Bio-Packaging Based on Pectin/Tragacanth Gum with Added Extracts of Cherry Waste from the Wine Industry as a New Generation of Active Films for the Food Industry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40646958
PubMed Central
PMC12248734
DOI
10.3390/foods14132203
PII: foods14132203
Knihovny.cz E-zdroje
- Klíčová slova
- active materials, antioxidant packaging material, extracts from fruit wine pomace,
- Publikační typ
- časopisecké články MeSH
In the present paper, extracts from pomace after cherry wine production were used as biocomponents of antioxidant packages. In the study, the highest concentrations of polyphenolic compounds were obtained when a 50% ethanol solution was used as the extraction solution. The addition of extracts provided statistically significant (p < 0.05) changes in water vapor transmission for the films obtained. The WVTR results are at a very low level, as values ranging from 7.96 ± 0.33 [g/m2 d] (sample 2) to 10.95 ± 0.33 [g/m2 d] (sample 1) were obtained. The addition of extract also affected the oxygen barrier. Samples without extract addition showed an OTR value of 2.42 ± 0.23 [cm3/m2 d 0.1 MPa]. A statistically significant (p < 0.05) reduction in this parameter was affected by the addition of extract to the matrix. Oxygen barrier properties ranged from 0.50 ± 0.05 (sample 3) to 0.94 ± 0.04 (sample 1), indicating high barrier properties of the packaging material. The addition of extracts caused an increase in opacity: films 3 and 4 were characterized by the highest value of the parameter, which was, respectively: 18.14 ± 27.02 and 18.97 ± 29.83 [%]. The research carried out in this study allows us to conclude that bioactive films with high application potential have been achieved and, in addition, represent a natural and ecological alternative to the materials currently used.
Zobrazit více v PubMed
Dobrucka R., Pawlik M., Szymański M. Green Packaging Films with Antioxidant Activity Based on Pectin and Camellia sinensis Leaf Extract. Molecules. 2024;29:4699. doi: 10.3390/molecules29194699. PubMed DOI PMC
Jakrawatana N., Ngammuangtueng P., Vorayos N., Gheewala S.H. Replacing single-use plastics with biomaterial packaging in Thailand and impacts on the water-energy-climate Nexus. Sustain. Prod. Consum. 2023;39:506–520. doi: 10.1016/j.spc.2023.05.036. DOI
Melchor-Martínez E.M., Macías-Garbett R., Alvarado-Ramírez L., Araújo R.G., Sosa-Hernández J.E., Ramírez-Gamboa D., Parra-Saldívar R. Towards a circular economy of plastics: An evaluation of the systematic transition to a new generation of bioplastics. Polymers. 2022;14:1203. doi: 10.3390/polym14061203. PubMed DOI PMC
Augustin M.A., Sanguansri L., Fox E.M., Cobiac L., Cole M.B. Recovery of wasted fruit and vegetables for improving sustainable diets. Trends Food Sci. Technol. 2020;95:75–85. doi: 10.1016/j.tifs.2019.11.010. DOI
Food Wastage Footprint (Project) Food Wastage Footprint Full-Cost Accounting. Food & Agriculture Organization of the UN (FAO); Rome, Italy: 2014.
