Role of Human Microbiome in Development and Management of Head and Neck Squamous Cell Carcinoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40647535
PubMed Central
PMC12249478
DOI
10.3390/cancers17132238
PII: cancers17132238
Knihovny.cz E-zdroje
- Klíčová slova
- HNSCC, chemotherapy, head and neck, immunotherapy, microbiome, radiotherapy, tumor microenvironment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Despite decades of research, cancer remains a major global health problem [...].
Department of Oncology 3rd Faculty of Medicine Charles University 128 44 Prague Czech Republic
Department of Oncology University Hospital Kralovske Vinohrady 100 34 Prague Czech Republic
Zobrazit více v PubMed
Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral. Oncol. 2009;45:309–316. doi: 10.1016/j.oraloncology.2008.06.002. PubMed DOI
Deng D.L., Xia L.Y., He B.Y., Guo J.M., Huang C., Zeng X.T. Cyclooxygenase-2-1195G>A Polymorphism and Head and Neck Squamous Cell Carcinoma Susceptibility: A Meta-Analysis of 1564 Cases and 2346 Controls. Med. Sci. Monit. 2015;21:3514–3520. doi: 10.12659/MSM.894948. PubMed DOI PMC
Corbella S., Veronesi P., Galimberti V., Weinstein R., Del Fabbro M., Francetti L. Is periodontitis a risk indicator for cancer? A meta-analysis. PloS ONE. 2018;13:e0195683. doi: 10.1371/journal.pone.0195683. PubMed DOI PMC
Bracci P.M. Oral Health and the Oral Microbiome in Pancreatic Cancer: An Overview of Epidemiological Studies. Cancer J. 2017;23:310–314. doi: 10.1097/PPO.0000000000000287. PubMed DOI
Maisonneuve P., Amar S., Lowenfels A.B. Periodontal disease, edentulism, and pancreatic cancer: A meta-analysis. Ann. Oncol. 2017;28:985–995. doi: 10.1093/annonc/mdx019. PubMed DOI
Wu Y., Shi X., Li Y., Shi X., Gu Y., Qian Q., Hong Y. Hematopoietic and lymphatic cancers in patients with periodontitis: A systematic review and meta-analysis. Med. Oral Patol. Oral Cir. Bucal. 2020;25:e21–e28. doi: 10.4317/medoral.23166. PubMed DOI PMC
Fitzpatrick S.G., Katz J. The association between periodontal disease and cancer: A review of the literature. J. Dent. 2010;38:83–95. doi: 10.1016/j.jdent.2009.10.007. PubMed DOI
Javed F., Warnakulasuriya S. Is there a relationship between periodontal disease and oral cancer? A systematic review of currently available evidence. Crit. Rev. Oncol. Hematol. 2016;97:197–205. doi: 10.1016/j.critrevonc.2015.08.018. PubMed DOI
Su S.C., Chang L.C., Huang H.D., Peng C.Y., Chuang C.Y., Chen Y.T., Lu M.Y., Chiu Y.W., Chen P.Y., Yang S.F. Oral microbial dysbiosis and its performance in predicting oral cancer. Carcinogenesis. 2021;42:127–135. doi: 10.1093/carcin/bgaa062. PubMed DOI
Kakabadze M.Z., Paresishvili T., Karalashvili L., Chakhunashvili D., Kakabadze Z. Oral microbiota and oral cancer: Review. Oncol. Rev. 2020;14:476. doi: 10.4081/oncol.2020.476. PubMed DOI PMC
Lafuente Ibáñez de Mendoza I., Maritxalar Mendia X., García de la Fuente A.M., Quindós Andrés G., Aguirre Urizar J.M. Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: A systematic review. J. Periodontal Res. 2020;55:13–22. doi: 10.1111/jre.12691. PubMed DOI
Keam B., Machiels J.P., Kim H.R., Licitra L., Golusinski W., Gregoire V., Lee Y.G., Belka C., Guo Y., Rajappa S.J., et al. Pan-Asian adaptation of the EHNS-ESMO-ESTRO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with squamous cell carcinoma of the head and neck. ESMO Open. 2021;6:100309. doi: 10.1016/j.esmoop.2021.100309. PubMed DOI PMC
Cong J., Zhu H., Liu D., Li T., Zhang C., Zhu J., Lv H., Liu K., Hao C., Tian Z., et al. A Pilot Study: Changes of Gut Microbiota in Post-surgery Colorectal Cancer Patients. Front. Microbiol. 2018;9:2777. doi: 10.3389/fmicb.2018.02777. PubMed DOI PMC
Mojdami Z.D., Barbour A., Oveisi M., Sun C., Fine N., Saha S., Marks C., Elebyary O., Watson E., Tenenbaum H., et al. The Effect of Intensity-Modulated Radiotherapy to the Head and Neck Region on the Oral Innate Immune Response and Oral Microbiome: A Prospective Cohort Study of Head and Neck Tumour Patients. Int. J. Mol. Sci. 2022;23:9594. doi: 10.3390/ijms23179594. PubMed DOI PMC
Hu Y.J., Shao Z.Y., Wang Q., Jiang Y.T., Ma R., Tang Z.S., Liu Z., Liang J.P., Huang Z.W. Exploring the dynamic core microbiome of plaque microbiota during head-and-neck radiotherapy using pyrosequencing. PLoS ONE. 2013;8:e56343. doi: 10.1371/journal.pone.0056343. PubMed DOI PMC
Vesty A., Gear K., Biswas K., Mackenzie B.W., Taylor M.W., Douglas R.G. Oral microbial influences on oral mucositis during radiotherapy treatment of head and neck cancer. Support Care Cancer. 2020;28:2683–2691. doi: 10.1007/s00520-019-05084-6. PubMed DOI
Sami A., Elimairi I., Stanton C., Ross R.P., Ryan C.A. The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int. J. Mol. Sci. 2020;21:8061. doi: 10.3390/ijms21218061. PubMed DOI PMC
Minervini G., Franco R., Marrapodi M.M., Fiorillo L., Badnjević A., Cervino G., Cicciù M. Probiotics in the Treatment of Radiotherapy-Induced Oral Mucositis: Systematic Review with Meta-Analysis. Pharmaceuticals. 2023;16:654. doi: 10.3390/ph16050654. PubMed DOI PMC
Alexander J.L., Wilson I.D., Teare J., Marchesi J.R., Nicholson J.K., Kinross J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017;14:356–365. doi: 10.1038/nrgastro.2017.20. PubMed DOI
Chang A.H., Parsonnet J. Role of bacteria in oncogenesis. Clin. Microbiol. Rev. 2010;23:837–857. doi: 10.1128/CMR.00012-10. PubMed DOI PMC
Balkwill F., Mantovani A. Inflammation and cancer: Back to Virchow? Lancet. 2001;357:539–545. doi: 10.1016/S0140-6736(00)04046-0. PubMed DOI
Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002;420:860–867. doi: 10.1038/nature01322. PubMed DOI PMC
Garrett W.S. Cancer and the microbiota. Science. 2015;348:80–86. doi: 10.1126/science.aaa4972. PubMed DOI PMC
Burcher K.M., Burcher J.T., Inscore L., Bloomer C.H., Furdui C.M., Porosnicu M. A Review of the Role of Oral Microbiome in the Development, Detection, and Management of Head and Neck Squamous Cell Cancers. Cancers. 2022;14:4116. doi: 10.3390/cancers14174116. PubMed DOI PMC
Lee W.H., Chen H.M., Yang S.F., Liang C., Peng C.Y., Lin F.M., Tsai L.L., Wu B.C., Hsin C.H., Chuang C.Y., et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci. Rep. 2017;7:16540. doi: 10.1038/s41598-017-16418-x. PubMed DOI PMC
Snider E.J., Freedberg D.E., Abrams J.A. Potential Role of the Microbiome in Barrett’s Esophagus and Esophageal Adenocarcinoma. Am. J. Dig. Dis. 2016;61:2217–2225. doi: 10.1007/s10620-016-4155-9. PubMed DOI PMC
Galvao-Moreira L.V., da Cruz M.C.F.N. Oral microbiome, periodontitis and risk of head and neck cancer. Oral Oncol. 2016;53:17–19. doi: 10.1016/j.oraloncology.2015.11.013. PubMed DOI
Chen J., Domingue J.C., Sears C.L. Microbiota dysbiosis in select human cancers: Evidence of association and causality. Semin. Immunol. 2017;32:25–34. doi: 10.1016/j.smim.2017.08.001. PubMed DOI PMC
Hu J., Han S., Chen Y., Ji Z. Variations of Tongue Coating Microbiota in Patients with Gastric Cancer. BioMed Res. Int. 2015;2015:173729. doi: 10.1155/2015/173729. PubMed DOI PMC
Johnson D.E., Burtness B., Leemans C.R., Lui V.W.Y., Bauman J.E., Grandis J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers. 2020;6:92. doi: 10.1038/s41572-020-00224-3. Erratum in Nat. Rev. Dis. Primers 2023, 9, 4. PubMed DOI PMC
Zhu X.X., Yang X.J., Chao Y.L., Zheng H.M., Sheng H.F., Liu H.Y., He Y., Zhou H.W. The Potential Effect of Oral Microbiota in the Prediction of Mucositis During Radiotherapy for Nasopharyngeal Carcinoma. eBioMedicine. 2017;18:23–31. doi: 10.1016/j.ebiom.2017.02.002. PubMed DOI PMC
Wang Y., Xue J., Zhou X., You M., Du Q., Yang X., He J., Zou J., Cheng L., Li M., et al. Oral microbiota distinguishes acute lymphoblastic leukemia pediatric hosts from healthy populations. PLoS ONE. 2014;9:e102116. doi: 10.1371/journal.pone.0102116. PubMed DOI PMC
Fan X., Peters B.A., Jacobs E.J., Gapstur S.M., Purdue M.P., Freedman N.D., Alekseyenko A.V., Wu J., Yang L., Pei Z., et al. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. Microbiome. 2018;6:59. doi: 10.1186/s40168-018-0448-x. PubMed DOI PMC
