Triterpenoid derivatives inhibit Gli-mediated transcription in human glioblastoma cell line via direct interaction with Gli1
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40651614
PubMed Central
PMC12423687
DOI
10.1016/j.jbc.2025.110472
PII: S0021-9258(25)02322-1
Knihovny.cz E-resources
- Keywords
- Hedgehog signaling pathway, transcription, betulinic acid, glioblastoma, firefly luciferase, isothermal titration calorimetry (ITC), primary cilium, triterpenes,
- MeSH
- Transcription, Genetic * drug effects MeSH
- Glioblastoma * metabolism genetics pathology drug therapy MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation drug effects MeSH
- Zinc Finger Protein GLI1 MeSH
- Hedgehog Proteins metabolism genetics MeSH
- Pyridines MeSH
- Pyrimidines MeSH
- Smoothened Receptor MeSH
- Gene Expression Regulation, Neoplastic drug effects MeSH
- Signal Transduction drug effects MeSH
- Transcription Factors * metabolism genetics antagonists & inhibitors MeSH
- Triterpenes * pharmacology chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- GANT 61 MeSH Browser
- GLI1 protein, human MeSH Browser
- Zinc Finger Protein GLI1 MeSH
- Hedgehog Proteins MeSH
- Pyridines MeSH
- Pyrimidines MeSH
- Smoothened Receptor MeSH
- SMO protein, human MeSH Browser
- Transcription Factors * MeSH
- Triterpenes * MeSH
The evolutionarily important Hedgehog (HH) signaling pathway plays a critical role in the development and progression of multiple solid tumors, such as basal cell carcinoma, medulloblastoma, rhabdomyosarcoma, and various gastrointestinal, pulmonary, and brain tumors. The proteins of the Gli (glioma-associated oncogene homologue) family are key mediators of the HH pathway. In the present study, we have focused on triterpenoid derivatives, which have been shown to induce apoptosis and inhibit HH signaling in rhabdomyosarcoma. Utilizing a U-87MG glioblastoma-derived reporter cell line, we screened a structurally diverse library of triterpenoid derivatives to identify potential antagonists of Gli-mediated transcription. We revealed two derivatives that not only selectively inhibited Gli-mediated gene transactivation but also displayed greater potency than the known Gli1 inhibitor GANT61. These compounds also demonstrated dose- and time-dependent inhibition of U-87MG tumor cell proliferation in vitro. Further mechanistic studies provided genetic evidence for the inhibition of the downstream HH pathway by these compounds, via reduced expression of Gli1 and its transcription targets. However, these compounds did not affect the ciliary localization of Smoothened (Smo). Our findings suggest that the observed inhibitory effects are likely due to a direct interaction between our compounds and Gli1.
Department of Organic Chemistry Faculty of Science Palacky University Olomouc Olomouc Czech Republic
See more in PubMed
Ostrom Q.T., Gittleman H., de Blank P.M., Finlay J.L., Gurney J.G., McKean-Cowdin R., et al. American brain tumor association adolescent and young adult primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol. 2016;18(Suppl 1):i1–i50. PubMed PMC
Ostrom Q.T., Gittleman H., Truitt G., Boscia A., Kruchko C., Barnholtz-Sloan J.S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol. 2018;20:iv1–iv86. PubMed PMC
Weller M., Cloughesy T., Perry J.R., Wick W. Standards of care for treatment of recurrent glioblastoma--are we there yet? Neuro Oncol. 2013;15:4–27. PubMed PMC
Seystahl K., Wick W., Weller M. Therapeutic options in recurrent glioblastoma--An update. Crit. Rev. Oncol. Hematol. 2016;99:389–408. PubMed
Melamed J.R., Morgan J.T., Ioele S.A., Gleghorn J.P., Sims-Mourtada J., Day E.S. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget. 2018;9:27000–27015. PubMed PMC
Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J.B., et al. European organisation for research and treatment of cancer brain tumor and radiotherapy groups, and national cancer Institute of Canada clinical trials group (2005) radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996. PubMed
Hegi M.E., Diserens A.-C., Gorlia T., Hamou M.-F., de Tribolet N., Weller M., et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005;352:997–1003. PubMed
Dimitropoulos K., Giannopoulou E., Argyriou A.A., Zolota V., Petsas T., Tsiata E., et al. The effects of anti-VEGFR and anti-EGFR agents on glioma cell migration through implication of growth factors with integrins. Anticancer Res. 2010;30:4987–4992. PubMed
Appiah-Kubi K., Wang Y., Qian H., Wu M., Yao X., Wu Y., et al. Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumor Biol. 2016;37:10053–10066. PubMed
Pearson J.R.D., Regad T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target. Ther. 2017;2:1–11. PubMed PMC
Clement V., Sanchez P., de Tribolet N., Radovanovic I., Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 2007;17:165–172. PubMed PMC
