The Perivascular Fat Attenuation Index: Bridging Inflammation and Cardiovascular Disease Risk
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
LUC-23138
This work was funded by the Ministry of Education, Youth and Sports of the Czech Republic, INTER-EXCELLENCE II
PubMed
40649128
PubMed Central
PMC12250478
DOI
10.3390/jcm14134753
PII: jcm14134753
Knihovny.cz E-resources
- Keywords
- cardiometabolic risk, chronic inflammatory diseases, coronary artery disease, fat attenuation index, inflammation, pericoronary adipose tissue, perivascular adipose tissue, vascular inflammation,
- Publication type
- Journal Article MeSH
- Review MeSH
Cardiovascular disease remains the leading global cause of mortality, with inflammation now recognized as a central driver of atherosclerosis and other cardiometabolic conditions. Recent advances have repositioned perivascular adipose tissue from a passive structural element to an active endocrine and immunomodulatory organ, now a key focus in cardiovascular and metabolic research. Among the most promising tools for assessing perivascular adipose tissue inflammation is the fat attenuation index, a non-invasive imaging biomarker derived from coronary computed tomography angiography. This review explores the translational potential of the fat attenuation index for cardiovascular risk stratification and treatment monitoring in both coronary artery disease and systemic inflammatory or metabolic conditions (psoriasis, systemic lupus erythematosus, inflammatory bowel disease, obesity, type 2 diabetes, and non-obstructive coronary syndromes). We summarize evidence linking perivascular adipose tissue dysfunction to vascular inflammation and adverse cardiovascular outcomes. Clinical studies reviewing the fat attenuation index highlight its ability to detect subclinical inflammation and monitor treatment response. As research advances, standardization of measurement protocols and imaging thresholds will be essential for routine clinical implementation.
See more in PubMed
Antonopoulos A.S., Sanna F., Sabharwal N., Thomas S., Oikonomou E.K., Herdman L., Margaritis M., Shirodaria C., Kampoli A.-M., Akoumianakis I., et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 2017;9:eaal2658. doi: 10.1126/scitranslmed.aal2658. PubMed DOI
Chong B., Jayabaskaran J., Jauhari S.M., Chan S.P., Goh R., Kueh M.T.W., Li H., Chin Y.H., Kong G., Anand V.V., et al. Global burden of cardiovascular diseases: Projections from 2025 to 2050. Eur. J. Prev. Cardiol. 2024:zwae281. doi: 10.1093/eurjpc/zwae281. PubMed DOI
Fernández-Gutiérrez B., Perrotti P.P., Gisbert J.P., Domènech E., Fernández-Nebro A., Cañete J.D., Ferrándiz C., Tornero J., García-Sánchez V., Panés J., et al. Cardiovascular disease in immune-mediated inflammatory diseases. Medicine. 2017;96:e7308. doi: 10.1097/MD.0000000000007308. PubMed DOI PMC
Nava E., Llorens S. The Local Regulation of Vascular Function: From an Inside-Outside to an Outside-Inside Model. Front. Physiol. 2019;10:729. doi: 10.3389/fphys.2019.00729. PubMed DOI PMC
Li X., Ma Z., Zhu Y.Z. Regional Heterogeneity of Perivascular Adipose Tissue: Morphology, Origin, and Secretome. Front. Pharmacol. 2021;12:697720. doi: 10.3389/fphar.2021.697720. PubMed DOI PMC
Simantiris S., Pappa A., Papastamos C., Korkonikitas P., Antoniades C., Tsioufis C., Tousoulis D. Perivascular Fat: A Novel Risk Factor for Coronary Artery Disease. Diagnostics. 2024;14:1830. doi: 10.3390/diagnostics14161830. PubMed DOI PMC
Ajoolabady A., Pratico D., Lin L., Mantzoros C.S., Bahijri S., Tuomilehto J., Ren J. Inflammation in atherosclerosis: Pathophysiology and mechanisms. Cell Death Dis. 2024;15:817. doi: 10.1038/s41419-024-07166-8. PubMed DOI PMC
Antoniades C., Tousoulis D., Vavlukis M., Fleming I., Duncker D.J., Eringa E., Manfrini O., Antonopoulos A.S., Oikonomou E., Padró T., et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur. Heart J. 2023;44:3827–3844. doi: 10.1093/eurheartj/ehad484. PubMed DOI PMC