Hsiao J.R., Chang C.C., Lee W.T., Huang C.C., Ou C.Y., Tsai S.T., Chen K.C., Huang J.S., Wong T.Y., Lai Y.H., et al. The interplay between oral microbiome, lifestyle factors and genetic polymorphisms in the risk of oral squamous cell carcinoma. Carcinogenesis. 2018;39:778–787. doi: 10.1093/carcin/bgy053. PubMed DOI
Mukherjee P.K., Wang H., Retuerto M., Zhang H., Burkey B., Ghannoum M.A., Eng C. Bacteriome and mycobiome associations in oral tongue cancer. Oncotarget. 2017;8:97273–97289. doi: 10.18632/oncotarget.21921. PubMed DOI PMC
Yost S., Stashenko P., Choi Y., Kukuruzinska M., Genco C.A., Salama A., Weinberg E.O., Kramer C.D., Frias-Lopez J. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int. J. Oral Sci. 2018;10:32. doi: 10.1038/s41368-018-0037-7. PubMed DOI PMC
Yang C.Y., Yeh Y.M., Yu H.Y., Chin C.Y., Hsu C.W., Liu H., Huang P.J., Hu S.N., Liao C.T., Chang K.P., et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front. Microbiol. 2018;3:862. doi: 10.3389/fmicb.2018.00862. PubMed DOI PMC
Frank D.N., Qiu Y., Cao Y., Zhang S., Lu L., Kofonow J.M., Robertson C.E., Liu Y., Wang H., Levens C.L., et al. A dysbiotic microbiome promotes head and neck squamous cell carcinoma. Oncogene. 2022;41:1269–1280. doi: 10.1038/s41388-021-02137-1. PubMed DOI PMC
Wang H., Funchain P., Bebek G., Altemus J., Zhang H., Niazi F., Peterson C., Lee W.T., Burkey B.B., Eng C. Microbiomic differences in tumor and paired-normal tissue in head and neck squamous cell carcinomas. Genome Med. 2017;9:14. doi: 10.1186/s13073-017-0405-5. PubMed DOI PMC
Perera M., Al-Hebshi N.N., Perera I., Ipe D., Ulett G.C., Speicher D.J., Chen T., Johnson N.W. Inflammatory Bacteriome and Oral Squamous Cell Carcinoma. J. Dent. Res. 2018;97:725–732. doi: 10.1177/0022034518767118. PubMed DOI
Schwabe R.F., Jobin C. The microbiome and cancer. Nat. Rev. Cancer. 2013;13:800–812. doi: 10.1038/nrc3610. PubMed DOI PMC
Salaspuro V., Salaspuro M. Synergistic effect of alcohol drinking and smoking on in vivo acetaldehyde concentration in saliva. Int. J. Cancer. 2004;111:480–483. doi: 10.1002/ijc.20293. PubMed DOI
Armitage G.C. Comparison of the microbiological features of chronic and aggressive periodontitis. Periodontology 2000. 2010;53:70–88. doi: 10.1111/j.1600-0757.2010.00357.x. PubMed DOI
Chattopadhyay I., Verma M., Panda M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol. Cancer Res. Treat. 2019;18:1533033819867354. doi: 10.1177/1533033819867354. PubMed DOI PMC
Kumpitsch C., Moissl-Eichinger C., Pock J., Thurnher D., Wolf A. Preliminary insights into the impact of primary radiochemotherapy on the salivary microbiome in head and neck squamous cell carcinoma. Sci. Rep. 2020;10:16582. doi: 10.1038/s41598-020-73515-0. PubMed DOI PMC
Mäkinen AIet a.l. Salivary microbiome profiles of oral cancer patients analyzed before and after treatment. Microbiome. 2023;11:171. doi: 10.1186/s40168-023-01613-y. PubMed DOI PMC
Huang R., Li M., Gregory R.L. Bacterial interactions in dental biofilm. Virulence. 2011;2:435–444. doi: 10.4161/viru.2.5.16140. PubMed DOI PMC
Pushalkar S., Mane S.P., Ji X., Li Y., Evans C., Crasta O.R., Morse D., Meagher R., Singh A., Saxena D. Microbial diversity in saliva of oral squamous cell carcinoma. FEMS Immunol. Med. Microbiol. 2011;61:269–277. doi: 10.1111/j.1574-695X.2010.00773.x. PubMed DOI PMC
Guerrero-Preston R., Godoy-Vitorino F., Jedlicka A., Rodríguez-Hilario A., González H., Bondy J., Lawson F., Folawiyo O., Michailidi C., Dziedzic A., et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget. 2016;7:51320–51334. doi: 10.18632/oncotarget.9710. PubMed DOI PMC
Wolf A., Moissl-Eichinger C., Perras A., Koskinen K., Tomazic P.V., Thurnher D. The salivary microbiome as an indicator of carcinogenesis in patients with oropharyngeal squamous cell carcinoma: A pilot study. Sci. Rep. 2017;7:5867. doi: 10.1038/s41598-017-06361-2. PubMed DOI PMC
Guerrero-Preston R., White J.R., Godoy-Vitorino F., Rodríguez-Hilario A., Navarro K., González H., Michailidi C., Jedlicka A., Canapp S., Bondy J., et al. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation. Oncotarget. 2017;8:110931–110948. PubMed PMC
Shay E., Sangwan N., Padmanabhan R., Lundy S., Burkey B., Eng C. Bacteriome and mycobiome and bacteriome-mycobiome interactions in head and neck squamous cell carcinoma. Oncotarget. 2020;11:2375–2386. doi: 10.18632/oncotarget.27629. PubMed DOI PMC
Hooper S.J., Crean S.J., Lewis M.A., Spratt D.A., Wade W.G., Wilson M.J. Viable bacteria present within oral squamous cell carcinoma tissue. J. Clin. Microbiol. 2006;44:1719–1725. doi: 10.1128/JCM.44.5.1719-1725.2006. PubMed DOI PMC
Al-Hebshi N.N., Nasher A.T., Maryoud M.Y., Homeida H.E., Chen T., Idris A.M., Johnson N.W. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci. Rep. 2017;7:1834. doi: 10.1038/s41598-017-02079-3. PubMed DOI PMC
Hayes R.B., Ahn J., Fan X., Peters B.A., Ma Y., Yang L., Agalliu I., Burk R.D., Ganly I., Purdue M.P., et al. Association of Oral Microbiome with Risk for Incident Head and Neck Squamous Cell Cancer. JAMA Oncol. 2018;4:358–365. doi: 10.1001/jamaoncol.2017.4777. PubMed DOI PMC
Katarkar A., Saha A., Mukherjee S., Kundu D., Bandyopadhyay P., Chaudhuri K. Telomerase expression in individuals with chronic and aggressive periodontitis. J. Periodontol. 2015;86:656–665. doi: 10.1902/jop.2015.140540. PubMed DOI
McIlvanna E., Linden G.J., Craig S.G., Lundy F.T., James J.A. Fusobacterium nucleatum and oral cancer: A critical review. BMC Cancer. 2021;21:1212. doi: 10.1186/s12885-021-08903-4. PubMed DOI PMC
Bronzatoa J.D., Bomfim R.A., Edwards D.H., Crouch D., Hector M.P., Gomes B.P.F.A. Detection of Fusobacterium in oral and head and neck cancer samples: A systematic review and meta-analysis. Arch. Oral Biol. 2020;112:104669. doi: 10.1016/j.archoralbio.2020.104669. PubMed DOI
Fardini Y., Wang X., Témoin S., Nithianantham S., Lee D., Shoham M., Han Y.W. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol. Microbiol. 2011;82:1468–1480. doi: 10.1111/j.1365-2958.2011.07905.x. PubMed DOI PMC
Chen Z., Wong P.Y., Ng C.W.K., Lan L., Fung S., Li J.W., Cai L., Lei P., Mou Q., Wong S.H., et al. The Intersection between Oral Microbiota, Host Gene Methylation and Patient Outcomes in Head and Neck Squamous Cell Carcinoma. Cancers. 2020;12:3425. doi: 10.3390/cancers12113425. PubMed DOI PMC
Neuzillet C., Marchais M., Vacher S., Hilmi M., Schnitzler A., Meseure D., Leclere R., Lecerf C., Dubot C., Jeannot E., et al. Prognostic value of intratumoral Fusobacterium nucleatum and association with immune-related gene expression in oral squamous cell carcinoma patients. Sci. Rep. 2021;11:7870. doi: 10.1038/s41598-021-86816-9. PubMed DOI PMC
Liu J.Y., Li F., Wang L.P., Chen X.F., Wang D., Cao L., Ping Y., Zhao S., Li B., Thorne S.H., et al. CTL- vs Treg lymphocyte-attracting chemokines, CCL4 and CCL20, are strong reciprocal predictive markers for survival of patients with oesophageal squamous cell carcinoma. Br. J. Cancer. 2015;113:747–755. doi: 10.1038/bjc.2015.290. PubMed DOI PMC
Baba Y., Iwatsuki M., Yoshida N., Watanabe M., Baba H. Review of the gut microbiome and esophageal cancer: Pathogenesis and potential clinical implications. Ann. Gastroenterol. Surg. 2017;1:99–104. doi: 10.1002/ags3.12014. PubMed DOI PMC
Yamamura K., Baba Y., Nakagawa S., Mima K., Miyake K., Nakamura K., Sawayama H., Kinoshita K., Ishimoto T., Iwatsuki M., et al. Human Microbiome Fusobacterium nucleatum in Esophageal Cancer Tissue Is Associated with Prognosis. Clin. Cancer Res. 2016;22:5574–5581. doi: 10.1158/1078-0432.CCR-16-1786. PubMed DOI
Hayashi M., Ikenaga N., Nakata K., Luo H., Zhong P., Date S., Oyama K., Higashijima N., Kubo A., Iwamoto C., et al. Intratumor Fusobacterium nucleatum promotes the progression of pancreatic cancer via the CXCL1-CXCR2 axis. Cancer Sci. 2023;114:3666–3678. doi: 10.1111/cas.15901. PubMed DOI PMC
Udayasuryan B., Ahmad R.N., Nguyen T.T.D., Umaña A., Monét Roberts L., Sobol P., Jones S.D., Munson J.M., Slade D.J., Verbridge S.S. Fusobacterium nucleatum induces proliferation and migration in pancreatic cancer cells through host autocrine and paracrine signaling. Sci. Signal. 2022;15:eabn4948. doi: 10.1126/scisignal.abn4948. PubMed DOI PMC
Binder Gallimidi A., Fischman S., Revach B., Bulvik R., Maliutina A., Rubinstein A.M., Nussbaum G., Elkin M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6:22613–22623. doi: 10.18632/oncotarget.4209. PubMed DOI PMC
