A comparative study of different activation methods for hydrochar: surface properties and removal of pharmaceutical pollutant in water

. 2025 Jun ; 32 (30) : 18107-18120. [epub] 20250711

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid40646407

Grantová podpora
APVV-21-0039 Agentúra na Podporu Výskumu a Vývoja

Odkazy

PubMed 40646407
PubMed Central PMC12328538
DOI 10.1007/s11356-025-36706-8
PII: 10.1007/s11356-025-36706-8
Knihovny.cz E-zdroje

Contaminants of emerging concerns, such as sulfonamides, have been frequently discovered in surface water, and the design of biomass-based adsorbents is a promising research direction to remove them from water. In this study, hydrothermal carbonization was utilized to prepare hydrochar (HC) from orange peels along with various activations, including hydrogen peroxide (H2O2) and HCl. The main goals of the present study are (i) to prepare hydrochars that were activated by different chemical methods and (ii) to provide insights into the adsorption mechanism of pollutant removal using sulfamethoxazole (SMX) as a model pharmaceutical pollutant. The H2O2 activated hydrochar (ACHC) exhibited the best adsorption capacity for removal of 40 μM SMX from water, i.e., 1.971 mg g-1 using 0.2 g L-1 ACHC. Scanning electron microscopy (SEM) studies revealed that the ACHC exhibited a coral-like structure and the highest amount of mesopores (74.6 m2 g-1) and BET area of 79.5 m2 g-1. The effects of pH, adsorbent dosage, initial concentration, and adsorption temperature were investigated, and a substantial relationship between porosity and adsorption suggests that mesoporosity played a crucial role in the adsorption process for all the activated hydrochars. The mechanism of SMX adsorption involves reversible chemisorption and retention in the pores of the adsorbent surface. The use of ACHC was also tested in different water matrices to highlight its potential applications in wastewater treatment, and it exhibited an adsorption capacity of 0.598 and 0.429 mg g-1 in tap water and wastewater effluents, respectively.

Zobrazit více v PubMed

Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, Khalid M (2024) Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: a review. J Environ Manage 353:120170. 10.1016/J.JENVMAN.2024.120170 PubMed

Banerjee T, Bravo J, Romero CE, Lowe T, Driscoll G, Kreglow B, Schobert H, Yao Z (2024) Process design and techno-economic analysis of activated carbon derived from anthracite coal. J Environ Manage 355:120525. 10.1016/J.JENVMAN.2024.120525 PubMed

Bizi M (2020) Sulfamethoxazole removal from drinking water by activated carbon: kinetics and diffusion process. Molecules 25(20):4656. 10.3390/MOLECULES25204656 PubMed PMC

Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145. 10.1007/s10311-018-0785-9

Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Separation and Purification Technology 53(1):97–110. 10.1016/J.SEPPUR.2006.06.018

De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539. 10.1126/SCIENCE.1222453/SUPPL_FILE/DEVOLDER.SM.PDF PubMed

Fernandez ME, Ledesma B, Román S, Bonelli PR, Cukierman AL (2015) Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Biores Technol 183:221–228. 10.1016/J.BIORTECH.2015.02.035 PubMed

Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383. 10.1016/J.ENERGY.2013.06.023

Ghate E, Ganjidoust H, Ayati B (2021) The thermodynamics, kinetics, and isotherms of sulfamethoxazole adsorption using magnetic activated carbon nanocomposite and its reusability potential. Nanotechnology for Environmental Engineering 6(2):1–12. 10.1007/S41204-021-00127-Y/FIGURES/8

Hashemzadeh F, Ariannezhad M, Derakhshandeh SH (2024) Sustainable removal of tetracycline and paracetamol from water using magnetic activated carbon derived from pine fruit waste. Sci Rep 14(1):1–14. 10.1038/S41598-024-65656-3;SUBJMETA=169,403,638,639;KWRD=ENVIRONMENTAL+CHEMISTRY,ORGANIC+CHEMISTRY PubMed PMC

Heo J, Yoon Y, Lee G, Kim Y, Han J, Park CM (2019) Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Biores Technol 281:179–187. 10.1016/J.BIORTECH.2019.02.091 PubMed

Hossain A, Habibullah-Al-Mamun M, Nagano I, Masunaga S, Kitazawa D, Matsuda H (2022) Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environ Sci Pollut Res 29(8):11054–11075. 10.1007/S11356-021-17825-4/TABLES/5 PubMed

Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378. 10.1016/J.RSER.2015.01.050

Kryeziu A, Slovak V, Parmentier J, Zelenka T, Rigolet S (2022) Porous carbon monoliths from ice-NaOH templated dissolved cellulose. Ind Crops Prod 183:114961. 10.1016/J.INDCROP.2022.114961

Le TH, Truong T, Tran LT, Nguyen DH, Pham TPT, Ng C (2023) Antibiotic resistance in the aquatic environments: the need for an interdisciplinary approach. Int J Environ Sci Technol 20(3):3395–3408. 10.1007/S13762-022-04194-9/FIGURES/3

Li M, Li W, Liu S (2011) Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohyd Res 346(8):999–1004. 10.1016/J.CARRES.2011.03.020 PubMed

Li Y, Shang H, Cao Y, Yang C, Feng Y, Yu Y (2022) High performance removal of sulfamethoxazole using large specific area of biochar derived from corncob xylose residue. Biochar 4(1):1–11. 10.1007/S42773-021-00128-9/TABLES/5

