (240 min), followed by VD + IRD (343 min) and IRD + VD (376 min), whereas VD required the longest (520 min). Effective moisture diffusivity ranged from 1.42 × 10-9 m2/s for VD at 50°C (VD-50) to 7.83 × 10-9 m2/s for IRD at 70°C (IRD-70), with both individual IRD-70 and a combination of IRD + VD demonstrating improved moisture transfer performance. The IRD + VD combination resulted in the best microstructure preservation and showed lower shrinkage compared to other drying strategies. Moreover, this combination best preserved the persimmon color with the lowest total color change (ΔE = 5.591), whereas VD showed the highest (ΔE = 35.875). Activation energy was lowest in IRD + VD (13.98 kJ/mol), followed by VD + IRD (18.61 kJ/mol), with higher values in VD (34.08 kJ/mol) and IRD (22.75 kJ/mol). Phytochemical analysis showed IRD (total phenolic content [TPC] = 35.79 mgGAE/g, total flavonoid content [TFC] = 54.83 mgQE/g) and IRD + VD (TPC = 17.02 mgGAE/g, TFC = 58.52 mgQE/g) retaining the highest bioactive compounds. This study contributes to optimizing drying techniques for persimmon, enhancing energy efficiency, preserving nutritional quality, and supporting sustainable food processing, making it relevant for the food industry, food engineering, and food science fields.

Zobrazit více v PubMed

Aidani, E., M. Hadadkhodaparast, and M. Kashaninejad. 2017. “Experimental and Modeling Investigation of Mass Transfer During Combined Infrared‐Vacuum Drying of Hayward Kiwifruits.” Food Science & Nutrition 5, no. 3: 596–601. https://doi.org/10.1002/fsn3.435.

Aksoy, A., S. Karasu, A. Akcicek, and S. Kayacan. 2019. “Effects of Different Drying Methods on Drying Kinetics, Microstructure, Color, and the Rehydration Ratio of Minced Meat.” Foods 8, no. 6: 216. https://doi.org/10.3390/foods8060216.

Alibas, I., and A. Yilmaz. 2022. “Microwave and Convective Drying Kinetics and Thermal Properties of Orange Slices and Effect of Drying on Some Phytochemical Parameters.” Journal of Thermal Analysis and Calorimetry 147, no. 15: 8301–8321. https://doi.org/10.1007/s10973‐021‐11108‐3.

Alshehri, A. A., N. M. Tolba, M. A. Salama, M. Saleh, and R. M. Kamel. 2024. “Energy Analysis and Quality Characteristics of Flaxseed Oil by Using an Infrared Rotary Dryer.” Case Studies in Thermal Engineering 54: 103988. https://doi.org/10.1016/j.csite.2024.103988.

An, K., D. Zhao, Z. Wang, J. Wu, Y. Xu, and G. Xiao. 2016. “Comparison of Different Drying Methods on Chinese Ginger (Zingiber officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure.” Food Chemistry 197: 1292–1300. https://doi.org/10.1016/j.foodchem.2015.11.033.

Boateng, I. D., X. M. Yang, and Y. Y. Li. 2021. “Optimization of Infrared‐Drying Parameters for Ginkgo biloba L. Seed and Evaluation of Product Quality and Bioactivity.” Industrial Crops and Products 160: 113108. https://doi.org/10.1016/j.indcrop.2020.113108.

Bozkir, H., A. R. Ergün, E. Serdar, G. Metin, and T. Baysal. 2019. “Influence of Ultrasound and Osmotic Dehydration Pretreatments on Drying and Quality Properties of Persimmon Fruit.” Ultrasonics Sonochemistry 54: 135–141. https://doi.org/10.1016/j.ultsonch.2019.02.006.

Cai, J., L. Zhu, Q. Wei, D. Huang, M. Luo, and X. Tang. 2023. “Drying Kinetics of a Single Biomass Particle Using Fick's Second Law of Diffusion.” Processes 11, no. 4: 984. https://doi.org/10.3390/pr11040984.