Sigdel S., Udoh G., Albalawy R., Wang J. Perivascular Adipose Tissue and Perivascular Adipose Tissue-Derived Extracellular Vesicles: New Insights in Vascular Disease. Cells. 2024;13:1309. doi: 10.3390/cells13161309. PubMed DOI PMC
Grigoras A., Amalinei C., Balan R.A., Giusca S.E., Caruntu I.D. Perivascular adipose tissue in cardiovascular diseases—An update. Anatol. J. Cardiol. 2019;22:219–231. doi: 10.14744/AnatolJCardiol.2019.91380. PubMed DOI PMC
Li Y., Chen Z., Xiao Y., Li X. Cross-talks between perivascular adipose tissue and neighbors: Multifaceted nature of nereids. Front. Pharmacol. 2024;15:1442086. doi: 10.3389/fphar.2024.1442086. PubMed DOI PMC
Yuvaraj J., Cheng K., Lin A., Psaltis P.J., Nicholls S.J., Wong D.T.L. The Emerging Role of CT-Based Imaging in Adipose Tissue and Coronary Inflammation. Cells. 2021;10:1196. doi: 10.3390/cells10051196. PubMed DOI PMC
Shi H., Wu H., Winkler M.A., de Chantemèle E.J.B., Lee R., Kim H.W., Weintraub N.L. Perivascular adipose tissue in autoimmune rheumatic diseases. Pharmacol. Res. 2022;182:106354. doi: 10.1016/j.phrs.2022.106354. PubMed DOI PMC
Muffová B., Králová Lesná I., Poledne R. Physiology and Pathobiology of Perivascular Adipose Tissue: Inflammation-Based. Physiol. Res. 2024;73:929–941. doi: 10.33549/physiolres.935384. PubMed DOI PMC
Oikonomou E.K., Marwan M., Desai M.Y., Mancio J., Alashi A., Hutt Centeno E., Thomas S., Herdman L., Kotanidis C.P., Thomas K.E., et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet Lond. Engl. 2018;392:929–939. doi: 10.1016/S0140-6736(18)31114-0. PubMed DOI PMC
Tan N., Dey D., Marwick T.H., Nerlekar N. Pericoronary Adipose Tissue as a Marker of Cardiovascular Risk: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023;81:913–923. doi: 10.1016/j.jacc.2022.12.021. PubMed DOI
Němečková E. Figure 1. [Internet] 2025. [(accessed on 30 June 2025)]. Available online: https://BioRender.com/ms2hh4k.
Rami A.Z.A., Hamid A.A., Anuar N.N.M., Aminuddin A., Ugusman A. Exploring the Relationship of Perivascular Adipose Tissue Inflammation and the Development of Vascular Pathologies. Mediat. Inflamm. 2022;2022:2734321. doi: 10.1155/2022/2734321. PubMed DOI PMC
Antoniades C., Kotanidis C.P., Berman D.S. State-of-the-art review article. Atherosclerosis affecting fat: What can we learn by imaging perivascular adipose tissue? J. Cardiovasc. Comput. Tomogr. 2019;13:288–296. doi: 10.1016/j.jcct.2019.03.006. PubMed DOI PMC
Sowka A., Dobrzyn P. Role of Perivascular Adipose Tissue-Derived Adiponectin in Vascular Homeostasis. Cells. 2021;10:1485. doi: 10.3390/cells10061485. PubMed DOI PMC
Lei X., Qiu S., Yang G., Wu Q. Adiponectin and metabolic cardiovascular diseases: Therapeutic opportunities and challenges. Genes Dis. 2023;10:1525–1536. doi: 10.1016/j.gendis.2022.10.018. PubMed DOI PMC
Ajuwon K.M., Spurlock M.E. Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005;288:R1220–R1225. doi: 10.1152/ajpregu.00397.2004. PubMed DOI
Wolf A.M., Wolf D., Rumpold H., Enrich B., Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 2004;323:630–635. doi: 10.1016/j.bbrc.2004.08.145. PubMed DOI
Gruzdeva O., Dyleva Y., Belik E., Sinitsky M., Stasev A., Kokov A., Brel N., Krivkina E., Bychkova E., Tarasov R., et al. Relationship between Epicardial and Coronary Adipose Tissue and the Expression of Adiponectin, Leptin, and Interleukin 6 in Patients with Coronary Artery Disease. J. Pers. Med. 2022;12:129. doi: 10.3390/jpm12020129. PubMed DOI PMC
Nosalski R., Guzik T.J. Perivascular adipose tissue inflammation in vascular disease. Br. J. Pharmacol. 2017;174:3496–3513. doi: 10.1111/bph.13705. PubMed DOI PMC
Queiroz M., Sena C.M. Perivascular adipose tissue: A central player in the triad of diabetes, obesity, and cardiovascular health. Cardiovasc. Diabetol. 2024;23:455. doi: 10.1186/s12933-024-02549-9. PubMed DOI PMC
Němečková E. Figure 2. [Internet] 2025. [(accessed on 30 June 2025)]. Available online: https://BioRender.com/m0l9f3r.