Li Y, Shang H, Cao Y, Yang C, Feng Y, Yu Y (2022) Quantification of adsorption mechanisms distribution of sulfamethoxazole onto biochar by competition relationship in a wide pH range. J Environ Chem Eng 10(6):108755. 10.1016/J.JECE.2022.108755

Liu F, Guo M (2015) Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass. J Mater Sci 50(4):1624–1631. 10.1007/S10853-014-8723-0/FIGURES/7

Ma X, Li S, Hou Y, Lv H, Li J, Cheng T, Yang L, Wu H (2022) Adsorption of low-concentration organic pollutants from typical coal-fired power plants by activated carbon injection. Process Saf Environ Prot 159:1174–1183. 10.1016/J.PSEP.2022.02.002

Melo CA, Junior FHS, Bisinoti MC, Moreira AB, Ferreira OP (2017) Transforming sugarcane bagasse and vinasse wastes into hydrochar in the presence of phosphoric acid: an evaluation of nutrient contents and structural properties. Waste and Biomass Valorization 8(4):1139–1151. 10.1007/S12649-016-9664-4/FIGURES/5

Panwar NL, Pawar A (2022) Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Conversion and Biorefinery 12(3):925–947. 10.1007/S13399-020-00870-3/FIGURES/4

Parzen E, Tanabe K, Kitagawa G (1998) Selected Papers of Hirotugu Akaike. Springer, New York

Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX (2009) Critical review in adsorption kinetic models. J Zhejiang Univ, Sci, A 10(5):716–724. 10.1631/JZUS.A0820524/METRICS

Rana S, Kumar A, Dhiman P, Mola GT, Sharma G, Lai CW (2023) Recent advances in photocatalytic removal of sulfonamide pollutants from waste water by semiconductor heterojunctions: a review. Materials Today Chemistry 30:101603. 10.1016/J.MTCHEM.2023.101603

Revellame ED, Fortela DL, Sharp W, Hernandez R, Zappi ME (2020) Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: a review. Cleaner Engineering and Technology 1:100032. 10.1016/J.CLET.2020.100032

Shi Y, Liu G, Wang L, Zhang H (2019) Activated carbons derived from hydrothermal impregnation of sucrose with phosphoric acid: remarkable adsorbents for sulfamethoxazole removal. RSC Adv 9(31):17841–17851. 10.1039/C9RA02610J PubMed PMC

Simonin JP (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263. 10.1016/J.CEJ.2016.04.079

Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM (2006) Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids Surf, A 272(1–2):89–104. 10.1016/J.COLSURFA.2005.07.016

Sun T, Levin BDA, Schmidt MP, Guzman JJL, Enders A, Martínez CE, Muller DA, Angenent LT, Lehmann J (2018) Simultaneous quantification of electron transfer by carbon matrices and functional groups in pyrogenic carbon. Environ Sci Technol 52(15):8538–8547. 10.1021/ACS.EST.8B02340/SUPPL_FILE/ES8B02340_SI_001.PDF PubMed

Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069. 10.1515/PAC-2014-1117/MACHINEREADABLECITATION/RIS

Wedler C, Span R (2021) Micropore analysis of biomass chars by CO2 adsorption: comparison of different analysis methods. Energy Fuels 35(10):8799–8806. 10.1021/ACS.ENERGYFUELS.1C00280/ASSET/IMAGES/MEDIUM/EF1C00280_0005.GIF

Xie B, Qin J, Wang S, Li X, Sun H, Chen W (2020) Adsorption of phenol on commercial activated carbons: modelling and interpretation. Int J Environ Res Public Health 17(3):789. 10.3390/IJERPH17030789 PubMed PMC

Yakout SM (2015) Monitoring the changes of chemical properties of rice straw–derived biochars modified by different oxidizing agents and their adsorptive performance for organics. Bioremediat J 19(2):171–182. 10.1080/10889868.2015.1029115

Zahedi S, Gros M, Casabella O, Petrovic M, Balcazar JL, Pijuan M (2022) Occurrence of veterinary drugs and resistance genes during anaerobic digestion of poultry and cattle manures. Sci Total Environ 822:153477. 10.1016/J.SCITOTENV.2022.153477 PubMed

Zbair M, Ait Ahsaine H, Anfar Z (2018) Porous carbon by microwave assisted pyrolysis: an effective and low-cost adsorbent for sulfamethoxazole adsorption and optimization using response surface methodology. J Clean Prod 202:571–581. 10.1016/J.JCLEPRO.2018.08.155

Zelenka T (2016) Adsorption and desorption of nitrogen at 77 K on micro- and meso- porous materials: study of transport kinetics. Microporous Mesoporous Mater 227:202–209. 10.1016/J.MICROMESO.2016.03.009

Zelenka T, Horikawa T, Do DD (2023) Artifacts and misinterpretations in gas physisorption measurements and characterization of porous solids. Adv Coll Interface Sci 311:102831. 10.1016/J.CIS.2022.102831 PubMed

Zhang X, Sun P, Wei K, Huang X, Zhang X (2020) Enhanced H2O2 activation and sulfamethoxazole degradation by Fe-impregnated biochar. Chem Eng J 385:123921. 10.1016/J.CEJ.2019.123921

Zhao Y, Li W, Zhao X, Wang DP, Liu SX (2013) Carbon spheres obtained via citric acid catalysed hydrothermal carbonisation of cellulose. Mater Res Innovations 17(7):546–551. 10.1179/1433075X13Y.0000000108

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...