Chen, N. N., M. Q. Chen, B. A. Fu, and J. J. Song. 2017. “Far‐Infrared Irradiation Drying Behavior of Typical Biomass Briquettes.” Energy 121: 726–738. https://doi.org/10.1016/j.energy.2017.01.054.

Crank, J. 1979. The Mathematics of Diffusion. Oxford university press.

Demiray, E., and Y. Tulek. 2017. “The Effect of Pretreatments on Air Drying Characteristics of Persimmons.” Heat and Mass Transfer 53, no. 1: 99–106. https://doi.org/10.1007/s00231‐016‐1797‐2.

Direito, R., J. Rocha, B. Sepodes, and M. Eduardo‐Figueira. 2021. “From Diospyros kaki L. (Persimmon) Phytochemical Profile and Health Impact to New Product Perspectives and Waste Valorization.” Nutrients 13, no. 9: 3283. https://doi.org/10.3390/nu13093283.

Doymaz, İ. 2012. “Evaluation of Some Thin‐Layer Drying Models of Persimmon Slices (Diospyros kaki L.).” Energy Conversion and Management 56: 199–205. https://doi.org/10.1016/j.enconman.2011.11.027. Getrights and content

El‐Mesery, H. S., R. M. Kamel, and W. G. Alshaer. 2022. “Thin‐Layer Drying Characteristics, Modeling and Quality Attributes of Tomato Slices Dried With Infrared Radiation Heating.” Bioscience Journal 38, no. e38049: 1981–3163. https://doi.org/10.14393/BJ‐v38n0a2022‐42303.

EL‐Mesery, H. S., R. M. Kamel, and R. Z. Emara. 2021. “Influence of Infrared Intensity and Air Temperature on Energy Consumption and Physical Quality of Dried Apple Using Hybrid Dryer.” Case Studies in Thermal Engineering 27: 101365. https://doi.org/10.1016/j.csite.2021.101365.

Ercisli, S., M., Akbulut, O., Ozdemir, M., Sengul, and E., Orhan. 2008. “Phenolic and Antioxidant Diversity Among Persimmon (Diospyrus kaki L.) Genotypes in Turkey.” International Journal of Food Sciences and Nutrition 59, no. 6: 477–482. https://doi.org/10.1080/09637480701538262.

Farkas, Á., G. Horváth, M. Kuzma, M. Mayer, and M. Kocsis. 2023. “Phenolic Compounds in Hungarian Acacia, Linden, Milkweed and Goldenrod Honeys.” Current Research in Food Science 6: 100526. https://doi.org/10.1016/j.crfs.2023.100526.

Fartash Naeimi, E., M. H. Khoshtaghaza, K. Ç. Selvi, N. Ungureanu, and S. Abbasi. 2024. “Optimization of the Drying Process for Gamma‐Irradiated Mushroom Slices Using Mathematical Models and Machine Learning Algorithms.” Agriculture 14, no. 12: 2351. https://doi.org/10.3390/agriculture14122351.

Gebre, G. D., Y. G. Keneni, S. N. Gebremariam, and J. M. Marchetti. 2024. “Drying Kinetics and Mathematical Modeling of Seeds of Two Mango Varieties at Different Temperatures and With Different Pretreatments.” Biofuels, Bioproducts and Biorefining 18, no. 4: 899–926. https://doi.org/10.1002/bbb.2611.

Hadibi, T., S. Mengjie, M. Hamid, et al. 2025. “Effect of Different Drying Methods on Kinetics, Energy‐Economic Analysis, and Quality Attributes of Dried Panax‐Notoginseng.” Industrial Crops and Products 224: 120345. https://doi.org/10.1016/j.indcrop.2024.120345.

Harguindeguy, M., S. Bobba, D. Colucci, and D. Fissore. 2021. “Effect of Vacuum Freeze‐Drying on the Antioxidant Properties of Eggplants (Solanum melongena L.).” Drying Technology 39, no. 1: 3–18. https://doi.org/10.1080/07373937.2019.1699834.

Hemis, M., R. Choudhary, Y. Gariépy, and V. G. Raghavan. 2015. “Experiments and Modelling of the Microwave Assisted Convective Drying of Canola Seeds.” Biosystems Engineering 139: 121–127. https://doi.org/10.1016/j.biosystemseng.2015.08.010.