Sagris M., Antonopoulos A.S., Simantiris S., Oikonomou E., Siasos G., Tsioufis K., Tousoulis D. Pericoronary fat attenuation index—A new imaging biomarker and its diagnostic and prognostic utility: A systematic review and meta-analysis. Eur. Heart J.-Cardiovasc. Imaging. 2022;23:e526–e536. doi: 10.1093/ehjci/jeac174. PubMed DOI PMC
Oikonomou E.K., Antonopoulos A.S., Schottlander D., Marwan M., Mathers C., Tomlins P., Siddique M., Klüner L.V., Shirodaria C., Mavrogiannis M.C., et al. Standardized measurement of coronary inflammation using cardiovascular computed tomography: Integration in clinical care as a prognostic medical device. Cardiovasc. Res. 2021;117:2677–2690. doi: 10.1093/cvr/cvab286. PubMed DOI
Van Der Bijl P., Kuneman J.H., Bax J.J. Pericoronary adipose tissue attenuation: Diagnostic and prognostic implications. Eur. Heart J.-Cardiovasc. Imaging. 2022;23:e537–e538. doi: 10.1093/ehjci/jeac175. PubMed DOI
Mergen V., Ried E., Allmendinger T., Sartoretti T., Higashigaito K., Manka R., Euler A., Alkadhi H., Eberhard M. Epicardial Adipose Tissue Attenuation and Fat Attenuation Index: Phantom Study and In Vivo Measurements With Photon-Counting Detector CT. Am. J. Roentgenol. 2021;218:822–829. doi: 10.2214/AJR.21.26930. PubMed DOI
Biradar B., Valakkada J., Ayappan A., Kannath S., Sasidharan B., Alex A. Right coronary artery pericoronary fat attenuation index as a future predictor for acute coronary events in nonobstructive coronary artery disease—A prospective single centre study. Clin. Radiol. 2025;82:106774. doi: 10.1016/j.crad.2024.106774. PubMed DOI
Ding Y., Shan D., Han T., Liu Z., Wang X., Dou G., Xin R., Guo Z., Chen G., Jing J., et al. Incremental Prognostic Value of Perivascular Fat Attenuation Index in Patients with Diabetes with Coronary Artery Disease. Radiol. Cardiothorac. Imaging. 2025;7:e240242. doi: 10.1148/ryct.240242. PubMed DOI
Mátyás B.B., Benedek I., Raț N., Blîndu E., Parajkó Z., Mihăilă T., Benedek T. Assessing the Impact of Long-Term High-Dose Statin Treatment on Pericoronary Inflammation and Plaque Distribution—A Comprehensive Coronary CTA Follow-Up Study. Int. J. Mol. Sci. 2024;25:1700. doi: 10.3390/ijms25031700. PubMed DOI PMC
Zhang X., Cao Z., Xu J., Guan X., He H., Duan L., Ji L., Liu G., Guo Q., You Y., et al. Peri-coronary fat attenuation index combined with high-risk plaque characteristics quantified from coronary computed tomography angiography for risk stratification in new-onset chest pain individuals without acute myocardial infarction. PLoS ONE. 2024;19:e0304137. doi: 10.1371/journal.pone.0304137. PubMed DOI PMC
Lee S.-E., Chang H.-J., Sung J.M., Park H.-B., Heo R., Rizvi A., Lin F.Y., Kumar A., Hadamitzky M., Kim Y.J., et al. Effects of Statins on Coronary Atherosclerotic Plaques: The PARADIGM Study. JACC Cardiovasc. Imaging. 2018;11:1475–1484. doi: 10.1016/j.jcmg.2018.04.015. PubMed DOI
Suzuki K., Kinoshita D., Yuki H., Niida T., Sugiyama T., Yonetsu T., Araki M., Nakajima A., Seegers L.M., Dey D., et al. Higher Noncalcified Plaque Volume Is Associated with Increased Plaque Vulnerability and Vascular Inflammation. Circ. Cardiovasc. Imaging. 2024;17:e015769. doi: 10.1161/CIRCIMAGING.123.015769. PubMed DOI
