High-Fidelity Interactive Motorcycle Driving Simulator with Motion Platform Equipped with Tension Sensors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS25/100/OHK2/2T/16
Czech Technical University in Prague
PubMed
40648492
PubMed Central
PMC12252496
DOI
10.3390/s25134237
PII: s25134237
Knihovny.cz E-zdroje
- Klíčová slova
- motion platform, motorcycle simulator, real motorcycle experiment, riding simulator experiment, tension sensors, virtual reality,
- Publikační typ
- časopisecké články MeSH
The paper presents the innovative approach to a high-fidelity motorcycle riding simulator based on VR (Virtual Reality)-visualization, equipped with a Gough-Stewart 6-DOF (Degrees of Freedom) motion platform. Such a solution integrates a real-time tension sensor system as a source for highly realistic motion cueing control as well as the servomotor integrated into the steering system. Tension forces are measured at four points on the mock-up chassis, allowing a comprehensive analysis of rider interaction during various maneuvers. The simulator is developed to simulate realistic riding scenarios with immersive motion and visual feedback, enhanced with the simulation of external influences-headwind. This paper presents results of a validation study-pilot experiments conducted to evaluate selected riding scenarios and validate the innovative simulator setup, focusing on force distribution and system responsiveness to support further research in motorcycle HMI (Human-Machine Interaction), rider behavior, and training.
Zobrazit více v PubMed
Alonso F., Faus M., Riera J.V., Fernandez-Marin M., Useche S.A. Effectiveness of Driving Simulators for Drivers’ Training: A Systematic Review. Appl. Sci. 2023;13:5266. doi: 10.3390/app13095266. DOI
Young M.S., Lenné M.G. Simulators for Transportation Human Factors: Research and Practice. CRC Press; London, UK: 2011.
BMW BMW Group Sets New Standards for Driving Simulation. [(accessed on 10 June 2025)]. Available online: https://www.press.bmwgroup.com/global/article/detail/T0320021EN/bmw-group-sets-new-standards-for-driving-simulation-nextgen-2020-offers-exclusive-insights-before-the-new-driving-simulation-centre-starts-work?language=en.
Renault ROADS: Renault Operational Advanced Driving Simulator. [(accessed on 10 June 2025)]. Available online: https://www.renault.co.uk/safety/roads.html.
Toyota TOYOTA—Dynamic Driving Simulator (TDDS) [(accessed on 10 June 2025)]. Available online: https://driving-simulation.org/driving-simulators-worldwide/toyota-dynamic-driving-simulator/
El Hamdani S., Bouchner P., Kunclova T., Toman P., Svoboda J., Novotný S. Fidelity Assessment of Motion Platform Cueing: Comparison of Driving Behavior under Various Motion Levels. Sensors. 2023;23:5428. doi: 10.3390/s23125428. PubMed DOI PMC
Bouchner P., Novotn S., Orlick A., Topol L. Evaluating Visual Communication Interfaces Between Pedestrians and Autonomous Vehicles Using Virtual Reality Experiments. Neural Netw. World. 2024;34:279–291. doi: 10.14311/NNW.2024.34.015. DOI
Gebretsadik K.H., Suzuki K. Riding behavior-based HMIs for motorcycle safety (A comparative study of alert and real-time feedback systems) J. Adv. Mech. Des. Syst. Manuf. 2024;18:JAMDSM0055. doi: 10.1299/jamdsm.2024jamdsm0055. DOI
Coelho C., Garets S., Bailey J., Frank T., Scully I., Cades D. Human Factors Issues of Advanced Rider Assistance Systems (ARAS) Hum. Factors Transp. 2023;95:292–303. doi: 10.54941/ahfe1003814. DOI
Pieve M., Tesauri F., Spadoni A. Mitigation accident risk in powered two Wheelers domain: Improving effectiveness of human machine interface collision avoidance system in two wheelers; Proceedings of the 2009 2nd Conference on Human System Interactions; Catania, Italy. 21–23 May 2009; pp. 603–607. DOI