Szymański M., Długaszewska J., Pawlik M., Dobrucka R. Development of Innovative Environmental Safety: Bioactives Against Pathogenic Bacteria Red Pectin Films from Hibiscus sabdariffa Flos Extract for Circular Economy. Coatings. 2024;14:1500. doi: 10.3390/coatings14121500. DOI
Vieira M.G.A., Da Silva M.A., Dos Santos L.O., Beppu M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011;47:254–263. doi: 10.1016/j.eurpolymj.2010.12.011. DOI
Yong H., Wang Z., Huang J., Liu J. Preparation, characterization and application of antioxidant packaging films based on chitosan-epicatechin gallate conjugates with different substitution degrees. Int. J. Biol. Macromol. 2024;260:129568. doi: 10.1016/j.ijbiomac.2024.129568. PubMed DOI
Piasecka I., Brzezińska R., Kalisz S., Wiktor A., Górska A. Response Surface Methodology for Optimization of Ultrasound-Assisted Antioxidants Extraction from Blackberry, Chokeberry and Raspberry Pomaces. Plants. 2024;13:1120. doi: 10.3390/plants13081120. PubMed DOI PMC
Putra N.R., Rizkiyah D.N., Abdul Aziz A.H., Che Yunus M.A., Veza I., Harny I., Tirta A. Waste to Wealth of Apple Pomace Valorization by Past and Current Extraction Processes: A Review. Sustainability. 2023;15:830. doi: 10.3390/su15010830. DOI
Castellanos-Gallo L., Ballinas-Casarrubias L., Espinoza-Hicks J.C., Hernández-Ochoa L.R., Muñoz-Castellanos L.N., Zermeño-Ortega M.R., Borrego-Loya A., Salas E. Grape Pomace Valorization by Extraction of Phenolic Polymeric Pigments: A Review. Processes. 2022;10:469. doi: 10.3390/pr10030469. DOI
Fontana A.R., Antoniolli A., Bottini R. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013;61:8987–9003. doi: 10.1021/jf402586f. PubMed DOI
El-Ramady H., Brevik E.C., Bayoumi Y., Shalaby T.A., El-Mahrouk M.E., Taha N., Elbasiouny H., Elbehiry F., Amer M., Abdalla N., et al. An Overview of Agro-Waste Management in Light of the Water-Energy-WasteNexus. Sustainability. 2022;14:15717. doi: 10.3390/su142315717. DOI
Venkidasamy B., Samynathan R., Ramasamy P., Kumar M.P.S., Thiruvengadam M., Khayrullin M., Shariati M.A., Nile A.S., Nile S.H. Unveiling novel applications of fruit pomace for sustainable production of value-added products and health benefits: A review. Food Biosci. 2024;61:104533. doi: 10.1016/j.fbio.2024.104533. DOI
Sarker A., Matak K., Jaczynski J. Effect of transglutaminase concentration on the properties of soy protein isolate-pectin composite edible films. Food Packag. Shelf Life. 2025;47:101418. doi: 10.1016/j.fpsl.2024.101418. DOI
Min B., Bae I.Y., Lee H.G., Yoo S.H., Lee S. Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Biores. Technol. 2010;101:5414–5418. doi: 10.1016/j.biortech.2010.02.022. PubMed DOI
Dobrucka R., Długaszewska J., Pawlik M., Szymański M. Innovative active bio-based food packaging material with Cannabis sativa L. seeds extract as an agent to reduce food waste. Colloids Surf. B-Biointerfaces. 2025;245:114313. doi: 10.1016/j.colsurfb.2024.114313. PubMed DOI
Lasik-Kurdyś M., Gumienna M., Górna B., Adzahan N.M. Influence of Green Tea Added to Cherry Wine on Phenolic Content, Antioxidant Activity and Alpha-Glucosidase Inhibition during an In Vitro Gastrointestinal Digestion. Foods. 2022;11:3298. doi: 10.3390/foods11203298. PubMed DOI PMC
Singelton V.L., Rossi J.A. Colorymetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158. doi: 10.5344/ajev.1965.16.3.144. DOI
Gumienna M., Lasik M., Czarnecki Z. Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion. Int J Food Sci Nutr. 2011;62:226–233. doi: 10.3109/09637486.2010.532115. PubMed DOI
Re R., Pellegirini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
DIN 55474:2015 [(accessed on 19 June 2025)];Auxiliary Means of Packaging-Desiccants in Bag-Application, Calculation of the Required Number of Desiccant Units. Available online: https://www.dinmedia.de/de/norm/din-55474/228004598.
Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. ASTM International; West Conshohocken, PA, USA: 2017.
BS EN 1186-3:2022Plastics Test Methods for Overall Migration in Evaporable Simulants. [(accessed on 19 June 2025)];Materials and Articles in Contact with Foodstuffs. Available online: https://www.dinmedia.de/de/norm/din-en-1186-3/351605746.
