The Effectiveness and Practical Application of Different Reduction Techniques in Burst Fractures of the Thoracolumbar Spine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. IGA-KZ- 217116006
Krajska zdravotni a.s., Usti nad Labem, Czech Republic - Internal grant agency
PubMed
40649075
PubMed Central
PMC12251492
DOI
10.3390/jcm14134700
PII: jcm14134700
Knihovny.cz E-zdroje
- Klíčová slova
- burst fractures, ligamentotaxis, spinal canal area, spinal stenosis, spine reduction, spine trauma,
- Publikační typ
- časopisecké články MeSH
Background: The objective was to evaluate and compare the efficacy of direct fragment impaction, indirect reduction through ligamentotaxis, and the combination of both techniques in burst fractures of the thoracolumbar (TL) spine. Methods: The fractures were categorized using the Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification and assessed via standard computed tomography (CT) scans for spinal canal area (SCA) and mid-sagittal diameter (MSD). The Frankel classification was used to assess neurological deficits. Only single vertebrae AO types A3 and A4 thoracic or lumbar fractures were included. All patients received bisegmental posterior stabilization, one of the reduction techniques, and, if neurological deficits were present, a spinal decompression. Mean preoperative (µSCApre/µMSDpre), postoperative (µSCApost/µMSDpost) and difference (∆SCA/∆MSD) in radiographic values were obtained and analyzed using the Mumford formula. The significance of the reduction from preoperative stenosis was assessed using a t-test, while the effectiveness of the reduction techniques was compared using the Kruskal-Wallis test and Dunn's post hoc test. The manuscript was focused primarily on radiographic outcomes; therefore, aside from the neurostatus, no other clinical parameters were statistically analyzed. Results: Thirteen patients (38.2%) received stand-alone indirect reduction, 13 patients (38.2%) underwent direct reduction, and a combined reduction was used in eight patients (23.6%). All methods resulted in a statistically significant reduction in spinal canal stenosis (p < 0.05), with a minimal mean ∆SCA of 19%. Patients in the direct reduction group had significantly higher µSCApre values compared to those in the indirect reduction group (p = 0.02). Conclusions: All of the tested reduction techniques provided a significant reduction in spinal canal stenosis. Patients who underwent mere direct reduction had significantly higher preoperative spinal canal stenosis compared to the indirect reduction group.
Zobrazit více v PubMed
Kweh B.T.S., Tee J.W., Dandurand C., Vaccaro A.R., Lorin B.M., Schnake K., Vialle E., Rajasekaran S., El-Skarkawi M., Bransford R.J., et al. The AO Spine Thoracolumbar Injury Classification System and Treatment Algorithm in Decision Making for Thoracolumbar Burst Fractures Without Neurologic Deficit. Glob. Spine J. 2024;14((Suppl. S1)):32S–40S. doi: 10.1177/21925682231195764. PubMed DOI PMC
Karaali E., Ciloglu O., Duramaz A., Kusvuran Ozkan A., Ekiz T. Management of thoracolumbar injury classification and severity score of 4 (TLICS=4) thoracolumbar vertebra fractures: Surgery versus conservative treatment. Torakolomber yaralanma sınıflaması ve ciddiyet skoru 4 (TLICS = 4) olan torakolomber vertebra kırıklarının yönetimi: Cerrahi mi, konservatif tedavi mi? Ulus. Travma Ve Acil Cerrahi Derg. = Turk. J. Trauma Emerg. Surg. 2020;26:805–810. doi: 10.14744/tjtes.2020.30524. PubMed DOI
Donnarumma P., Tarantino R., Nigro L., Rullo M., Messina D., Diacinti D., Delfini R. Decompression versus decompression and fusion for degenerative lumbar stenosis: Analysis of the factors influencing the outcome of back pain and disability. J. Spine Surg. 2016;2:52–58. doi: 10.21037/jss.2016.03.07. PubMed DOI PMC
Spiegl U.J., Josten C., Devitt B.M., Heyde C.E. Incomplete burst fractures of the thoracolumbar spine: A review of the literature. Eur. Spine J. 2017;26:3187–3198. doi: 10.1007/s00586-017-5126-3. PubMed DOI
Huang J., Zhou L., Yan Z., Zhou Z., Gou X. Effect of manual reduction and indirect decompression on thoracolumbar burst fracture: A comparison study. J. Orthop. Surg. Res. 2020;15:532. doi: 10.1186/s13018-020-02075-w. PubMed DOI PMC
