High-Fidelity Interactive Motorcycle Driving Simulator with Motion Platform Equipped with Tension Sensors

. 2025 Jul 07 ; 25 (13) : . [epub] 20250707

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40648492

Grantová podpora
SGS25/100/OHK2/2T/16 Czech Technical University in Prague

The paper presents the innovative approach to a high-fidelity motorcycle riding simulator based on VR (Virtual Reality)-visualization, equipped with a Gough-Stewart 6-DOF (Degrees of Freedom) motion platform. Such a solution integrates a real-time tension sensor system as a source for highly realistic motion cueing control as well as the servomotor integrated into the steering system. Tension forces are measured at four points on the mock-up chassis, allowing a comprehensive analysis of rider interaction during various maneuvers. The simulator is developed to simulate realistic riding scenarios with immersive motion and visual feedback, enhanced with the simulation of external influences-headwind. This paper presents results of a validation study-pilot experiments conducted to evaluate selected riding scenarios and validate the innovative simulator setup, focusing on force distribution and system responsiveness to support further research in motorcycle HMI (Human-Machine Interaction), rider behavior, and training.

Zobrazit více v PubMed

Alonso F., Faus M., Riera J.V., Fernandez-Marin M., Useche S.A. Effectiveness of Driving Simulators for Drivers’ Training: A Systematic Review. Appl. Sci. 2023;13:5266. doi: 10.3390/app13095266. DOI

Young M.S., Lenné M.G. Simulators for Transportation Human Factors: Research and Practice. CRC Press; London, UK: 2011.

BMW BMW Group Sets New Standards for Driving Simulation. [(accessed on 10 June 2025)]. Available online: https://www.press.bmwgroup.com/global/article/detail/T0320021EN/bmw-group-sets-new-standards-for-driving-simulation-nextgen-2020-offers-exclusive-insights-before-the-new-driving-simulation-centre-starts-work?language=en.

Renault ROADS: Renault Operational Advanced Driving Simulator. [(accessed on 10 June 2025)]. Available online: https://www.renault.co.uk/safety/roads.html.

Toyota TOYOTA—Dynamic Driving Simulator (TDDS) [(accessed on 10 June 2025)]. Available online: https://driving-simulation.org/driving-simulators-worldwide/toyota-dynamic-driving-simulator/

El Hamdani S., Bouchner P., Kunclova T., Toman P., Svoboda J., Novotný S. Fidelity Assessment of Motion Platform Cueing: Comparison of Driving Behavior under Various Motion Levels. Sensors. 2023;23:5428. doi: 10.3390/s23125428. PubMed DOI PMC

Bouchner P., Novotn S., Orlick A., Topol L. Evaluating Visual Communication Interfaces Between Pedestrians and Autonomous Vehicles Using Virtual Reality Experiments. Neural Netw. World. 2024;34:279–291. doi: 10.14311/NNW.2024.34.015. DOI

Gebretsadik K.H., Suzuki K. Riding behavior-based HMIs for motorcycle safety (A comparative study of alert and real-time feedback systems) J. Adv. Mech. Des. Syst. Manuf. 2024;18:JAMDSM0055. doi: 10.1299/jamdsm.2024jamdsm0055. DOI

Coelho C., Garets S., Bailey J., Frank T., Scully I., Cades D. Human Factors Issues of Advanced Rider Assistance Systems (ARAS) Hum. Factors Transp. 2023;95:292–303. doi: 10.54941/ahfe1003814. DOI

Pieve M., Tesauri F., Spadoni A. Mitigation accident risk in powered two Wheelers domain: Improving effectiveness of human machine interface collision avoidance system in two wheelers; Proceedings of the 2009 2nd Conference on Human System Interactions; Catania, Italy. 21–23 May 2009; pp. 603–607. DOI

Saffarian M., De Winter J.C., Happee R. Automated Driving: Human-Factors Issues and Design Solutions. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2012;56:2296–2300. doi: 10.1177/1071181312561483. DOI