Han Y.W. Fusobacterium nucleatum: A commensal-turned pathogen. Curr. Opin. Microbiol. 2015;23:141–147. doi: 10.1016/j.mib.2014.11.013. PubMed DOI PMC
Atanasova KR, Yilmaz, Ö Prelude to oral microbes and chronic diseases: Past, present and future. Microbes Infect. 2015;17:473–483. doi: 10.1016/j.micinf.2015.03.007. PubMed DOI PMC
Geng F., Zhang Y., Lu Z., Zhang S., Pan Y. Fusobacterium nucleatum Caused DNA Damage and Promoted Cell Proliferation by the Ku70/p53 Pathway in Oral Cancer Cells. DNA Cell Biol. 2020;39:144–151. doi: 10.1089/dna.2019.5064. PubMed DOI PMC
Kang W., Jia Z., Tang D., Zhang Z., Gao H., He K., Feng Q. Fusobacterium nucleatum Facilitates Apoptosis, ROS Generation, and Inflammatory Cytokine Production by Activating AKT/MAPK and NF-κB Signaling Pathways in Human Gingival Fibroblasts. Oxid. Med. Cell. Longev. 2019;2019:1681972. doi: 10.1155/2019/1681972. PubMed DOI PMC
Abdulkareem A.A., Shelton R.M., Landini G., Cooper P.R., Milward M.R. Periodontal pathogens promote epithelial-mesenchymal transition in oral squamous carcinoma cells in vitro. Cell Adhes. Migr. 2018;12:127–137. doi: 10.1080/19336918.2017.1322253. PubMed DOI PMC
Karpiński T.M. Role of Oral Microbiota in Cancer Development. Microorganisms. 2019;7:20. doi: 10.3390/microorganisms7010020. PubMed DOI PMC
Zhang S., Li C., Liu J., Geng F., Shi X., Li Q., Lu Z., Pan Y. Fusobacterium nucleatum promotes epithelial-mesenchymal transiton through regulation of the lncRNA MIR4435-2HG/miR-296-5p/Akt2/SNAI1 signaling pathway. FEBS J. 2020;287:4032–4047. doi: 10.1111/febs.15233. PubMed DOI PMC
Abed J., Emgård J.E.M., Zamir G., Faroja M., Almogy G., Grenov A., Sol A., Naor R., Pikarsky E., Atlan K.A., et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe. 2016;20:215–225. doi: 10.1016/j.chom.2016.07.006. PubMed DOI PMC
Parhi L., Alon-Maimon T., Sol A., Nejman D., Shhadeh A., Fainsod-Levi T., Yajuk O., Isaacson B., Abed J., Maalouf N., et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 2020;11:3259. doi: 10.1038/s41467-020-16967-2. PubMed DOI PMC
Amer A., Galvin S., Healy C.M., Moran G.P. The microbiome of potentially malignant oral leukoplakia exhibits enrichment for Fusobacterium, Leptotrichia, Campylobacter, and Rothia species. Front. Microbiol. 2017;8:2391. doi: 10.3389/fmicb.2017.02391. PubMed DOI PMC
Decsi G., Soki J., Pap B., Dobra G., Harmati M., Kormondi S., Pankotai T., Braunitzer G., Minarovits J., Sonkodi I., et al. Chicken or the egg: Microbial alterations in biopsy samples of patients with oral potentially malignant disorders. Pathol. Oncol. Res. 2019;25:1023–1033. doi: 10.1007/s12253-018-0457-x. PubMed DOI
Li Z., Liu Y., Huang X., Wang Q., Fu R., Wen X., Liu J.A., Zhang L.F. Nucleatum enhances oral squamous cell carcinoma proliferation via E-cadherin/β-Catenin pathway. BMC Oral Health. 2024;24:518. doi: 10.1186/s12903-024-04252-3. PubMed DOI PMC
Kujan O., Huang G., Ravindran A., Vijayan M., Farah C.S. CDK4, CDK6, cyclin D1 and Notch1 immunocytochemical expression of oral brush liquid-based cytology for the diagnosis of oral leukoplakia and oral cancer. J. Oral Pathol. Med. 2019;48:566–573. doi: 10.1111/jop.12902. PubMed DOI
Siril Y.J., Kouketsu A., Saito H., Takahashi T., Kumamoto H. Immunohistochemical expression levels of cyclin D1 and CREPT reflect the course and prognosis in oral precancerous lesions and squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 2022;51:27–32. doi: 10.1016/j.ijom.2021.03.012. PubMed DOI
Uitto V.-J., Baillie D., Wu Q., Gendron R., Grenier D., Putnins E.E., Kanervo A., Firth J.D. Fusobacterium nucleatum increases collagenase 3 production and migration of epithelial cells. Infect. Immun. 2005;73:1171–1179. doi: 10.1128/IAI.73.2.1171-1179.2005. PubMed DOI PMC
Inaba H., Sugita H., Kuboniwa M., Iwai S., Hamada M., Noda T., Morisaki I., Lamont R.J., Amano A. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell. Microbiol. 2014;16:131–145. doi: 10.1111/cmi.12211. PubMed DOI PMC
Inaba H., Amano A., Lamont R.J., Murakami Y. Involvement of protease-activated receptor 4 in over-expression of matrix metalloproteinase 9 induced by Porphyromonas gingivalis. Med. Microbiol. Immunol. 2015;204:605–612. doi: 10.1007/s00430-015-0389-y. PubMed DOI
Ha N.H., Woo B.H., Kim D.J., Ha E.S., Choi J.I., Kim S.J., Park B.S., Lee J.H., Park H.R. Prolonged and repetitive exposure to Porphyromonas gingivalis increases aggressiveness of oral cancer cells by promoting acquisition of cancer stem cell properties. Tumour Biol. 2015;36:9947–9960. doi: 10.1007/s13277-015-3764-9. PubMed DOI
Pignatelli P., Nuccio F., Piattelli A., Curia M.C. The Role of Fusobacterium nucleatum in Oral and Colorectal Carcinogenesis. Microorganisms. 2023;11:2358. doi: 10.3390/microorganisms11092358. PubMed DOI PMC
Mima K., Sukawa Y., Nishihara R., Qian Z.R., Yamauchi M., Inamura K., Kim S.A., Masuda A., Nowak J.A., Nosho K., et al. Fusobacterium nucleatum and T-cells in colorectal carcinoma. JAMA Oncol. 2015;1:653–661. doi: 10.1001/jamaoncol.2015.1377. PubMed DOI PMC
Chen T., Li Q., Zhang X., Long R., Wu Y., Wu J., Fu X. TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection. Hum. Pathol. 2018;79:93–101. doi: 10.1016/j.humpath.2018.05.008. PubMed DOI
Gur C., Ibrahim Y., Isaacson B., Yamin R., Abed J., Gamliel M., Enk J., Bar-On Y., Stanietsky-Kaynan N., Coppenhagen-Glazer S., et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–355. doi: 10.1016/j.immuni.2015.01.010. PubMed DOI PMC
Kaplan C.W., Ma X., Paranjpe A., Jewett A., Lux R., Kinder-Haake S., Shi W. Fusobacterium nucleatum outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes. Infect. Immun. 2010;78:4773–4778. doi: 10.1128/IAI.00567-10. PubMed DOI PMC
Coppenhagen-Glazer S., Sol A., Abed J., Naor R., Zhang X., Han Y.W., Bachrach G. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect. Immun. 2015;83:1104–1113. doi: 10.1128/IAI.02838-14. PubMed DOI PMC
Harrandah A., Chukkapalli S., Bhattacharyya I., Progulske-Fox A., Chan E. Fusobacteria modulate oral carcinogenesis and promote cancer progression. J. Oral Microbiol. 2020;31:1849493. doi: 10.1080/20002297.2020.1849493. PubMed DOI PMC
Chan J.Y.K., Ng C.W.K., Lan L., Fung S., Li J.W., Cai L., Lei P., Mou Q., Meehan K., Lau E.H.L., et al. Restoration of the Oral Microbiota After Surgery for Head and Neck Squamous Cell Carcinoma Is Associated with Patient Outcomes. Front. Oncol. 2021;11:737843. doi: 10.3389/fonc.2021.737843. PubMed DOI PMC
Trotti A., Bellm L.A., Epstein J.B., Frame D., Fuchs H.J., Gwede C.K., Komaroff E., Nalysnyk L., Zilberberg M.D. Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: A systematic literature review. Radiother. Oncol. 2003;66:253–262. doi: 10.1016/S0167-8140(02)00404-8. PubMed DOI
Dijkema T., Raaijmakers C.P., Ten Haken R.K., Roesink J.M., Braam P.M., Houweling A.C., Moerland M.A., Eisbruch A., Terhaard C.H. Parotid gland function after radiotherapy: The combined michigan and utrecht experience. Int. J. Radiat. Oncol. Biol. Phys. 2010;78:449–453. doi: 10.1016/j.ijrobp.2009.07.1708. PubMed DOI PMC
Ling D.C., Kabolizadeh P., Heron D.E., Ohr J.P., Wang H., Johnson J., Kubicek G.J. Incidence of hospitalization in patients with head and neck cancer treated with intensity-modulated radiation therapy. Head Neck. 2015;37:1750–1755. doi: 10.1002/hed.23821. PubMed DOI
Trotti A. Toxicity in head and neck cancer: A review of trends and issues. Int. J. Radiat. Oncol. Biol. Phys. 2000;47:1–12. doi: 10.1016/S0360-3016(99)00558-1. PubMed DOI
Pandey D., Szczesniak M., Maclean J., Yim H.C.H., Zhang F., Graham P., El-Omar E.M., Wu P. Dysbiosis in Head and Neck Cancer: Determining Optimal Sampling Site for Oral Microbiome Collection. Pathogens. 2022;11:1550. doi: 10.3390/pathogens11121550. PubMed DOI PMC
Cheng S.C., Wu V.W., Kwong D.L., Ying M.T. Assessment of post-radiotherapy salivary glands. Br. J. Radiol. 2011;84:393–402. doi: 10.1259/bjr/66754762. PubMed DOI PMC
Nishimura Y., Nakamatsu K., Shibata T., Kanamori S., Koike R., Okumura M., Suzuki M. Importance of the initial volume of parotid glands in xerostomia for patients with head and neck cancers treated with IMRT. Jpn. J. Clin. Oncol. 2005;35:375–379. doi: 10.1093/jjco/hyi108. PubMed DOI