Ieracitano, C., A. Adeel, F. C. Morabito, and A. Hussain. 2020. “A Novel Statistical Analysis and Autoencoder Driven Intelligent Intrusion Detection Approach.” Neurocomputing 387: 51–62. https://doi.org/10.1016/j.neucom.2019.11.016.

Jiang, D., H. Xiao, and Z. Zheng. 2022. “Effects of Different Drying Methods on Drying Characteristics, Microstructure, Quality, and Energy Consumption of Panax notoginseng Roots (Araliaceae).” Drying Technology 40, no. 6: 1247–1261. https://doi.org/10.1080/07373937.2020.1863978.

Kamel, R. M., M. M. El‐kholy, and I. A. Abdelmotaleb. 2017. “Drying of Banana Slices Under Vacuum‐Infrared Heating System.” MISR Journal of Agricultural Engineering 34, no. 4: 2181–2200. https://doi.org/10.21608/mjae.2017.97424.

Khaled, A. Y., A. Kabutey, K. Ç. Selvi, Č. Mizera, P. Hrabe, and D. Herák. 2020. “Application of Computational Intelligence in Describing the Drying Kinetics of Persimmon Fruit (Diospyros kaki) During Vacuum and Hot Air Drying Process.” Processes 8, no. 5: 544. https://doi.org/10.3390/pr8050544.

Koukouch, A., A. Idlimam, M. Asbik, et al. 2017. “Experimental Determination of the Effective Moisture Diffusivity and Activation Energy During Convective Solar Drying of Olive Pomace Waste.” Renewable Energy 101: 565–574. https://doi.org/10.1016/j.renene.2016.09.006.

Kusuma, H. S., D. E. C. Jaya, and N. Illiyanasafa. 2024. Effect of chitosan coating on basil (Ocimum sanctum) leaves dried by microwave‐assisted drying method: Analysis of color, effective moisture diffusivity, and drying kinetics. International Journal of Biological Macromolecules, 273: 133000. https://doi.org/10.1016/j.ijbiomac.2024.133000.

Lee, B. H., and Y. T. Lee. 2017. “Physicochemical and Structural Properties of Different Colored Sweet Potato Starches.” Starch‐Stärke 69, no. 3–4: 1600001. https://doi.org/10.1002/star.201600001.

Lehmad, M., Y. EL Hachimi, P. Lhomme, S. Mghazli, and N. Abdenouri. 2024. “Comprehensive Analysis of Adsorption–Desorption Isotherms, Drying Kinetics, and Nutritional Quality of Black Soldier Fly (Hermetia illucens) Larvae.” Food Biophysics 19, no. 4: 938–954. https://doi.org/10.1007/s11483‐024‐09867‐1.

Lemus‐Mondaca, R., L. Zura‐Bravo, K. Ah‐Hen, and K. Di Scala. 2021. “Effect of Drying Methods on Drying Kinetics, Energy Features, Thermophysical and Microstructural Properties of Stevia rebaudiana Leaves.” Journal of the Science of Food and Agriculture 101, no. 15: 6484–6495. https://doi.org/10.1002/jsfa.11320.

Martínez‐Las Heras, R., E. F. Landines, A. Heredia, M. L. Castelló, and A. Andrés. 2017. “Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties.” Journal of food Science and Technology, 54: 2902–2912. https://doi.org/10.1007/s13197‐017‐2728‐z.

Muga, F. C., M. O. Marenya, and T. S. Workneh. 2021. “Modelling the Thin‐Layer Drying Kinetics of Marinated Beef During Infrared‐Assisted Hot Air Processing of Biltong.” International Journal of Food Science 2021, no. 1: 8819780. https://doi.org/10.1155/2021/8819780.

Nachaisin, M., J. Jamradloedluk, and C. Niamnuy. 2016. “Application of Combined Far‐Infrared Radiation and Air Convection for Drying of Instant Germinated Brown Rice.” Journal of Food Process Engineering 39, no. 3: 306–318. https://doi.org/10.1111/jfpe.12226.