Karhadkar S.S., Bova G.S., Abdallah N., Dhara S., Gardner D., Maitra A., et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004;431:707–712. PubMed
Watkins D.N., Berman D.M., Burkholder S.G., Wang B., Beachy P.A., Baylin S.B. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422:313–317. PubMed
Berman D.M., Karhadkar S.S., Maitra A., Montes De Oca R., Gerstenblith M.R., Briggs K., et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425:846–851. PubMed
Takezaki T., Hide T., Takanaga H., Nakamura H., Kuratsu J., Kondo T. Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 2011;102:1306–1312. PubMed PMC
Takebe N., Miele L., Harris P.J., Jeong W., Bando H., Kahn M., et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 2015;12:445–464. PubMed PMC
Eichberger T., Sander V., Schnidar H., Regl G., Kasper M., Schmid C., et al. Overlapping and distinct transcriptional regulator properties of the GLI1 and GLI2 oncogenes. Genomics. 2006;87:616–632. PubMed
Po A., Ferretti E., Miele E., De Smaele E., Paganelli A., Canettieri G., et al. Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO J. 2010;29:2646–2658. PubMed PMC
Stecca B., Ruiz i Altaba A. Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J. Mol. Cell Biol. 2010;2:84–95. PubMed PMC
Callahan C.A., Ofstad T., Horng L., Wang J.K., Zhen H.H., Coulombe P.A., et al. MIM/BEG4, a Sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes Dev. 2004;18:2724–2729. PubMed PMC
Reiter J.F., Skarnes W.C. Tectonic, a novel regulator of the Hedgehog pathway required for both activation and inhibition. Genes Dev. 2006;20:22–27. PubMed PMC
Kogerman P., Grimm T., Kogerman L., Krause D., Undén A.B., Sandstedt B., et al. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat. Cell Biol. 1999;1:312–319. PubMed
Ruiz i Altaba A., Mas C., Stecca B. The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol. 2007;17:438–447. PubMed PMC
Bhatia N., Thiyagarajan S., Elcheva I., Saleem M., Dlugosz A., Mukhtar H., et al. Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J. Biol. Chem. 2006;281:19320–19326. PubMed
Svärd J., Heby-Henricson K., Persson-Lek M., Rozell B., Lauth M., Bergström A., et al. Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell. 2006;10:187–197. PubMed
Dahlén A., Fletcher C.D.M., Mertens F., Fletcher J.A., Perez-Atayde A.R., Hicks M.J., et al. Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12) Am. J. Pathol. 2004;164:1645–1653. PubMed PMC
Di Marcotullio L., Ferretti E., De Smaele E., Argenti B., Mincione C., Zazzeroni F., et al. REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc. Natl. Acad. Sci. U. S. A. 2004;101:10833–10838. PubMed PMC
Lauth M., Bergström Å., Shimokawa T., Toftgård R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl. Acad. Sci. U. S. A. 2007;104:8455–8460. PubMed PMC
Shahi M.H., Holt R., Rebhun R.B. Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells. PLoS One. 2014;9 PubMed PMC
Srivastava R.K., Kaylani S.Z., Edrees N., Li C., Talwelkar S.S., Xu J., et al. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget. 2014;5:12151–12165. PubMed PMC
Wickström M., Dyberg C., Shimokawa T., Milosevic J., Baryawno N., Fuskevåg O.M., et al. Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. Int. J. Cancer. 2013;132:1516–1524. PubMed
List A., Beran M., DiPersio J., Slack J., Vey N., Rosenfeld C.S., et al. Opportunities for Trisenox (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia. 2003;17:1499–1507. PubMed
Infante P., Alfonsi R., Botta B., Mori M., Di Marcotullio L. Targeting GLI factors to inhibit the Hedgehog pathway. Trends Pharmacol. Sci. 2015;36:547–558. PubMed
Eichenmüller M., Hemmerlein B., von Schweinitz D., Kappler R. Betulinic acid induces apoptosis and inhibits hedgehog signalling in rhabdomyosarcoma. Br. J. Cancer. 2010;103:43–51. PubMed PMC
Sarek J., Kvasnica M., Urban M., Klinot J., Hajduch M. Correlation of cytotoxic activity of betulinines and their hydroxy analogues. Bioorg. Med. Chem. Lett. 2005;15:4196–4200. PubMed
Šarek J., Klinot J., Džubák P., Klinotová E., Nosková V., Křeček V., et al. New lupane derived compounds with pro-apoptotic activity in cancer cells: synthesis and Structure−Activity relationships. J. Med. Chem. 2003;46:5402–5415. PubMed
Borkova L., Adamek R., Kalina P., Drašar P., Dzubak P., Gurska S., et al. Synthesis and cytotoxic activity of triterpenoid thiazoles derived from allobetulin, methyl betulonate, methyl oleanonate, and oleanonic acid. ChemMedChem. 2017;12:390–398. PubMed
Sidova V., Zoufaly P., Pokorny J., Dzubak P., Hajduch M., Popa I., et al. Cytotoxic conjugates of betulinic acid and substituted triazoles prepared by Huisgen Cycloaddition from 30-azidoderivatives. PLoS One. 2017;12 PubMed PMC
Biedermann D., Urban M., Budesinsky M., Kvasnica M., Sarek J. Study of addition of difluorocarbene on double bond of triterpenes. J. Fluor. Chem. 2013;148:30–35.