Elting L.S., Cooksley C.D., Chambers M.S., Garden A.S. Risk, outcomes, and costs of radiation-induced oral mucositis among patients with head-and-neck malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2007;68:1110–1120. doi: 10.1016/j.ijrobp.2007.01.053. PubMed DOI
Maria O.M., Eliopoulos N., Muanza T. Radiation-Induced Oral Mucositis. Front. Oncol. 2017;7:89. doi: 10.3389/fonc.2017.00089. PubMed DOI PMC
Chen C., Zhang Q., Yu W., Chang B., Le A.D. Oral Mucositis: An Update on Innate Immunity and New Interventional Targets. J. Dent. Res. 2020;99:1122–1130. doi: 10.1177/0022034520925421. PubMed DOI PMC
Vasconcelos R.M., Sanfilippo N., Paster B.J., Kerr A.R., Li Y., Ramalho L., Queiroz E.L., Smith B., Sonis S.T., Corby P.M. Host-Microbiome Cross-talk in Oral Mucositis. J. Dent. Res. 2016;95:725–733. doi: 10.1177/0022034516641890. PubMed DOI PMC
Hong B.Y., Sobue T., Choquette L., Dupuy A.K., Thompson A., Burleson J.A., Salner A.L., Schauer P.K., Joshi P., Fox E., et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome. 2019;7:66. doi: 10.1186/s40168-019-0679-5. PubMed DOI PMC
Subramaniam N., Muthukrishnan A. Oral mucositis and microbial colonization in oral cancer patients undergoing radiotherapy and chemotherapy: A prospective analysis in a tertiary care dental hospital. J. Investig. Clin. Dent. 2019;10:e12454. doi: 10.1111/jicd.12454. PubMed DOI
Gaetti-Jardim EJr Jardim E.C.G., Schweitzer C.M., da Silva J.C.L., Oliveira M.M., Masocatto D.C., Dos Santos C.M. Supragingival and subgingival microbiota from patients with poor oral hygiene submitted to radiotherapy for head and neck cancer treatment. Arch. Oral Biol. 2018;90:45–52. doi: 10.1016/j.archoralbio.2018.01.003. PubMed DOI
Gao L., Hu Y., Wang Y., Jiang W., He Z., Zhu C., Ma R., Huang Z. Exploring the variation of oral microbiota in supragingival plaque during and after head-and-neck radiotherapy using pyrosequencing. Arch. Oral Biol. 2015;60:1222–1230. doi: 10.1016/j.archoralbio.2015.05.006. PubMed DOI
Vesty A., Gear K., Boutell S., Taylor M.W., Douglas R.G., Biswas K. Randomised, double-blind, placebo-controlled trial of oral probiotic Streptococcus salivarius M18 on head and neck cancer patients post-radiotherapy: A pilot study. Sci. Rep. 2020;10:13201. doi: 10.1038/s41598-020-70024-y. PubMed DOI PMC
Galeana-Patiño C.E., Ortiz M.I., Cariño-Cortés R., López-Santillán I.C., Castro-Rosas J., Gómez-Aldapa C.A., Muñoz-Pérez V.M. Probiotics, as Adjuvant Therapy and Preventive Measure on Progression, and Complications of Head and Neck Cancer. Curr. Pharm. Biotechnol. 2023;24:1504–1514. doi: 10.2174/1389201024666230213094953. PubMed DOI
Sharma A., Rath G.K., Chaudhary S.P., Thakar A., Mohanti B.K., Bahadur S. Lactobacillus brevis CD2 lozenges reduce radiation- and chemotherapy-induced mucositis in patients with head and neck cancer: A randomized double-blind placebo-controlled study. Eur. J. Cancer. 2012;48:875–881. doi: 10.1016/j.ejca.2011.06.010. PubMed DOI
Limaye S.A., Haddad R.I., Cilli F., Sonis S.T., Colevas A.D., Brennan M.T., Hu K.S., Murphy B.A. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer. 2013;119:4268–4276. doi: 10.1002/cncr.28365. PubMed DOI
De Sanctis V., Belgioia L., Cante D., LAPorta M.R., Caspiani O., Guarnaccia R., Argenone A., Muto P., Musio D., De Felice F., et al. Lactobacillus brevis CD2 for Prevention of Oral Mucositis in Patients with Head and Neck Tumors: A Multicentric Randomized Study. Anticancer Res. 2019;39:1935–1942. doi: 10.21873/anticanres.13303. PubMed DOI
Jiang C., Wang H., Xia C., Dong Q., Chen E., Qiu Y., Su Y., Xie H., Zeng L., Kuang J., et al. A randomized, double-blind, placebo-controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinoma. Cancer. 2019;125:1081–1090. doi: 10.1002/cncr.31907. PubMed DOI
Araújo M.M., Botelho P.B. Probiotics, prebiotics, and synbiotics in chronic constipation: Outstanding aspects to be considered for the current evidence. Front. Nutr. 2022;9:935830. doi: 10.3389/fnut.2022.935830. PubMed DOI PMC
Wang L., Vuletic I., Deng D., Crielaard W., Xie Z., Zhou K., Zhang J., Sun H., Ren Q., Guo C. Bifidobacterium breve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo. Gene Ther. 2017;24:699–705. doi: 10.1038/gt.2017.74. PubMed DOI
Wang L., Wang Y., Li Q., Tian K., Xu L., Liu G., Guo C. Exopolysaccharide, Isolated from a Novel Strain Bifidobacterium breve lw01 Possess an Anticancer Effect on Head and Neck Cancer—Genetic and Biochemical Evidences. Front. Microbiol. 2019;10:1044. doi: 10.3389/fmicb.2019.01044. PubMed DOI PMC
Rühle A., Zou J., Glaser M., Halle L., Gkika E., Schäfer H., Knopf A., Becker C., Grosu A.L., Popp I., et al. The influence of antibiotic administration on the outcomes of head-and-neck squamous cell carcinoma patients undergoing definitive (chemo)radiation. Eur. Arch. Otorhinolaryngol. 2023;280:2605–2616. doi: 10.1007/s00405-023-07868-3. PubMed DOI PMC
Crawford P.A., Gordon J.I. Microbial regulation of intestinal radiosensitivity. Proc. Natl. Acad. Sci. USA. 2005;102:13254–13259. doi: 10.1073/pnas.0504830102. PubMed DOI PMC
Nenclares P., Bhide S.A., Sandoval-Insausti H., Pialat P., Gunn L., Melcher A., Newbold K., Nutting C.M., Harrington K.J. Impact of antibiotic use during curative treatment of locally advanced head and neck cancers with chemotherapy and radiotherapy. Eur. J. Cancer. 2020;131:9–15. doi: 10.1016/j.ejca.2020.02.047. PubMed DOI
Ohsawa M., Nishi H., Emi M., Yoshikawa T., Hamai Y., Ibuki Y., Kurokawa T., Hirohata R., Kitasaki N., Kawada-Matsuo M., et al. Impact of Fusobacterium nucleatum in the treatment of cancer, including radiotherapy and its future potential in esophageal cancer. J. Radiat. Res. 2024;65((Suppl. S1)):i126–i134. doi: 10.1093/jrr/rrae061. PubMed DOI PMC
Wisdom A.J., Hong C.S., Lin A.J., Xiang Y., Cooper D.E., Zhang J., Xu E.S., Kuo H.C., Mowery Y.M., Carpenter D.J., et al. Neutrophils promote tumor resistance to radiation therapy. Proc. Natl. Acad. Sci. USA. 2019;116:18584–18589. doi: 10.1073/pnas.1901562116. PubMed DOI PMC
Cho Y., Kim J.W., Yoon H.I., Lee C.G., Keum K.C., Lee I.J. The Prognostic Significance of Neutrophil-to-Lymphocyte Ratio in Head and Neck Cancer Patients Treated with Radiotherapy. J. Clin. Med. 2018;7:512. doi: 10.3390/jcm7120512. PubMed DOI PMC
Almståhl A., Wikström M., Fagerberg-Mohlin B. Microflora in oral ecosystems in subjects with radiation-induced hyposalivation. Oral Dis. 2008;14:541–549. doi: 10.1111/j.1601-0825.2007.01416.x. PubMed DOI
Liu Y.C., Wu C.R., Huang T.W. Preventive Effect of Probiotics on Oral Mucositis Induced by Cancer Treatment: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022;23:13268. doi: 10.3390/ijms232113268. PubMed DOI PMC
Noble A.R., Greskovich J.F., Han J., Reddy C.A., Nwizu T.I., Khan M.F., Scharpf J., Adelstein D.J., Burkey B.B., Koyfman S.A. Risk Factors Associated with Disease Recurrence in Patients with Stage III/IV Squamous Cell Carcinoma of the Oral Cavity Treated with Surgery and Postoperative Radiotherapy. Anticancer Res. 2016;36:785–792. PubMed
Pignon J.P., le Maître A., Maillard E., Bourhis J., MACH-NC Collaborative Group Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients. Radiother. Oncol. 2009;92:4–14. doi: 10.1016/j.radonc.2009.04.014. PubMed DOI
Adelstein D.J., Li Y., Adams G.L., Wagner HJr Kish J.A., Ensley J.F., Schuller D.E., Forastiere A.A. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J. Clin. Oncol. 2003;21:92–98. doi: 10.1200/JCO.2003.01.008. PubMed DOI
Bernier J., Domenge C., Ozsahin M., Matuszewska K., Lefèbvre J.L., Greiner R.H., Giralt J., Maingon P., Rolland F., Bolla M., et al. European Organization for Research and Treatment of Cancer Trial 22931. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N. Engl. J. Med. 2004;350:1945–1952. doi: 10.1056/NEJMoa032641. PubMed DOI
Aldossary S.A. Review on pharmacology of cisplatin: Clinical use, toxicity and mechanism of resistance of cisplatin. Biomed. Pharmacol. J. 2019;12:07–15. doi: 10.13005/bpj/1608. DOI
Montgomery B., Lin D.W. Complications of Urologic Surgery. 4th ed. W.B. Saunders; Philadelphia, PA, USA: 2010. Chapter 10—Toxicities of chemotherapy for genitourinary malignancies; pp. 117–123.