Kuneman J.H., van Rosendael S.E., van der Bijl P., van Rosendael A.R., Kitslaar P.H., Reiber J.H.C., Jukema J.W., Leon M.B., Ajmone Marsan N., Knuuti J., et al. Pericoronary Adipose Tissue Attenuation in Patients with Acute Coronary Syndrome Versus Stable Coronary Artery Disease. Circ. Cardiovasc. Imaging. 2023;16:e014672. doi: 10.1161/CIRCIMAGING.122.014672. PubMed DOI PMC
Yu Y., Ding X., Yu L., Dai X., Wang Y., Zhang J. Increased coronary pericoronary adipose tissue attenuation in diabetic patients compared to non-diabetic controls: A propensity score matching analysis. J. Cardiovasc. Comput. Tomogr. 2022;16:327–335. doi: 10.1016/j.jcct.2022.01.002. PubMed DOI
Gaibazzi N., Martini C., Botti A., Pinazzi A., Bottazzi B., Palumbo A.A. Coronary Inflammation by Computed Tomography Pericoronary Fat Attenuation in MINOCA and Tako-Tsubo Syndrome. J. Am. Heart Assoc. 2019;8:e013235. doi: 10.1161/JAHA.119.013235. PubMed DOI PMC
Port J.J., Weber B.N., Kadiyala M. Inflammation and INOCA: Can Fat Attenuation Indexing by Coronary CT Angiography Help Identify Coronary Inflammation? JACC Case Rep. 2025;30:103215. doi: 10.1016/j.jaccas.2024.103215. PubMed DOI PMC
Zuo L., Tian Z., Zhou B., Hou M., Chen Y., Han P., Ma C., Wu X., Yu D. Perivascular fat attenuation index value and plaque volume increased in non-target lesions of coronary arteries after stenting. Eur. Radiol. 2024;34:4233–4242. doi: 10.1007/s00330-023-10468-8. PubMed DOI
Adolf R., Krinke I., Datz J., Cassese S., Kastrati A., Joner M., Schunkert H., Wall W., Hadamitzky M., Engel L.-C. Specific calcium deposition on pre-procedural CCTA at the time of percutaneous coronary intervention predicts in-stent restenosis in symptomatic patients. J. Cardiovasc. Comput. Tomogr. 2025;19:9–16. doi: 10.1016/j.jcct.2024.09.010. PubMed DOI
Huang S., Yu X., Yang B., Xu T., Gu H., Wang X. Predictive value of pericoronary fat attenuation index for graft occlusion after coronary artery bypass grafting. Jpn. J. Radiol. 2024;43:612–621. doi: 10.1007/s11604-024-01709-x. PubMed DOI
Dai X., Deng J., Yu M., Lu Z., Shen C., Zhang J. Perivascular fat attenuation index and high-risk plaque features evaluated by coronary CT angiography: Relationship with serum inflammatory marker level. Int. J. Cardiovasc. Imaging. 2020;36:723–730. doi: 10.1007/s10554-019-01758-8. PubMed DOI
Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D., et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017;377:1119–1131. doi: 10.1056/NEJMoa1707914. PubMed DOI
Asenjo-Lobos C., González L., Bulnes J.F., Roque M., Muñoz Venturelli P., Rodríguez G.M. Cardiovascular events risk in patients with systemic autoimmune diseases: A prognostic systematic review and meta-analysis. Clin. Res. Cardiol. 2024;113:246–259. doi: 10.1007/s00392-023-02291-4. PubMed DOI
Němečková E. Figure 3. [Internet] 2025. [(accessed on 30 June 2025)]. Available online: https://BioRender.com/qj5lw27.