Borkova L., Gurska S., Dzubak P., Burianova R., Hajduch M., Sarek J., et al. Lupane and 18α-oleanane derivatives substituted in the position 2, their cytotoxicity and influence on cancer cells. Eur. J. Med. Chem. 2016;121:120–131. PubMed
Hodoň J., Frydrych I., Trhlíková Z., Pokorný J., Borková L., Benická S., et al. Triterpenoid pyrazines and pyridines – synthesis, cytotoxicity, mechanism of action, preparation of prodrugs. Eur. J. Med. Chem. 2022;243 PubMed
Krajcovicova S., Stankova J., Dzubak P., Hajduch M., Soural M., Urban M. A synthetic approach for the rapid preparation of BODIPY conjugates and their use in imaging of cellular drug uptake and distribution. Chemistry. 2018;24:4957–4966. PubMed
Pokorny J., Krajcovicova S., Hajduch M., Holoubek M., Gurska S., Dzubak P., et al. Triterpenic azines, a new class of compounds with selective cytotoxicity to leukemia cells CCRF-CEM. Future Med. Chem. 2018;10:483–491. PubMed
Wang Y., Zhou Z., Walsh C.T., McMahon A.P. Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc. Natl. Acad. Sci. U. S. A. 2009;106:2623–2628. PubMed PMC
Linder B., Weber S., Dittmann K., Adamski J., Hahn H., Uhmann A. A functional and putative physiological role of calcitriol in patched1/smoothened interaction. J. Biol. Chem. 2015;290:19614–19628. PubMed PMC
Arai M.A., Tateno C., Hosoya T., Koyano T., Kowithayakorn T., Ishibashi M. Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana. Bioorg. Med. Chem. 2008;16:9420–9424. PubMed
Auld D.S., Thorne N., Nguyen D.-T., Inglese J. A specific mechanism for nonspecific activation in reporter-gene assays. ACS Chem. Biol. 2008;3:463–470. PubMed PMC
Subramanyam R., Gollapudi A., Bonigala P., Chinnaboina M., Amooru D.G. Betulinic acid binding to human serum albumin: a study of protein conformation and binding affinity. J. Photochem. Photobiol. B. 2009;94:8–12. PubMed
Banker M.J., Clark T.H. Plasma/serum protein binding determinations. Curr. Drug Metab. 2008;9:854–859. PubMed
Sanchez P., Hernández A.M., Stecca B., Kahler A.J., DeGueme A.M., Barrett A., et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Natl. Acad. Sci. U. S. A. 2004;101:12561–12566. PubMed PMC
Kimura H., Stephen D., Joyner A., Curran T. Gli1 is important for medulloblastoma formation in Ptc1+/- mice. Oncogene. 2005;24:4026–4036. PubMed
Nilsson M., Undèn A.B., Krause D., Malmqwist U., Raza K., Zaphiropoulos P.G., et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl. Acad. Sci. U. S. A. 2000;97:3438–3443. PubMed PMC
Velazquez-Campoy A., Freire E. Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat. Protoc. 2006;1:186–191. PubMed
Zhang X., Yue P., Page B.D.G., Li T., Zhao W., Namanja A.T., et al. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc. Natl. Acad. Sci. U. S. A. 2012;109:9623–9628. PubMed PMC
Santos H.A., Manzanares J.A., Murtomäki L., Kontturi K. Thermodynamic analysis of binding between drugs and glycosaminoglycans by isothermal titration calorimetry and fluorescence spectroscopy. Eur. J. Pharm. Sci. 2007;32:105–114. PubMed
Durairaj C., Kadam R.S., Chandler J.W., Hutcherson S.L., Kompella U.B. Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. Invest. Ophthalmol. Vis. Sci. 2010;51:5804–5816. PubMed
Barbieri F., Cagnoli M., Ragni N., Foglia G., Bruzzo C., Pedullà F., et al. Increased Cyclin D1 expression is associated with features of malignancy and disease recurrence in ovarian tumors. Clin. Cancer Res. 1999;5:1837–1842. PubMed
Bar E.E., Chaudhry A., Farah M.H., Eberhart C.G. Hedgehog signaling promotes medulloblastoma survival via BclII. Am. J. Pathol. 2007;170:347–355. PubMed PMC
Borková L., Frydrych I., Vránová B., Jakubcová N., Lišková B., Gurská S., et al. Lupane derivatives containing various aryl substituents in the position 3 have selective cytostatic effect in leukemic cancer cells including resistant phenotypes. Eur. J. Med. Chem. 2022;244 PubMed
Maresca L., Crivaro E., Migliorini F., Anichini G., Giammona A., Pepe S., et al. Targeting GLI1 and GLI2 with small molecule inhibitors to suppress GLI-dependent transcription and tumor growth. Pharmacol. Res. 2023;195 PubMed