Hartinger J., Veselý P., Šíma M., Netíková I., Matoušková E., Petruželka L. 5-fluorouracil Toxicity Mechanism Determination in Human Keratinocytes: In vitro Study on HaCaT Cell Line. Prague Med. Rep. 2017;118:128–138. doi: 10.14712/23362936.2017.14. PubMed DOI
Rodrigues D., de Souza T., Coyle L., Di Piazza M., Herpers B., Ferreira S., Zhang M., Vappiani J., Sévin D.C., Gabor A., et al. New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic responses in human intestinal organoids. Arch. Toxicol. 2021;95:2691–2718. doi: 10.1007/s00204-021-03092-2. PubMed DOI PMC
Pazdur R., Kudelka A.P., Kavanagh J.J., Cohen P.R., Raber M.N. The taxoids: Paclitaxel (Taxol) and docetaxel (Taxotere) Cancer Treat. Rev. 1993;19:351–386. doi: 10.1016/0305-7372(93)90010-O. PubMed DOI
Ismail U., Killeen R.B. Taxane Toxicity. StatPearls Publishing; Treasure Island, FL, USA: 2025. PubMed
Verweij J., Clavel M., Chevalier B. Paclitaxel (Taxol) and docetaxel (Taxotere): Not simply two of a kind. Ann. Oncol. 1994;5:495–505. doi: 10.1093/oxfordjournals.annonc.a058903. PubMed DOI
Iida N., Dzutsev A., Stewart C.A., Smith L., Bouladoux N., Weingarten R.A., Molina D.A., Salcedo R., Back T., Cramer S., et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342:967–970. doi: 10.1126/science.1240527. PubMed DOI PMC
Kovács T., Mikó E., Ujlaki G., Sári Z., Bai P. The Microbiome as a Component of the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020;1225:137–153. PubMed
Chambers L.M., Esakov Rhoades E.L., Bharti R., Braley C., Tewari S., Trestan L., Alali Z., Bayik D., Lathia J.D., Sangwan N., et al. Disruption of the Gut Microbiota Confers Cisplatin Resistance in Epithelial Ovarian Cancer. Cancer Res. 2022;82:4654–4669. doi: 10.1158/0008-5472.CAN-22-0455. PubMed DOI PMC
Cheung M.K., Yue G.G.L., Tsui K.Y., Gomes A.J., Kwan H.S., Chiu P.W.Y., Lau C.B.S. Discovery of an interplay between the gut microbiota and esophageal squamous cell carcinoma in mice. Am. J. Cancer Res. 2020;10:2409–2427. PubMed PMC
Gui Q.F., Lu H.F., Zhang C.X., Xu Z.R., Yang Y.H. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet. Mol. Res. 2015;14:5642–5651. doi: 10.4238/2015.May.25.16. PubMed DOI
Chen Z., Qian X., Chen S., Fu X., Ma G., Zhang A. Akkermansia muciniphila Enhances the Antitumor Effect of Cisplatin in Lewis Lung Cancer Mice. J. Immunol. Res. 2020;2020:2969287. doi: 10.1155/2020/2969287. PubMed DOI PMC
Hsiao Y.P., Chen H.L., Tsai J.N., Lin M.Y., Liao J.W., Wei M.S., Ko J.L., Ou C.C. Administration of Lactobacillus reuteriCombined with Clostridium butyricum Attenuates Cisplatin-Induced Renal Damage by Gut Microbiota Reconstitution, Increasing Butyric Acid Production, and Suppressing Renal Inflammation. Nutrients. 2021;13:2792. doi: 10.3390/nu13082792. PubMed DOI PMC
Yu C., Zhou B., Xia X., Chen S., Deng Y., Wang Y., Wu L., Tian Y., Zhao B., Xu H., et al. Prevotella copri is associated with carboplatin-induced gut toxicity. Cell Death Dis. 2019;10:714. doi: 10.1038/s41419-019-1963-9. PubMed DOI PMC
Yuan L., Zhang S., Li H., Yang F., Mushtaq N., Ullah S., Shi Y., An C., Xu J. The influence of gut microbiota dysbiosis to the efficacy of 5-Fluorouracil treatment on colorectal cancer. Biomed. Pharmacother. 2018;108:184–193. doi: 10.1016/j.biopha.2018.08.165. PubMed DOI
Yu T., Guo F., Yu Y., Sun T., Ma D., Han J., Qian Y., Kryczek I., Sun D., Nagarsheth N., et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell. 2017;170:548–563.e16. doi: 10.1016/j.cell.2017.07.008. PubMed DOI PMC
Smith C.L., Geier M.S., Yazbeck R., Torres D.M., Butler R.N., Howarth G.S. Lactobacillus fermentum BR11 and fructo-oligosaccharide partially reduce jejunal inflammation in a model of intestinal mucositis in rats. Nutr. Cancer. 2008;60:757–767. doi: 10.1080/01635580802192841. PubMed DOI
Bowen J.M., Stringer A.M., Gibson R.J., Yeoh A.S., Hannam S., Keefe D.M. VSL#3 probiotic treatment reduces chemotherapy-induced diarrhea and weight loss. Cancer Biol. Ther. 2007;6:1449–1454. PubMed
Osterlund P., Ruotsalainen T., Korpela R., Saxelin M., Ollus A., Valta P., Kouri M., Elomaa I., Joensuu H. Lactobacillus supplementation for diarrhoea related to chemotherapy of colorectal cancer: A randomised study. Br. J. Cancer. 2007;97:1028–1034. doi: 10.1038/sj.bjc.6603990. PubMed DOI PMC
Yeung C.Y., Chan W.T., Jiang C.B., Cheng M.L., Liu C.Y., Chang S.W., Chiang Chiau J.S., Lee H.C. Amelioration of Chemotherapy-Induced Intestinal Mucositis by Orally Administered Probiotics in a Mouse Model. PLoS ONE. 2015;10:e0138746. doi: 10.1371/journal.pone.0138746. PubMed DOI PMC
Quaresma M., Damasceno S., Monteiro C., Lima F., Mendes T., Lima M., Justino P., Barbosa A., Souza M., Souza E., et al. Probiotic mixture containing Lactobacillus spp. and Bifidobacterium spp. attenuates 5-fluorouracil-induced intestinal mucositis in mice. Nutr. Cancer. 2020;72:1355–1365. doi: 10.1080/01635581.2019.1675719. PubMed DOI
Mi H., Dong Y., Zhang B., Wang H., Peter C.C.K., Gao P., Fu H., Gao Y. Bifidobacterium Infantis Ameliorates Chemotherapy-Induced Intestinal Mucositis Via Regulating T Cell Immunity in Colorectal Cancer Rats. Cell Physiol. Biochem. 2017;42:2330–2341. doi: 10.1159/000480005. PubMed DOI
Kato S., Hamouda N., Kano Y., Oikawa Y., Tanaka Y., Matsumoto K., Amagase K., Shimakawa M. Probiotic Bifidobacterium bifidum G9-1 attenuates 5-fluorouracil-induced intestinal mucositis in mice via suppression of dysbiosis-related secondary inflammatory responses. Clin. Exp. Pharmacol. Physiol. 2017;44:1017–1025. doi: 10.1111/1440-1681.12792. PubMed DOI
Rui M., Zhang X., Huang J., Wei D., Li Z., Shao Z., Ju H., Ren G. The baseline oral microbiota predicts the response of locally advanced oral squamous cell carcinoma patients to induction chemotherapy: A prospective longitudinal study. Radiother. Oncol. 2021;164:83–91. doi: 10.1016/j.radonc.2021.09.013. PubMed DOI
Zhao L.Y., Mei J.X., Yu G., Lei L., Zhang W.-H., Liu K., Chen X.-L., Kołat D., Yang K., Hu J.-K. Role of the gut microbiota in anticancer therapy: From molecular mechanisms to clinical applications. Signal Transduct. Target. Ther. 2023;8:201. doi: 10.1038/s41392-023-01406-7. PubMed DOI PMC
Deng Y., Hou X., Wang H., Du H., Liu Y. Influence of Gut Microbiota-Mediated Immune Regulation on Response to Chemotherapy. Pharmaceuticals. 2024;17:604. doi: 10.3390/ph17050604. PubMed DOI PMC
Singh N.K., Beckett J.M., Kalpurath K., Ishaq M., Ahmad T., Eri R.D. Synbiotics as Supplemental Therapy for the Alleviation of Chemotherapy-Associated Symptoms in Patients with Solid Tumours. Nutrients. 2023;15:1759. doi: 10.3390/nu15071759. PubMed DOI PMC
Vanhoecke B., De Ryck T., Stringer A., Van De Wiele T., Keefe D. Microbiota and their role in the pathogenesis of oral mucositis. Oral Dis. 2015;21:17–30. doi: 10.1111/odi.12224. PubMed DOI
Lim Y., Tang K.D., Karpe A.V., Beale D.J., Totsika M., Kenny L., Morrison M., Punyadeera C. Chemoradiation therapy changes oral microbiome and metabolomic profiles in patients with oral cavity cancer and oropharyngeal cancer. Head Neck. 2021;43:1521–1534. doi: 10.1002/hed.26619. PubMed DOI
Chidharla A., Parsi M., Kasi A. Cetuximab. StatPearls; Treasure Island, FL, USA: 2024.