Saffarian M., De Winter J.C., Happee R. Automated Driving: Human-Factors Issues and Design Solutions. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2012;56:2296–2300. doi: 10.1177/1071181312561483. DOI
Markkula G., Romano R., Waldram R., Giles O., Mole C., Wilkie R. Modelling visual-vestibular integration and behavioural adaptation in the driving simulator. Transp. Res. Part F Traffic Psychol. Behav. 2019;66:310–323. doi: 10.1016/j.trf.2019.07.018. DOI
Westerhof B.E., De Vries E.J.H., Happee R., Schwab A. Evaluation of a Motorcycle Simulator. 2020. [(accessed on 7 June 2025)]. Available online: DOI
Sun H., Yan Y., Liu J., Liu X., Zhang L., Shi C. Evaluation of Motorcycles’ Handling and Stability Under Slalom Conditions. Machines. 2025;13:198. doi: 10.3390/machines13030198. DOI
Chiyoda S., Yoshimoto K., Kawasaki D., Murakami Y., Sugimoto T. Development of a Motorcycle Simulator Using Parallel Manipulator and Head Mounted Display; Proceedings of the International Conference on Motion and Vibration Control; Saitama, Japan. 20–23 August 2002; pp. 599–602. DOI
Stedmon A.W., Hasseldine B., Rice D., Young M., Markham S., Hancox M., Brickell E., Noble J. ‘MotorcycleSim’: An Evaluation of Rider Interaction with an Innovative Motorcycle Simulator. Comput. J. 2011;54:1010–1025. doi: 10.1093/comjnl/bxp071. DOI
Benedetto S., Lobjois R., Faure V., Dang N.T., Pedrotti M., Caro S. A comparison of immersive and interactive motorcycle simulator configurations. Transp. Res. Part F Traffic Psychol. Behaviour. 2014;23:88–100. doi: 10.1016/j.trf.2013.12.020. DOI
Will S., Hammer T., Pleß R., Merkel N.L., Neukum A. Simulator validation—A new methodological approach applied to motorcycle riding simulators; Proceedings of the Evolving Scholar—BMD 2023, 5th Edition, 2023; Delft, The Netherlands. 18–20 October 2023; DOI
Bouchner P., Novotný S. Recent Researches in Applied Informatics, Proceedings of the 2nd International Conference on Applied Informatics and Computing Theory, Prague, Czech Republic, 26–28 September 2011. World Scientific and Engineering Academy and Society (WSEAS); Stevens Point, WI, USA: 2011. [(accessed on 3 June 2025)]. Car dynamics model—Design for interactive driving simulation use; pp. 285–289. Available online: https://www.researchgate.net/publication/262400619_Car_dynamics_model_-_Design_for_interactive_driving_simulation_use.
Svoboda J., Toman P., Orlický A. Validation of a longitudinal motorcycle riding dynamic model for a powered two-wheeler interactive simulator. Acta Polytech. CTU Proc. 2022;39:55–59. doi: 10.14311/APP.2022.39.0055. DOI
Svoboda J., Toman P., Orlický A. Research and implementation of motorcycle simulator controls. Acta Polytech. CTU Proc. 2023;41:71–78. doi: 10.14311/APP.2023.41.0071. DOI
Thöndel E. Design and optimisation of a motion cueing algorithm for a truck simulator; Proceedings of the 26th Annual European Simulation and Modelling Conference; Koblenz, Germany. 29 May–1 June 2012; [(accessed on 30 June 2025)]. p. 5. Available online: https://www.researchgate.net/publication/290299955_Design_and_optimisation_of_a_motion_cueing_algorithm_for_a_truck_simulator.
Xsens Technologies B.V. MTi-G User Manual and Technical Documentation. MOVELLA. [(accessed on 4 June 2025)]. Available online: https://www.xsens.com/hubfs/Downloads/Leaflets/MTi%20600-series%20Datasheet.pdf.
MOVELLA Xsens Technologies B.V. Awinda User Manual and Technical Documentation. [(accessed on 4 June 2025)]. Available online: https://www.xsens.com/hubfs/Downloads/Manuals/MTw_Awinda_User_Manual.pdf.
CTU Lions Racing Team. 2022. [(accessed on 4 June 2025)]. Available online: https://www.ctulions.cz/