Dobrucka R., Urbaniak M., Kozak W., Szymański M. Innovative method of environmental safety research of starch-based films with silver nanoparticles. Environ. Prog. Sustain. Energy. 2024;43:e14480. doi: 10.1002/ep.14480. DOI
Rrucaj E., Carpentieri S., Scognamiglio M., Siano F., Ferrari G., Pataro G. Sustainable Valorization of Industrial Cherry Pomace: A Novel Cascade Approach Using Pulsed Electric Fields and Ultrasound Assisted-Extraction. Foods. 2024;13:1043. doi: 10.3390/foods13071043. PubMed DOI PMC
Yılmaz F.M., Karaaslan M., Vardin H. Optimization of extraction parameters on the isolation of phenolic compounds from sour cherry (Prunus cerasus L.) pomace. J. Food Sci. Technol. 2015;52:2851–2859. doi: 10.1007/s13197-014-1345-3. PubMed DOI PMC
Carpentieri S., Ferrari G., Pataro G. Optimization of Pulsed Electric Fields-Assisted Extraction of Phenolic Compounds From White Grape Pomace Using Response Surface Methodology. Front. Sustain. Food Syst. 2022;6:854968. doi: 10.3389/fsufs.2022.854968. PubMed DOI PMC
Carpentieri S., Mazza L., Nutrizio M., Jambrak A.R., Ferrari G., Pataro G. Pulsed Electric Fields- and Ultrasound-Assisted Green Extraction of Valuable Compounds from Origanum vulgare L. and Thymus serpyllum L. Int. J. Food Sci. Technol. 2021;56:4834–4842. doi: 10.1111/ijfs.15159. DOI
Martín-García B., Tylewicz U., Verardo V., Pasini F., Gómez-Caravaca A.M., Caboni M.F., Dalla Rosa M. Pulsed Electric Field (PEF) as Pre-Treatment to Improve the Phenolic Compounds Recovery from Brewers’ Spent Grains. Innov. Food Sci. Emerg. Technol. 2020;64:102402. doi: 10.1016/j.ifset.2020.102402. DOI
Van Der Sluis A.A., Dekker M., Skrede G., Jongen W.M. Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods. J. Agric. Food Chem. 2002;50:7211–7219. doi: 10.1021/jf020115h. PubMed DOI
Cheng V.J., Bekhit A.A., McConnell M., Mros S., Zhao J. Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chem. 2012;134:474–482. doi: 10.1016/j.foodchem.2012.02.103. DOI
Jayaprakasha G.K., Singh R.P., Sakariah K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001;73:285–290. doi: 10.1016/S0308-8146(00)00298-3. DOI
Liu Z., Wu H., Holland B., Barrow C.J., Suleria H.A.R. An Optimization of the Extraction of Phenolic Compounds from Grape Marc: A Comparison between Conventional and Ultrasound-Assisted Methods. Chemosensors. 2024;12:177. doi: 10.3390/chemosensors12090177. DOI
Kashyap P., Riar C.S., Jindal N. Polyphenol Bio-Accessibility and Antioxidant Activity of in Vitro Digested Ultrasound-Assisted Meghalayan Cherry (Prunus nepalensis) Pomace Extract. Biomass Conv. Bioref. 2023;13:14071–14085. doi: 10.1007/s13399-021-02150-0. DOI
Kasapoğlu E.D., Kahraman S., Tornuk F. Optimization of ultrasound assisted antioxidant extraction from apricot pomace using response surface methodology. Food Meas. 2021;15:5277–5287. doi: 10.1007/s11694-021-01089-0. DOI
Arshad R.N., Abdul-Malek Z., Ahmad M.H., Buntat Z., Nawawi Z., Pavan Kumara C.L.G., Abdulameer A.Z., Sidik M.A.B. Coaxial Treatment Chamber for Liquid Food Treatment through Pulsed Electric Field. Indones. J. Electr. Eng. Comput. Sci. 2020;19:1169–1176. doi: 10.11591/ijeecs.v19.i3.pp1169-1176. DOI
Liu Y., Cheng Y., Yu X., Zhu J., Chen K., Kuang Y., Wu K., Jiang F. Konjac glucomannan films incorporated pectin-stabilized Mandarin oil emulsions: Structure, properties, and application in fruit preservation. Int. J. Biol. Macromol. 2024;267:131292. doi: 10.1016/j.ijbiomac.2024.131292. PubMed DOI