Tang W.H., Sun W., Long G.X. Concurrent cisplatin or cetuximab with radiotherapy in patients with locally advanced head and neck squamous cell carcinoma: A meta-analysis. Medicine. 2020;99:e21785. doi: 10.1097/MD.0000000000021785. PubMed DOI PMC
Burcher K.M., Bloomer C.H., Gavrila E., Kalada J.M., Chang M.J., Gebeyehu R.R., Song A.H., Khoury L.M., Lycan T.W., Kinney R., et al. Study protocol: Phase II study to evaluate the effect of cetuximab monotherapy after immunotherapy with PD-1 inhibitors in patients with head and neck squamous cell cancer. Ther. Adv. Med. Oncol. 2024;16:17588359231217959. doi: 10.1177/17588359231217959. PubMed DOI PMC
Martini G., Ciardiello D., Dallio M., Famiglietti V., Esposito L., Corte C.M.D., Napolitano S., Fasano M., Gravina A.G., Romano M., et al. Gut microbiota correlates with antitumor activity in patients with mCRC and NSCLC treated with cetuximab plus avelumab. Int. J. Cancer. 2022;151:473–480. doi: 10.1002/ijc.34033. PubMed DOI PMC
Harrington K.J., Burtness B., Greil R., Soulières D., Tahara M., de Castro GJr Psyrri A., Brana I., Basté N., Neupane P., Bratland Å., et al. Pembrolizumab with or Without Chemotherapy in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Updated Results of the Phase III KEYNOTE-048 Study. J. Clin. Oncol. 2023;41:790–802. doi: 10.1200/JCO.21.02508. PubMed DOI PMC
Gillison M.L., Blumenschein GJr Fayette J., Guigay J., Colevas A.D., Licitra L., Harrington K.J., Kasper S., Vokes E.E., Even C., Worden F., et al. CheckMate 141: 1-Year Update and Subgroup Analysis of Nivolumab as First-Line Therapy in Patients with Recurrent/Metastatic Head and Neck Cancer. Oncologist. 2018;23:1079–1082. doi: 10.1634/theoncologist.2017-0674. PubMed DOI PMC
Kwok G., Yau T.C., Chiu J.W., Tse E., Kwong Y.L. Pembrolizumab (Keytruda) Hum. Vaccines Immunother. 2016;12:2777–2789. doi: 10.1080/21645515.2016.1199310. PubMed DOI PMC
Gunturi A., McDermott D.F. Nivolumab for the treatment of cancer. Expert Opin. Investig. Drugs. 2015;24:253–260. doi: 10.1517/13543784.2015.991819. PubMed DOI
Ribas A. Tumor immunotherapy directed at PD-1. N. Engl. J. Med. 2012;366:2517–2519. doi: 10.1056/NEJMe1205943. PubMed DOI
Dohlman A.B., Arguijo Mendoza D., Ding S., Gao M., Dressman H., Iliev I.D., Lipkin S.M., Shen X. The cancer microbiome atlas: A pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe. 2021;29:281–298.e5. doi: 10.1016/j.chom.2020.12.001. PubMed DOI PMC
Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–1355. doi: 10.1126/science.aar4060. PubMed DOI PMC
Routy B., Le Chatelier E., Derosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–97. doi: 10.1126/science.aan3706. PubMed DOI
Matson V., Fessler J., Bao R., Chongsuwat T., Zha Y., Alegre M.L., Luke J.J., Gajewski T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–108. doi: 10.1126/science.aao3290. PubMed DOI PMC
Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C., et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103. doi: 10.1126/science.aan4236. PubMed DOI PMC
Frankel A.E., Coughlin L.A., Kim J., Froehlich T.W., Xie Y., Frenkel E.P., Koh A.Y. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma Patients. Neoplasia. 2017;19:848–855. doi: 10.1016/j.neo.2017.08.004. PubMed DOI PMC
Chaput N., Lepage P., Coutzac C., Soularue E., Le Roux K., Monot C., Boselli L., Routier E., Cassard L., Collins M., et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 2017;28:1368–1379. doi: 10.1093/annonc/mdx108. PubMed DOI
Peters B.A., Wilson M., Moran U., Pavlick A., Izsak A., Wechter T., Weber J.S., Osman I., Ahn J. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med. 2019;11:61. doi: 10.1186/s13073-019-0672-4. PubMed DOI PMC
Lee K.A., Thomas A.M., Bolte L.A., Björk J.R., de Ruijter L.K., Armanini F., Asnicar F., Blanco-Miguez A., Board R., Calbet-Llopart N., et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 2022;28:535–544. doi: 10.1038/s41591-022-01695-5. PubMed DOI PMC
McCulloch J.A., Davar D., Rodrigues R.R., Badger J.H., Fang J.R., Cole A.M., Balaji A.K., Vetizou M., Prescott S.M., Fernandes M.R., et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 2022;28:545–556. doi: 10.1038/s41591-022-01698-2. PubMed DOI PMC
Derosa L., Routy B., Thomas A.M., Iebba V., Zalcman G., Friard S., Mazieres J., Audigier-Valette C., Moro-Sibilot D., Goldwasser F., et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 2022;28:315–324. doi: 10.1038/s41591-021-01655-5. PubMed DOI PMC
Vétizou M., Pitt J.M., Daillère R., Lepage P., Waldschmitt N., Flament C., Rusakiewicz S., Routy B., Roberti M.P., Duong C.P.M., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–1084. doi: 10.1126/science.aad1329. PubMed DOI PMC
Mager L.F., Burkhard R., Pett N., Cooke N.C.A., Brown K., Ramay H., Paik S., Stagg J., Groves R.A., Gallo M., et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 2020;369:1481–1489. doi: 10.1126/science.abc3421. PubMed DOI
Sivan A., Corrales L., Hubert N., Williams J.B., Aquino-Michaels K., Earley Z.M., Benyamin F.W., Lei Y.M., Jabri B., Alegre M.L., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–1089. doi: 10.1126/science.aac4255. PubMed DOI PMC
Spencer C.N., McQuade J.L., Gopalakrishnan V., McCulloch J.A., Vetizou M., Cogdill A.P., Khan A.W., Zhang X., White M.G., Peterson C.B., et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 2021;374:1632–1640. doi: 10.1126/science.aaz7015. PubMed DOI PMC
Zegarra-Ruiz D.F., El Beidaq A., Iñiguez A.J., Di Ricco M., Manfredo Vieira S., Ruff W.E., Mubiru D., Fine R.L., Sterpka J., Greiling T.M., et al. A diet-sensitive commensal lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe. 2019;25:113–127. doi: 10.1016/j.chom.2018.11.009. PubMed DOI PMC
Pandey S.P., Bender M.J., McPherson A.C., Phelps C.M., Sanchez L.M., Rana M., Hedden L., Sangani K.A., Chen L., Shapira J.H., et al. Tet2 deficiency drives liver microbiome dysbiosis triggering Tc1 cell autoimmune hepatitis. Cell Host Microbe. 2022;30:1003–1019. doi: 10.1016/j.chom.2022.05.006. PubMed DOI PMC
Dubin K., Callahan M.K., Ren B., Khanin R., Viale A., Ling L., No D., Gobourne A., Littmann E., Huttenhower C., et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 2016;7:10391. doi: 10.1038/ncomms10391. PubMed DOI PMC
Bari S., Jain S., Yadav H., Liu M., Hodge E., Kirtane K., Chung C.H., Conejo-Garcia J., Muzaffar J. Gut microbiome/metabolome predicts response to immune checkpoint blockers (ICB) in patients with recurrent metastatic head and neck squamous cell cancer (RM HNSCC) J. Clin. Oncol. 2022;40:6055. doi: 10.1200/JCO.2022.40.16_suppl.6055. DOI
Ferris R.L., Blumenschein G., Harrington K., Fayette J., Guigay J., Colevas A.D., Licitra L., Vokes E., Gillison M., Even C., et al. Abstract CT022: Evaluation of oral microbiome profiling as a response biomarker in squamous cell carcinoma of the head and neck: Analyses from CheckMate 141. Cancer Res. 2017;77((Suppl. S13)):CT022. doi: 10.1158/1538-7445.AM2017-CT022. DOI
Gharaibeh R.Z., Jobin C. Microbiota and cancer immunotherapy: In search of microbial signals. Gut. 2019;68:385–388. doi: 10.1136/gutjnl-2018-317220. PubMed DOI PMC
Goon P., Schürmann M., Oppel F., Shao S., Schleyer S., Pfeiffer C.J., Todt I., Brasch F., Scholtz L.U., Göerner M., et al. Viral and Clinical Oncology of Head and Neck Cancers. Curr. Oncol. Rep. 2022;24:929–942. doi: 10.1007/s11912-022-01263-7. PubMed DOI PMC