Crowson C.S., Matteson E.L., Roger V.L., Therneau T.M., Gabriel S.E. Usefulness of Risk Scores to Estimate the Risk of Cardiovascular Disease in Patients with Rheumatoid Arthritis. Am. J. Cardiol. 2012;110:420–424. doi: 10.1016/j.amjcard.2012.03.044. PubMed DOI PMC
Crowson C.S., Gabriel S.E., Semb A.G., Van Riel P.L.C.M., Karpouzas G., Dessein P.H., Hitchon C., Pascual-Ramos V., Kitas G.D., Trans-Atlantic Cardiovascular Consortium for Rheumatoid Arthritis Rheumatoid arthritis-specific cardiovascular risk scores are not superior to general risk scores: A validation analysis of patients from seven countries. Rheumatology. 2017;56:1102–1110. doi: 10.1093/rheumatology/kex038. PubMed DOI PMC
Zhu L., Singh M., Lele S., Sahakian L., Grossman J., Hahn B., McMahon M. Assessing the validity of QRISK3 in predicting cardiovascular events in systemic lupus erythematosus. Lupus Sci. Med. 2022;9:e000564. doi: 10.1136/lupus-2021-000564. PubMed DOI PMC
Colaco K., Ocampo V., Ayala A.P., Harvey P., Gladman D.D., Piguet V., Eder L. Predictive Utility of Cardiovascular Risk Prediction Algorithms in Inflammatory Rheumatic Diseases: A Systematic Review. J. Rheumatol. 2020;47:928–938. doi: 10.3899/jrheum.190261. PubMed DOI
Innala L., Möller B., Ljung L., Magnusson S., Smedby T., Södergren A., Öhman M.-L., Rantapää-Dahlqvist S., Wållberg-Jonsson S. Cardiovascular events in early RA are a result of inflammatory burden and traditional risk factors: A five year prospective study. Arthritis Res. Ther. 2011;13:R131. doi: 10.1186/ar3442. PubMed DOI PMC
Tarkin J.M., Joshi F.R., Evans N.R., Chowdhury M.M., Figg N.L., Shah A.V., Starks L.T., Martin-Garrido A., Manavaki R., Yu E., et al. Detection of Atherosclerotic Inflammation by 68Ga-DOTATATE PET Compared to [18F]FDG PET Imaging. J. Am. Coll. Cardiol. 2017;69:1774–1791. doi: 10.1016/j.jacc.2017.01.060. PubMed DOI PMC
Antoniades C., Antonopoulos A.S., Deanfield J. Imaging residual inflammatory cardiovascular risk. Eur. Heart J. 2020;41:748–758. doi: 10.1093/eurheartj/ehz474. PubMed DOI
Elnabawi Y.A., Oikonomou E.K., Dey A.K., Mancio J., Rodante J.A., Aksentijevich M., Choi H., Keel A., Erb-Alvarez J., Teague H.L., et al. Association of Biologic Therapy With Coronary Inflammation in Patients With Psoriasis as Assessed by Perivascular Fat Attenuation Index. JAMA Cardiol. 2019;4:885. doi: 10.1001/jamacardio.2019.2589. PubMed DOI PMC
Weber B., Liao K.P., DiCarli M., Blankstein R. Cardiovascular Disease Prevention in Individuals with Underlying Chronic Inflammatory Disease. Curr. Opin. Cardiol. 2021;36:549–555. doi: 10.1097/HCO.0000000000000877. PubMed DOI PMC
Dairov A., Issabekova A., Sekenova A., Shakhatbayev M., Ogay V. Prevalence, incidence, gender and age distribution, and economic burden of psoriasis worldwide and in Kazakhstan. J. Clin. Med. Kazakhstan. 2024;21:18–30. doi: 10.23950/jcmk/14497. DOI
Nussbaum L., Chen Y.L., Ogg G.S. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br. J. Dermatol. 2021;184:14–24. doi: 10.1111/bjd.19380. PubMed DOI
Fitch E., Harper E., Skorcheva I., Kurtz S.E., Blauvelt A. Pathophysiology of Psoriasis: Recent Advances on IL-23 and Th17 Cytokines. Curr. Rheumatol. Rep. 2007;9:461–467. doi: 10.1007/s11926-007-0075-1. PubMed DOI PMC
Sieminska I., Pieniawska M., Grzywa T.M. The Immunology of Psoriasis—Current Concepts in Pathogenesis. Clin. Rev. Allergy Immunol. 2024;66:164–191. doi: 10.1007/s12016-024-08991-7. PubMed DOI PMC
Liu L., Cui S., Liu M., Huo X., Zhang G., Wang N. Psoriasis Increased the Risk of Adverse Cardiovascular Outcomes: A New Systematic Review and Meta-Analysis of Cohort Study. Front. Cardiovasc. Med. 2022;9:829709. doi: 10.3389/fcvm.2022.829709. PubMed DOI PMC