Pirsa S., Karimi Sani I., Pirouzifard M.K., Erfani A. Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage. Food Addit. Contam. Part A. 2020;37:634–648. doi: 10.1080/19440049.2020.1716079. PubMed DOI
Nisar T., Wang Z.C., Yang X., Tian Y., Iqbal M., Guo Y. Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 2018;106:670–680. doi: 10.1016/j.ijbiomac.2017.08.068. PubMed DOI
Karim R., Nahar K., Zohora F.T., Islam M.M., Bhuiyan R.H., Jahan M.S., Shaikh M.A.A. Pectin from lemon and mango peel: Extraction, characterisation and application in biodegradable film. Carbohydr. Polym. Technol. Appl. 2022;4:100258. doi: 10.1016/j.carpta.2022.100258. DOI
Li H., Zhu Y., Yang T.X., Zhao Q.S., Zhao B. Development and characterization of pectin-based composite film incorporated with cannabidiol/2, 6-di-O-methyl-β-cyclodextrin inclusion complex for food packaging. Int. J. Biol. Macromol. 2024;277:133525. doi: 10.1016/j.ijbiomac.2024.133525. PubMed DOI
Chaudhary B.U., Lingayat S., Banerjee A.N., Kale R.D. Development of multifunctional food packaging films based on waste Garlic peel extract and Chitosan. Int. J. Biol. Macromol. 2021;192:479–490. doi: 10.1016/j.ijbiomac.2021.10.031. PubMed DOI
Esposito M., Di Pierro P., Regalado-Gonzales C., Mariniello L., Giosafatto C.V.L., Porta R. Polyamines as new cationic plasticizers for pectin-based edible films. Carbohydr. Polym. 2016;153:222–228. doi: 10.1016/j.carbpol.2016.07.087. PubMed DOI
Tristanto N.A., Cao W., Chen N., Suryoprabowo S., Soetaredjo F.E., Ismadji S., Hua X. Pectin extracted from red dragon fruit (Hylocereus polyrhizus) peel and its usage in edible film. Int. J. Biol. Macromol. 2024;276:133804. doi: 10.1016/j.ijbiomac.2024.133804. PubMed DOI
Ursachi V.F., Oroian M., Spinei M. Development and characterization of biodegradable films based on cellulose derivatives and citrus pectin: A comparative study. Ind. Crops Prod. 2024;219:119052. doi: 10.1016/j.indcrop.2024.119052. DOI
Sivarooban T., Hettiarachchy N.S., Johnson M.G. Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Res. Int. 2008;41:781–785. doi: 10.1016/j.foodres.2008.04.007. DOI
Adilah A.N., Jamilah B., Noranizan M.A., Hanani Z.N. Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packag. Shelf Life. 2018;16:1–7. doi: 10.1016/j.fpsl.2018.01.006. DOI
Sorde K.L., Ananthanarayan L. Effect of transglutaminase treatment on properties of coconut protein-guar gum composite film. LWT. 2019;115:108422. doi: 10.1016/j.lwt.2019.108422. DOI
Fematt-Flores G.E., Aguiló-Aguayo I., Marcos B., Camargo-Olivas B.A., Sánchez-Vega R., Soto-Caballero M.C., Salas-Salazar N.A., Flores-Córdova M.A., Rodríguez-Roque M.J. Milk Protein-Based Edible Films: Influence on Mechanical, Hydrodynamic, Optical and Antioxidant Properties. Coatings. 2022;12:196. doi: 10.3390/coatings12020196. DOI
Zahran M. Carbohydrate polymer-supported metal and metal oxide nanoparticles for constructing electrochemical sensors. Mater. Adv. 2024;5:68–82. doi: 10.1039/D3MA00706E. DOI
Chen H., Shang K., Bian X., Zhao Z., Liu Y., Lin X., Wang L., Zhang W., Hu X., Guo X. Enhanced functional pectin films incorporated with olive fruit extracts prepared by deep eutectic solvents. Food Packag. Shelf Life. 2024;46:101361. doi: 10.1016/j.fpsl.2024.101361. DOI
Biratu G., Woldemariam H.W., Gonfa G. Development of active edible films from coffee pulp pectin, propolis, and honey with improved mechanical, functional, antioxidant, and antimicrobial properties. Carbohydr. Polym. Technol. Appl. 2024;8:100557. doi: 10.1016/j.carpta.2024.100557. DOI