Brooks J.P., Edwards D.J., Harwich M.D., Rivera M.C., Fettweis J.M., Serrano M.G., A Reris R., Sheth N.U., Huang B. The truth about metagenomics: Quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol. 2015;15:66. doi: 10.1186/s12866-015-0351-6. PubMed DOI PMC
Shi W., Shen L., Zou W., Wang J., Yang J., Wang Y., Liu B., Xie L., Zhu J., Zhang Z. The Gut Microbiome Is Associated with Therapeutic Responses and Toxicities of Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients-A Pilot Study. Front. Cell. Infect. Microbiol. 2020;10:562463. doi: 10.3389/fcimb.2020.562463. PubMed DOI PMC
Mann E.H., Maughan T.S. Fusobacterium nucleatum, rectal cancer and radiotherapy. Ann. Oncol. 2020;31:1277–1278. doi: 10.1016/j.annonc.2020.06.019. PubMed DOI
Teughels W., Van Essche M., Sliepen I., Quirynen M. Probiotics and oral healthcare. Periodontology 2000. 2008;48:111–147. doi: 10.1111/j.1600-0757.2008.00254.x. PubMed DOI
Reid G., Jass J., Sebulsky M.T., McCormick J.K. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 2003;16:658–672. doi: 10.1128/CMR.16.4.658-672.2003. PubMed DOI PMC
Araújo L.D.C., Furlaneto F.A.C., Da Silva L.A.B., Kapila Y.L. Use of the Probiotic Bifidobacterium animalis subsp. lactis HN019 in Oral Diseases. Int. J. Mol. Sci. 2022;23:9334. doi: 10.3390/ijms23169334. PubMed DOI PMC
Liang J.Q., Zeng Y., Lau Eyt Sun Y., Huang Y., Zhou T., Xu Z., Yu J., Ng S.C., Chan F.K.L. A Probiotic Formula for Modulation of Colorectal Cancer Risk via Reducing CRC-Associated Bacteria. Cells. 2023;12:1244. doi: 10.3390/cells12091244. PubMed DOI PMC
Badgeley A., Anwar H., Modi K., Murphy P., Lakshmikuttyamma A. Effect of probiotics and gut microbiota on anti-cancer drugs: Mechanistic perspectives. Biochim. Biophys. Acta Rev. Cancer. 2021;1875:188494. doi: 10.1016/j.bbcan.2020.188494. PubMed DOI
Liu Y., Baba Y., Ishimoto T., Tsutsuki H., Zhang T., Nomoto D., Okadome K., Yamamura K., Harada K., Eto K., et al. Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma. Br. J. Cancer. 2021;124:963–974. doi: 10.1038/s41416-020-01198-5. PubMed DOI PMC
Daillère R., Vétizou M., Waldschmitt N., Yamazaki T., Isnard C., Poirier-Colame V., Duong C.P.M., Flament C., Lepage P., Roberti M.P., et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity. 2016;45:931–943. doi: 10.1016/j.immuni.2016.09.009. PubMed DOI
Inamura K. Gut microbiota contributes towards immunomodulation against cancer: New frontiers in precision cancer therapeutics. Semin. Cancer Biol. 2021;70:11–23. doi: 10.1016/j.semcancer.2020.06.006. PubMed DOI
Viaud S., Saccheri F., Mignot G., Yamazaki T., Daillère R., Hannani D., Enot D.P., Pfirschke C., Engblom C., Pittet M.J., et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342:971–976. doi: 10.1126/science.1240537. PubMed DOI PMC
Song J.M., Woo B.H., Lee J.H., Yoon S., Cho Y., Kim Y.D., Park H.R. Oral Administration of Porphyromonas gingivalis, a Major Pathogen of Chronic Periodontitis, Promotes Resistance to Paclitaxel in Mouse Xenografts of Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2019;20:2494. doi: 10.3390/ijms20102494. PubMed DOI PMC
Woo B.H., Kim D.J., Choi J.I., Kim S.J., Park B.S., Song J.M., Lee J.H., Park H.R. Oral cancer cells sustainedly infected with Porphyromonas gingivalis exhibit resistance to Taxol and have higher metastatic potential. Oncotarget. 2017;8:46981–46992. doi: 10.18632/oncotarget.16550. PubMed DOI PMC
Zhu L.B., Zhang Y.C., Huang H.H., Lin J. Prospects for clinical applications of butyrate-producing bacteria. World J. Clin. Pediatr. 2021;10:84–92. doi: 10.5409/wjcp.v10.i5.84. PubMed DOI PMC
Koprinarova M., Markovska P., Iliev I., Anachkova B., Russev G. Sodium butyrate enhances the cytotoxic effect of cisplatin by abrogating the cisplatin imposed cell cycle arrest. BMC Mol. Biol. 2010;11:49. doi: 10.1186/1471-2199-11-49. PubMed DOI PMC
Sun Y., Zhang X., Jin C., Yue K., Sheng D., Zhang T., Dou X., Liu J., Jing H., Zhang L., et al. Prospective, longitudinal analysis of the gut microbiome in patients with locally advanced rectal cancer predicts response to neoadjuvant concurrent chemoradiotherapy. J. Transl. Med. 2023;21:221. doi: 10.1186/s12967-023-04054-1. PubMed DOI PMC
Jang B.S., Chang J.H., Chie E.K., Kim K., Park J.W., Kim M.J., Song E.J., Nam Y.D., Kang S.W., Jeong S.Y., et al. Gut Microbiome Composition Is Associated with a Pathologic Response After Preoperative Chemoradiation in Patients with Rectal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020;107:736–746. doi: 10.1016/j.ijrobp.2020.04.015. PubMed DOI
Lu Y., Luo X., Yang D., Li Y., Gong T., Li B., Cheng J., Chen R., Guo X., Yuan W. Effects of probiotic supplementation on related side effects after chemoradiotherapy in cancer patients. Front. Oncol. 2022;12:1032145. doi: 10.3389/fonc.2022.1032145. PubMed DOI PMC
Qiu B., Xi Y., Liu F., Li Y., Xie X., Guo J., Guo S., Wu Y., Wu L., Liang T., et al. Gut Microbiome Is Associated with the Response to Chemoradiotherapy in Patients with Non-small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023;115:407–418. doi: 10.1016/j.ijrobp.2022.07.032. PubMed DOI
Xi Y., Liu F., Qiu B., Li Y., Xie X., Guo J., Wu L., Liang T., Wang D., Wang J., et al. Analysis of Gut Microbiota Signature and Microbe-Disease Progression Associations in Locally Advanced Non-Small Cell Lung Cancer Patients Treated with Concurrent Chemoradiotherapy. Front. Cell. Infect. Microbiol. 2022;12:892401. doi: 10.3389/fcimb.2022.892401. PubMed DOI PMC
Sasaki T., Matsumoto Y., Murakami K., Endo S., Toyozumi T., Otsuka R., Kinoshita K., Hu J., Iida S., Morishita H., et al. Gut microbiome can predict chemoradiotherapy efficacy in patients with esophageal squamous cell carcinoma. Esophagus. 2023;20:691–703. doi: 10.1007/s10388-023-01004-0. PubMed DOI
Jiang Z., Zhang W., Zhang Z., Sha G., Wang D., Tang D. Intratumoral microbiota: A new force in diagnosing and treating pancreatic cancer. Cancer Lett. 2023;554:216031. doi: 10.1016/j.canlet.2022.216031. PubMed DOI
Benkhaled S., Peters C., Jullian N., Arsenijevic T., Navez J., Van Gestel D., Moretti L., Van Laethem J.L., Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers. 2023;15:768. doi: 10.3390/cancers15030768. PubMed DOI PMC
Gerassy-Vainberg S., Blatt A., Danin-Poleg Y., Gershovich K., Sabo E., Nevelsky A., Daniel S., Dahan A., Ziv O., Dheer R., et al. Radiation induces proinflammatory dysbiosis: Transmission of inflammatory susceptibility by host cytokine induction. Gut. 2018;67:97–107. doi: 10.1136/gutjnl-2017-313789. PubMed DOI
Liu W., Li Z., Li X., Cao H., Jiang H., Niu Q., Hu B. Influence of tumor mycobiome on cancer pathogenesis (Review) Oncol. Lett. 2023;26:541. doi: 10.3892/ol.2023.14128. PubMed DOI PMC
Ramadan M., Hetta H.F., Saleh M.M., Ali M.E., Ahmed A.A., Salah M. Alterations in skin microbiome mediated by radiotherapy and their potential roles in the prognosis of radiotherapy-induced dermatitis: A pilot study. Sci. Rep. 2021;11:5179. doi: 10.1038/s41598-021-84529-7. PubMed DOI PMC
Wang L., Wang X., Zhang G., Ma Y., Zhang Q., Li Z., Ran J., Hou X., Geng Y., Yang Z., et al. The impact of pelvic radiotherapy on the gut microbiome and its role in radiation-induced diarrhoea: A systematic review. Radiat. Oncol. 2021;16:187. doi: 10.1186/s13014-021-01899-y. PubMed DOI PMC
Helmink B.A., Khan M.A.W., Hermann A., Gopalakrishnan V., Wargo J.A. The microbiome, cancer, and cancer therapy. Nat. Med. 2019;25:377–388. doi: 10.1038/s41591-019-0377-7. PubMed DOI
Wheeler K.M., Liss M.A. The Microbiome and Prostate Cancer Risk. Curr. Urol. Rep. 2019;20:66. doi: 10.1007/s11934-019-0922-4. PubMed DOI