Obajemihi, O. I., J. H. Cheng, and D. W. Sun. 2024. “Novel Cold Plasma Functionalized Water Pretreatment for Improving Drying Performance and Physicochemical Properties of Tomato (Solanum lycopersicum L.) Fruits During Infrared‐Accelerated Pulsed Vacuum Drying.” Journal of Food Engineering 379: 112050. https://doi.org/10.1016/j.jfoodeng.2024.112050.

Onwude, D. I., N. Hashim, K. Abdan, R. Janius, and G. Chen. 2018. “The Potential of Computer Vision, Optical Backscattering Parameters and Artificial Neural Network Modelling in Monitoring the Shrinkage of Sweet Potato (Ipomoea batatas L.) During Drying.” Journal of the Science of Food and Agriculture 98, no. 4: 1310–1324. https://doi.org/10.1002/jsfa.8595.

Onwude, D. I., N. Hashim, K. Abdan, R. Janius, and G. Chen. 2019. “The Effectiveness of Combined Infrared and Hot‐Air Drying Strategies for Sweet Potato.” Journal of Food Engineering 241: 75–87. https://doi.org/10.1016/j.jfoodeng.2018.08.008.

Onwude, D. I., N. Hashim, R. B. Janius, N. Nawi, and K. Abdan. 2016. “Evaluation of a Suitable Thin Layer Model for Drying of Pumpkin Under Forced Air Convection.” International Food Research Journal 23, no. 3: 1173–1181.

Pandey, M., K. Goswami, H. Joshi, and P. Awasthi. 2020. “Evaluation of Sensory Characteristics and Storage Stability of Formulated Product From Persimmon (Diospyros kaki) Fruit.” International Journal of Current Microbiology and Applied Sciences 9, no. 7: 311–319. https://doi.org/10.20546/ijcmas.2020.907.033.

Peng, P., X. Wang, X. Zou, X. Zhang, and X. Hu. 2022. “Dynamic Behaviors of Protein and Starch and Interactions Associated With Glutenin Composition in Wheat Dough Matrices During Sequential Thermo‐Mechanical Treatments.” Food Research International 154: 110986. https://doi.org/10.1016/j.foodres.2022.110986.

Polat, A., O. Taskin, and N. Izli. 2024. “Assessment of Freeze, Continuous, and Intermittent Infrared Drying Methods for Sliced Persimmon.” Journal of Food Science 89, no. 4: 2332–2346. https://doi.org/10.1111/1750‐3841.16994.

Rahaman, A., A. Siddeeg, M. F. Manzoor, et al. 2019. “Impact of Pulsed Electric Field Treatment on Drying Kinetics, Mass Transfer, Colour Parameters and Microstructure of Plum.” Journal of Food Science and Technology 56: 2670–2678. https://doi.org/10.1007/s13197‐019‐03755‐0.

Rashid, M. T., K. Liu, M. A. Jatoi, B. Safdar, D. Lv, and D. Wei. 2022. “Developing Ultrasound‐Assisted Hot‐Air and Infrared Drying Technology for Sweet Potatoes.” Ultrasonics Sonochemistry 86: 106047. https://doi.org/10.1016/j.ultsonch.2022.106047.

Salehi, F., and M. Kashaninejad. 2018. “Modeling of Moisture Loss Kinetics and Color Changes in the Surface of Lemon Slice During the Combined Infrared‐Vacuum Drying.” Information Processing in Agriculture 5, no. 4: 516–523. https://doi.org/10.1016/j.inpa.2018.05.006.

Salehi, F., M. Kashaninejad, and A. Jafarianlari. 2017. “Drying Kinetics and Characteristics of Combined Infrared‐Vacuum Drying of Button Mushroom Slices.” Heat and Mass Transfer 53: 1751–1759. https://doi.org/10.1007/s00231‐016‐1931‐1.

Salih, A. M., F. Al‐Qurainy, M. Nadeem, et al. 2021. “Optimization Method for Phenolic Compounds Extraction From Medicinal Plant (Juniperus procera) and Phytochemicals Screening.” Molecules (Basel, Switzerland) 26, no. 24: 7454. https://doi.org/10.3390/molecules26247454.