Ahlehoff O., Gislason G.H., Charlot M., Jørgensen C.H., Lindhardsen J., Olesen J.B., Abildstrøm S.Z., Skov L., Torp-Pedersen C., Hansen P.R. Psoriasis is associated with clinically significant cardiovascular risk: A Danish nationwide cohort study. J. Intern. Med. 2011;270:147–157. doi: 10.1111/j.1365-2796.2010.02310.x. PubMed DOI
Gelfand J.M., Neimann A.L., Shin D.B., Wang X., Margolis D.J., Troxel A.B. Risk of myocardial infarction in patients with psoriasis. JAMA. 2006;296:1735–1741. doi: 10.1001/jama.296.14.1735. PubMed DOI
Prodanovich S., Kirsner R.S., Kravetz J.D., Ma F., Martinez L., Federman D.G. Association of psoriasis with coronary artery, cerebrovascular, and peripheral vascular diseases and mortality. Arch. Dermatol. 2009;145:700–703. doi: 10.1001/archdermatol.2009.94. PubMed DOI
Smith A., Karahasan A., Yi D., Yapabandara S., Elhindi J., Fernandez-Penas P., Chow C., Zaman S. Biologic Therapy and Cardiometabolic Risk in Psoriasis: A Retrospective Review. Dermatol. Ther. 2025;15:201–212. doi: 10.1007/s13555-024-01327-5. PubMed DOI PMC
Farina C.J., Davidson M.H., Shah P.K., Stark C., Lu W., Shirodaria C., Wright T., Antoniades C.A., Nilsson J., Mehta N.N. Inhibition of oxidized low-density lipoprotein with orticumab inhibits coronary inflammation and reduces residual inflammatory risk in psoriasis: A pilot randomized, double-blind placebo-controlled trial. Cardiovasc. Res. 2024;120:678–680. doi: 10.1093/cvr/cvae057. PubMed DOI PMC
Hollan I., Scott H., Saatvedt K., Prayson R., Mikkelsen K., Nossent H.C., Kvelstad I.L., Liang M.H., Førre O.T. Inflammatory rheumatic disease and smoking are predictors of aortic inflammation: A controlled study of biopsy specimens obtained at coronary artery surgery. Arthritis Rheum. 2007;56:2072–2079. doi: 10.1002/art.22690. PubMed DOI
Hollan I., Nebuloni M., Bottazzi B., Mikkelsen K., Førre O.T., Almdahl S.M., Mantovani A., Fagerland M.W., Aukrust P., Meroni P.L., et al. Pentraxin 3, a novel cardiovascular biomarker, is expressed in aortic specimens of patients with coronary artery disease with and without rheumatoid arthritis. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2013;22:324–331. doi: 10.1016/j.carpath.2013.01.007. PubMed DOI
Cainzos-Achirica M., Glassner K., Zawahir H.S., Dey A.K., Agrawal T., Quigley E.M.M., Abraham B.P., Acquah I., Yahya T., Mehta N.N., et al. Inflammatory Bowel Disease and Atherosclerotic Cardiovascular Disease: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020;76:2895–2905. doi: 10.1016/j.jacc.2020.10.027. PubMed DOI
Weber B.N., Paik J.J., Aghayev A., Klein A.L., Mavrogeni S.I., Yu P.B., Mukherjee M. Novel Imaging Approaches to Cardiac Manifestations of Systemic Inflammatory Diseases: JACC Scientific Statement. J. Am. Coll. Cardiol. 2023;82:2128–2151. doi: 10.1016/j.jacc.2023.09.819. PubMed DOI PMC
Karpouzas G.A., Rezaeian P., Ormseth S.R., Hollan I., Budoff M.J. Epicardial Adipose Tissue Volume As a Marker of Subclinical Coronary Atherosclerosis in Rheumatoid Arthritis. Arthritis Rheumatol. 2021;73:1412–1420. doi: 10.1002/art.41693. PubMed DOI
Zheng H., Sechi L.A., Navarese E.P., Casu G., Vidili G. Metabolic dysfunction-associated steatotic liver disease and cardiovascular risk: A comprehensive review. Cardiovasc. Diabetol. 2024;23:346. doi: 10.1186/s12933-024-02434-5. PubMed DOI PMC
Kidoh M., Oda S., Sueta D., Egashira K., Hayashi H., Nakaura T., Nagayama Y., Yamamoto Y., Tsujita K., Hirai T. Serial assessment of coronary artery inflammation using cardiac CT in anthracycline chemotherapy for breast cancer. Eur. Radiol. 2025;35:3897–3906. doi: 10.1007/s00330-025-11347-0. PubMed DOI