Mumford J., Weinstein J.N., Spratt K.F., Goel V.K. Thoracolumbar burst fractures. The clinical efficacy and outcome of nonoperative management. Spine. 1993;18:955–970. doi: 10.1097/00007632-199306150-00003. PubMed DOI
Wood K.B., Buttermann G.R., Phukan R., Harrod C.C., Mehbod A., Shannon B., Bono C.M., Harris M.B. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit: A prospective randomized study with follow-up at sixteen to twenty-two years. J. Bone Jt. Surg. Am. 2015;97:3–9. doi: 10.2106/JBJS.N.00226. PubMed DOI
Pehlivanoglu T., Akgul T., Bayram S., Meric E., Ozdemir M., Korkmaz M., Sar C. Conservative versus operative treatment of stable thoracolumbar burst fractures in neurologically intact patients: Is there any difference regarding the clinical and radiographic outcomes? Spine. 2020;45:452–458. doi: 10.1097/BRS.0000000000003295. PubMed DOI
Benek H.B., Akcay E., Yilmaz H., Yurt A. Efficiency of distraction and ligamentotaxis in posterior spinal instrumentation of thoracolumbar retropulsed fractures. Turk. Neurosurg. 2021;31:973–979. doi: 10.5137/1019-5149.JTN.34860-21.3. PubMed DOI
Kang W.S., Kim J.C., Choi I.S., Kim S.K. Indirect reduction and spinal canal remodeling through ligamentotaxis for lumbar burst fracture. J. Trauma Inj. 2017;30:212–215. doi: 10.20408/jti.2017.30.4.212. DOI
Tan J., Shen L., Fang L., Chen D., Xing S., Shi G., He X., Wang J., Zhang J., Liao T., et al. Correlations between posterior longitudinal injury and parameters of vertebral body damage. J. Surg. Res. 2015;199:552–556. doi: 10.1016/j.jss.2015.04.068. PubMed DOI
Vaccaro A.R., Rihn J.A., Saravanja D., Anderson D.G., Hilibrand A.S., Albert T.J., Fehlings M.G., Morrison W., Flanders A.E., France J.C., et al. Injury of the posterior ligamentous complex of the thoracolumbar spine: A prospective evaluation of the diagnostic accuracy of magnetic resonance imaging. Spine. 2009;34:E841–E847. doi: 10.1097/BRS.0b013e3181bd11be. PubMed DOI
Soukup J., Černý J., Novotný T. Akutní traumatická hernie intervertebrálního disku. Acta Chir. Orthop. Traumatol. Cech. 2023;90:283–287. doi: 10.55095/achot2023/034. PubMed DOI
Hashimoto T., Kaneda K., Abumi K. Relationship between traumatic spinal canal stenosis and neurologic deficits in thoracolumbar burst fractures. Spine. 1988;13:1268–1272. doi: 10.1097/00007632-198811000-00011. PubMed DOI
Yüksel M.O., Gürbüz M.S., Gök Ş., Karaarslan N., İş M., Berkman M.Z. The association between sagittal index, canal compromise, loss of vertebral body height, and severity of spinal cord injury in thoracolumbar burst fractures. J. Neurosci. Rural. Pract. 2016;7:S57–S61. doi: 10.4103/0976-3147.196466. PubMed DOI PMC
Tandon V., Franke J., Kalidindi K.K.V. Advancements in osteoporotic spine fixation. J. Clin. Orthop. Trauma. 2020;11:778–785. doi: 10.1016/j.jcot.2020.06.028. PubMed DOI PMC
Cerny J., Soukup J., Petrosian K., Loukotova L., Novotny T. Efficacy and complication rates of percutaneous vertebroplasty and kyphoplasty in the treatment of vertebral compression fractures: A retrospective analysis of 280 patients. J. Clin. Med. 2024;13:1495. doi: 10.3390/jcm13051495. PubMed DOI PMC
Lehman R.A., Jr., Kang D.G., Wagner S.C. Management of osteoporosis in spine surgery. J. Am. Acad. Orthop. Surg. 2015;23:253–263. doi: 10.5435/JAAOS-D-14-00042. PubMed DOI
Aggarwal V., Maslen C., Abel R.L., Bhattacharya P., Bromiley P.A., Clark E.M., Compston J.E., Crabtree N., Gregory J.S., Kariki E.P., et al. Opportunistic diagnosis of osteoporosis, fragile bone strength, and vertebral fractures from routine CT scans: A review of approved technology systems and pathways to implementation. Ther. Adv. Musculoskelet. Dis. 2021;13:1759720X211024029. doi: 10.1177/1759720X211024029. PubMed DOI PMC
Resch H., Rabl M., Klampfer H., Ritter E., Povacz P. Operative vs. konservative Behandlung von Frakturen des thorakolumbalen Ubergangs [Surgical vs. conservative treatment of fractures of the thoracolumbar transition] Der Unfallchirurg. 2000;103:281–288. doi: 10.1007/s001130050537. PubMed DOI
Gattas S., Fote G.M., Brown N.J., Lien B.V., Choi E.H., Chan A.Y., Rosen C.D., Oh M.Y. Second opinion in spine surgery: A scoping review. Surg. Neurol. Int. 2021;12:436. doi: 10.25259/SNI_399_2021. PubMed DOI PMC
Little A.S., Wu S.J. Cognitive bias and neurosurgical decision making. J. Neurosurg. 2021;137:307–312. doi: 10.3171/2021.9.JNS212058. PubMed DOI