FACEDIG automated tool for placing landmarks on facial portraits for geometric morphometrics users
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
24-11735S
Grantová Agentura České Republiky
24-11735S
Grantová Agentura České Republiky
24-11735S
Grantová Agentura České Republiky
PubMed
40624267
PubMed Central
PMC12234795
DOI
10.1038/s41598-025-09714-4
PII: 10.1038/s41598-025-09714-4
Knihovny.cz E-zdroje
- Klíčová slova
- 2D facial analysis, Automated landmarking, Facial morphology, Geometric morphometrics, Landmark digitization, Morphometric software,
- MeSH
- anatomická značka * anatomie a histologie MeSH
- fotografování MeSH
- lidé MeSH
- obličej * anatomie a histologie diagnostické zobrazování MeSH
- počítačové zpracování obrazu * metody MeSH
- software * MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Landmark digitization is essential in geometric morphometrics. It enables the quantification of biological shapes, such as facial structures. Traditional landmarking, which identifies specific anatomical points, can be complemented by semilandmarks when precise locations are challenging to define. However, manual placement of numerous landmarks is time-consuming and prone to human error, leading to inconsistencies across studies. To address this, we introduce FaceDig, an AI-powered tool designed to automate landmark placement with human-level precision, focusing on anatomically sound facial points. FaceDig is open-source and integrates seamlessly with analytical platforms like R and Python. It was trained using one of the largest and most ethnically diverse face dataset, applying a landmark configuration optimized for 2D enface photographs. Our results demonstrate that FaceDig provides reliable landmark coordinates, comparable to those placed manually by experts. The tool's output is compatible with the widely-used TpsDig2 software, which facilitates adoption and ensures consistency across studies. Users are advised to work with standardized facial images and visually inspect the results for potential corrections. Despite the growing preference for 3D morphometrics, 2D facial photographs remain valuable due to their cultural and practical significance. Future enhancements to FaceDig will include support for profile views, further expanding its utility. By offering a standardized approach to landmark placement, FaceDig promotes reproducibility in facial morphology research and provides a robust alternative to existing 2D tools.
Zobrazit více v PubMed
Antar, J. C. & Stephen, I. D. Facial shape provides a valid cue to sociosexuality in men but not women.
Marcinkowska, U. M. et al. Changes in facial shape throughout pregnancy—a computational exploratory approach.
Marcinkowska, U. M. & Holzleitner, I. J. Stability of women’s facial shape throughout the menstrual cycle. PubMed PMC
Bookstein, F. L.
Wärmländer, S. K. T. S., Garvin, H., Guyomarc’h, P., Petaros, A. & Sholts, S. B. Landmark typology in applied morphometrics studies: what’s the point?. PubMed
Rohlf, F. J. The tps series of software.
tpsDig2, Version 2.32. Department of Ecology and Evolution, State University of New York at Stony Brook (2021).
Kleisner, K. et al. African and European perception of African female attractiveness.
Kleisner, K. et al. How and why patterns of sexual dimorphism in human faces vary across the world. PubMed PMC
Kleisner, K. et al. Distinctiveness and femininity, rather than symmetry and masculinity, affect facial attractiveness across the world.
Kleisner, K. Morphological uniqueness: the concept and its relationship to indicators of biological quality of human faces from equatorial Africa.
Kleisner, K., Kočnar, T., Rubešová, A. & Flegr, J. Eye color predicts but does not directly influence perceived dominance in men.
Fink, B. et al. Second to fourth digit ratio and face shape. PubMed PMC
Mitteroecker, P., Windhager, S., Müller, G. B. & Schaefer, K. The morphometrics of" masculinity" in human faces. PubMed PMC
Mitteroecker, P., Gunz, P., Windhager, S. & Schaefer, K. A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology.
Schaefer, K., Fink, B., Mitteroecker, P., Neave, N. & Bookstein, F. L. Visualizing facial shape regression upon 2(nd) to 4(th) digit ratio and testosterone. PubMed
Schaefer, K. et al. Female appearance: Facial and bodily attractiveness as shape.
James Rohlf, F. & Marcus, L. F. A revolution morphometrics. PubMed
Bookstein, F. L. Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. PubMed
Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces.
Rohlf, F. J. tpsSuper64, Version 2.06. (2021).
Lakshmi, A., Wittenbrink, B., Correll, J. & Ma, D. S. The India face set: international and cultural boundaries impact face impressions and perceptions of category membership. PubMed PMC
Třebický, V., Havlíček, J., Roberts, S. C., Little, A. C. & Kleisner, K. Perceived aggressiveness predicts fighting performance in mixed-martial-arts fighters. PubMed
Courset, R. et al. The Caucasian and North African French faces (CaNAFF) a face database.
Danel, D. P., Dziedzic-Danel, A. & Kleisner, K. Does age difference really matter? Facial markers of biological quality and age difference between husband and wife. PubMed
Marcinkowska, U. M. et al. Oxidative stress as a hidden cost of attractiveness in postmenopausal women. PubMed PMC
Saribay, S. A., Tureček, P., Paluch, R. & Kleisner, K. Differential effects of resource scarcity and pathogen prevalence on heterosexual women’s facial masculinity preferences. PubMed PMC
Pavlovič, O., Fiala, V. & Kleisner, K. Congruence in European and Asian perception of Vietnamese facial attractiveness, averageness, symmetry and sexual dimorphism. PubMed PMC
Lugaresi, C.
LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition.
Peng, T., Li, M., Chen, F., Xu, Y. & Zhang, D. Learning efficient facial landmark model for human attractiveness analysis.
Jones, A. L., Schild, C. & Jones, B. C. Facial metrics generated from manually and automatically placed image landmarks are highly correlated.
Feng, Z.-H., Kittler, J., Awais, M., Huber, P. & Wu, X.-J. Wing loss for robust facial landmark localisation with convolutional neural networks. Preprint at 10.48550/arXiv.1711.06753 (2018).
Boudníková, O. & Kleisner, K. AI-generated faces show lower morphological diversity than real faces do.