Markkula G., Romano R., Waldram R., Giles O., Mole C., Wilkie R. Modelling visual-vestibular integration and behavioural adaptation in the driving simulator. Transp. Res. Part F Traffic Psychol. Behav. 2019;66:310–323. doi: 10.1016/j.trf.2019.07.018. DOI

Westerhof B.E., De Vries E.J.H., Happee R., Schwab A. Evaluation of a Motorcycle Simulator. 2020. [(accessed on 7 June 2025)]. Available online: DOI

Sun H., Yan Y., Liu J., Liu X., Zhang L., Shi C. Evaluation of Motorcycles’ Handling and Stability Under Slalom Conditions. Machines. 2025;13:198. doi: 10.3390/machines13030198. DOI

Chiyoda S., Yoshimoto K., Kawasaki D., Murakami Y., Sugimoto T. Development of a Motorcycle Simulator Using Parallel Manipulator and Head Mounted Display; Proceedings of the International Conference on Motion and Vibration Control; Saitama, Japan. 20–23 August 2002; pp. 599–602. DOI

Stedmon A.W., Hasseldine B., Rice D., Young M., Markham S., Hancox M., Brickell E., Noble J. ‘MotorcycleSim’: An Evaluation of Rider Interaction with an Innovative Motorcycle Simulator. Comput. J. 2011;54:1010–1025. doi: 10.1093/comjnl/bxp071. DOI

Benedetto S., Lobjois R., Faure V., Dang N.T., Pedrotti M., Caro S. A comparison of immersive and interactive motorcycle simulator configurations. Transp. Res. Part F Traffic Psychol. Behaviour. 2014;23:88–100. doi: 10.1016/j.trf.2013.12.020. DOI

Will S., Hammer T., Pleß R., Merkel N.L., Neukum A. Simulator validation—A new methodological approach applied to motorcycle riding simulators; Proceedings of the Evolving Scholar—BMD 2023, 5th Edition, 2023; Delft, The Netherlands. 18–20 October 2023; DOI

Bouchner P., Novotný S. Recent Researches in Applied Informatics, Proceedings of the 2nd International Conference on Applied Informatics and Computing Theory, Prague, Czech Republic, 26–28 September 2011. World Scientific and Engineering Academy and Society (WSEAS); Stevens Point, WI, USA: 2011. [(accessed on 3 June 2025)]. Car dynamics model—Design for interactive driving simulation use; pp. 285–289. Available online: https://www.researchgate.net/publication/262400619_Car_dynamics_model_-_Design_for_interactive_driving_simulation_use.

Svoboda J., Toman P., Orlický A. Validation of a longitudinal motorcycle riding dynamic model for a powered two-wheeler interactive simulator. Acta Polytech. CTU Proc. 2022;39:55–59. doi: 10.14311/APP.2022.39.0055. DOI

Svoboda J., Toman P., Orlický A. Research and implementation of motorcycle simulator controls. Acta Polytech. CTU Proc. 2023;41:71–78. doi: 10.14311/APP.2023.41.0071. DOI

Thöndel E. Design and optimisation of a motion cueing algorithm for a truck simulator; Proceedings of the 26th Annual European Simulation and Modelling Conference; Koblenz, Germany. 29 May–1 June 2012; [(accessed on 30 June 2025)]. p. 5. Available online: https://www.researchgate.net/publication/290299955_Design_and_optimisation_of_a_motion_cueing_algorithm_for_a_truck_simulator.

Xsens Technologies B.V. MTi-G User Manual and Technical Documentation. MOVELLA. [(accessed on 4 June 2025)]. Available online: https://www.xsens.com/hubfs/Downloads/Leaflets/MTi%20600-series%20Datasheet.pdf.

MOVELLA Xsens Technologies B.V. Awinda User Manual and Technical Documentation. [(accessed on 4 June 2025)]. Available online: https://www.xsens.com/hubfs/Downloads/Manuals/MTw_Awinda_User_Manual.pdf.

CTU Lions Racing Team. 2022. [(accessed on 4 June 2025)]. Available online: https://www.ctulions.cz/

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...