Samani, B. H., H. Gudarzi, S. Rostami, Z. Lorigooini, Z. Esmaeili, and F. Jamshidi‐kia. 2018. “Development and Optimization of the New Ultrasonic‐Infrared‐Vacuum Dryer in Drying Kelussia odoratissima and Its Comparison With Conventional Methods.” Industrial Crops and Products 123: 46–54. https://doi.org/10.1016/j.indcrop.2018.06.053.

Selvi, K. Ç. 2020. “Investigating the Influence of Infrared Drying Method on Linden (Tilia platyphyllos Scop.) Leaves: Kinetics, Color, Projected Area, Modeling, Total Phenolic, and Flavonoid Content.” Plants 9, no. 7: 916. https://doi.org/10.3390/plants9070916.

Senadeera, W., G. Adiletta, B. Önal, M. Di Matteo, and P. Russo. 2020. “Influence of Different Hot Air‐Drying Temperatures on Drying Kinetics, Shrinkage, and Colour of Persimmon Slices.” Foods 9, no. 1: 101. https://doi.org/10.3390/foods9010101.

Senthilkumar, T., D. S. Jayas, N. D. White, P. G. Fields, and T. Gräfenhan. 2016. “Detection of Fungal Infection and Ochratoxin A Contamination in Stored Barley Using Near‐Infrared Hyperspectral Imaging.” Biosystems Engineering 147: 162–173. https://doi.org/10.1016/j.biosystemseng.2016.03.010.

Shahid, A., M. Inam‐Ur‐Raheem, R. M. Aadil, and B. Israr. 2022. “Phytochemical Screening and In Vitro Radical Scavenging Activities of “Gola” Guava Fruit and Leaf Extracts.” Journal of Food Processing and Preservation 46, no. 12: e16989. https://doi.org/10.1111/jfpp.16989.

Singleton, V. L., and J. A. Rossi. 1965. “Colorimetry of Total Phenolics With Phosphomolybdic‐Phosphotungstic Acid Reagents.” American Journal of Enology and Viticulture 16, no. 3: 144–158. https://doi.org/10.5344/ajev.1965.16.3.144.

Sun, W., M. Li, Y. Zhang, et al. 2023. “Effect of Different Drying Techniques on Drying Characteristics, Physical Quality, and Active Components of Citri reticulatae Pericarpium, and the Correlation Between Physiochemical Quality.” Industrial Crops and Products 204: 117350. https://doi.org/10.1016/j.indcrop.2023.117350.

Thanimkarn, S., E. Cheevitsopon, and J. S. Jongyingcharoen. 2019. “Effects of Vibration, Vacuum, and Material Thickness on Infrared Drying of Cissus quadrangularis Linn.” Heliyon 5, no. 6: e01999. https://doi.org/10.1016/j.heliyon.2019.e01999ExternalLink.

Wang, A., Y. Wang, H. Kan, et al. 2023. “Comparison of Different Drying Techniques for Zanthoxylum bungeanum Leaves: Changes in Color, Microstructure, Antioxidant Capacities, and Volatile Components.” LWT 188: 115469. https://doi.org/10.1016/j.lwt.2023.115469.

Younis, M., D. Abdelkarim, and A. Z. El‐Abdein. 2018. “Kinetics and Mathematical Modeling of Infrared Thin‐layer Drying of Garlic Slices.” Saudi Journal of Biological Sciences 25, no. 2: 332–338. https://doi.org/10.1016/j.sjbs.2017.06.011.

Yue, Y., Q. Zhang, F. Wan, et al. 2023. “Effects of Different Drying Methods on the Drying Characteristics and Quality of Codonopsis pilosula Slices.” Foods 12, no. 6: 1323. https://doi.org/10.3390/foods12061323.

Zhang, M., H. Chen, A. S. Mujumdar, J. Tang, S. Miao, and Y. Wang. 2017. “Recent Developments in High‐Quality Drying of Vegetables, Fruits, and Aquatic Products.” Critical Reviews in Food Science and Nutrition 57, no. 6: 1239–1255. https://doi.org/10.1080/10408398.2014.979280.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...