Scott A.J., Merrifield C.A., Younes J.A., Pekelharing E.P. Pre-, pro- and synbiotics in cancer prevention and treatment—A review of basic and clinical research. Ecancermedicalscience. 2018;12:869. doi: 10.3332/ecancer.2018.869. PubMed DOI PMC
Touchefeu Y., Montassier E., Nieman K., Gastinne T., Potel G., Bruley des Varannes S., Le Vacon F., de La Cochetière M.F. Systematic review: The role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis—Current evidence and potential clinical applications. Aliment. Pharmacol. Ther. 2014;40:409–421. doi: 10.1111/apt.12878. PubMed DOI
Uribe-Herranz M., Rafail S., Beghi S., Gil-de-Gómez L., Verginadis I., Bittinger K., Pustylnikov S., Pierini S., Perales-Linares R., Blair I.A., et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Investig. 2020;130:466–479. doi: 10.1172/JCI124332. PubMed DOI PMC
Manichanh C., Varela E., Martinez C., Antolin M., Llopis M., Doré J., Giralt J., Guarner F., Malagelada J.R. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am. J. Gastroenterol. 2008;103:1754–1761. doi: 10.1111/j.1572-0241.2008.01868.x. PubMed DOI
Oh B., Eade T., Lamoury G., Carroll S., Morgia M., Kneebone A., Hruby G., Stevens M., Boyle F., Clarke S., et al. The Gut Microbiome and Gastrointestinal Toxicities in Pelvic Radiation Therapy: A Clinical Review. Cancers. 2021;13:2353. doi: 10.3390/cancers13102353. PubMed DOI PMC
Nam Y.D., Kim H.J., Seo J.G., Kang S.W., Bae J.W. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS ONE. 2013;8:e82659. doi: 10.1371/journal.pone.0082659. PubMed DOI PMC
Mitra A., Grossman Biegert G.W., Delgado A.Y., Karpinets T.V., Solley T.N., Mezzari M.P., Yoshida-Court K., Petrosino J.F., Mikkelson M.D., Lin L., et al. Microbial Diversity and Composition Is Associated with Patient-Reported Toxicity during Chemoradiation Therapy for Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020;107:163–171. doi: 10.1016/j.ijrobp.2019.12.040. PubMed DOI PMC
Goudarzi M., Mak T.D., Jacobs J.P., Moon B.H., Strawn S.J., Braun J., Brenner D.J., Fornace AJJr Li H.H. An Integrated Multi-Omic Approach to Assess Radiation Injury on the Host-Microbiome Axis. Radiat. Res. 2016;186:219–234. doi: 10.1667/RR14306.1. PubMed DOI PMC
Montassier E., Batard E., Massart S., Gastinne T., Carton T., Caillon J., Le Fresne S., Caroff N., Hardouin J.B., Moreau P., et al. 16S rRNA gene pyrosequencing reveals shift in patient faecal microbiota during high-dose chemotherapy as conditioning regimen for bone marrow transplantation. Microb. Ecol. 2014;67:690–699. doi: 10.1007/s00248-013-0355-4. PubMed DOI
Wang A., Ling Z., Yang Z., Kiela P.R., Wang T., Wang C., Cao L., Geng F., Shen M., Ran X., et al. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: A pilot study. PLoS ONE. 2015;10:e0126312. doi: 10.1371/journal.pone.0126312. PubMed DOI PMC
Tooley K.L., Howarth G.S., Lymn K.A., Lawrence A., Butler R.N. Oral ingestion of streptococcus thermophilus diminishes severity of small intestinal mucositis in methotrexate treated rats. Cancer Biol. Ther. 2006;5:593–600. doi: 10.4161/cbt.5.6.2659. PubMed DOI
Tooley K.L., Howarth G.S., Lymn K.A., Lawrence A., Butler R.N. Oral ingestion of Streptococcus thermophilus does not affect mucositis severity or tumor progression in the tumor-bearing rat. Cancer Biol. Ther. 2011;12:131–138. doi: 10.4161/cbt.12.2.15720. PubMed DOI
Urbancsek H., Kazar T., Mezes I., Neumann K. Results of a double-blind, randomized study to evaluate the efficacy and safety of Antibiophilus in patients with radiation-induced diarrhoea. Eur. J. Gastroenterol. Hepatol. 2001;13:391–396. doi: 10.1097/00042737-200104000-00015. PubMed DOI
Salminen E., Elomaa I., Minkkinen J., Vapaatalo H., Salminen S. Preservation of intestinal integrity during radiotherapy using live Lactobacillus acidophilus cultures. Clin. Radiol. 1988;39:435–437. doi: 10.1016/S0009-9260(88)80296-4. PubMed DOI
Delia P., Sansotta G., Donato V., Frosina P., Messina G., De Renzis C., Famularo G. Use of probiotics for prevention of radiation-induced diarrhea. World J. Gastroenterol. 2007;13:912–915. doi: 10.3748/wjg.v13.i6.912. PubMed DOI PMC
Chitapanarux I., Chitapanarux T., Traisathit P., Kudumpee S., Tharavichitkul E., Lorvidhaya V. Randomized controlled trial of live Lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat. Oncol. 2010;5:31. doi: 10.1186/1748-717X-5-31. PubMed DOI PMC
Fernandez-Julia P.J., Munoz-Munoz J., van Sinderen D. A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. Int. J. Biol. Macromol. 2021;181:877–889. doi: 10.1016/j.ijbiomac.2021.04.069. PubMed DOI
Santoni M., Piva F., Conti A., Santoni A., Cimadamore A., Scarpelli M., Battelli N., Montironi R. Re: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Eur. Urol. 2018;74:521–522. doi: 10.1016/j.eururo.2018.05.033. PubMed DOI
Tanoue T., Morita S., Plichta D.R., Skelly A.N., Suda W., Sugiura Y., Narushima S., Vlamakis H., Motoo I., Sugita K., et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565:600–605. doi: 10.1038/s41586-019-0878-z. PubMed DOI
Bernal M.O., Schneeberger P.H., Taylor R., Rey V., Hansen A.R., Taylor K., Bayley A., Hope A., Hosni A., Bratman S.V., et al. Role of the oral and gut microbiota as a biomarker in locoregionally advanced oropharyngeal squamous cell carcinoma (ROMA LA-OPSCC) J. Clin. Oncol. 2019;37:6045
Galvis M.M., Borges G.A., Oliveira T.B., Toledo I.P., Castilho R.M., Guerra E.N.S., Kowalski L.P., Squarize C.H. Immunotherapy improves efficacy and safety of patients with HPV positive and negative head and neck cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2020;150:102966. doi: 10.1016/j.critrevonc.2020.102966. PubMed DOI
Žuntar I., Petric Z., Bursać Kovačević D., Putnik P. Safety of Probiotics: Functional Fruit Beverages and Nutraceuticals. Foods. 2020;9:947. doi: 10.3390/foods9070947. PubMed DOI PMC
Naeem H., Hassan H.U., Shahbaz M., Imran M., Memon A.G., Hasnain A., Murtaza S., Alsagaby S.A., Al Abdulmonem W., Hussain M., et al. Role of Probiotics against Human Cancers, Inflammatory Diseases, and Other Complex Malignancies. J. Food Biochem. 2024;2024:6632209. doi: 10.1155/2024/6632209. DOI
Al-Asfour A., Bhardwaj R.G., Karched M. Growth Suppression of Oral Squamous Cell Carcinoma Cells by Lactobacillus acidophilus. Int. Dent. J. 2024;74:1151–1160. doi: 10.1016/j.identj.2024.03.017. PubMed DOI PMC
Zhang Y., Gu Y., Guo T., Li Y., Cai H. Perioperative immunonutrition for gastrointestinal cancer: A systematic review of randomized controlled trials. Surg. Oncol. 2012;21:e87–e95. doi: 10.1016/j.suronc.2012.01.002. PubMed DOI
Marimuthu K., Varadhan K.K., Ljungqvist O., Lobo D.N. A meta-analysis of the effect of combinations of immune modulating nutrients on outcome in patients undergoing major open gastrointestinal surgery. Ann. Surg. 2012;255:1060–1068. doi: 10.1097/SLA.0b013e318252edf8. PubMed DOI
Mueller S.A., Mayer C., Bojaxhiu B., Aeberhard C., Schuetz P., Stanga Z., Giger R. Effect of preoperative immunonutrition on complications after salvage surgery in head and neck cancer. J. Otolaryngol. Head Neck Surg. 2019;48:25. doi: 10.1186/s40463-019-0345-8. PubMed DOI PMC
Gunduz M., Murakami D., Gunduz I., Tamagawa S., Hiraoka M., Sugita G., Hotomi M. Recurrent bacterial translocation from gut and sepsis in Head and neck cancer patients and its prevention by probiotics. Med. Hypotheses. 2018;120:124–127. doi: 10.1016/j.mehy.2018.08.020. PubMed DOI