Triterpenoid derivatives inhibit Gli-mediated transcription in human glioblastoma cell line via direct interaction with Gli1

. 2025 Sep ; 301 (9) : 110472. [epub] 20250710

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40651614
Odkazy

PubMed 40651614
PubMed Central PMC12423687
DOI 10.1016/j.jbc.2025.110472
PII: S0021-9258(25)02322-1
Knihovny.cz E-zdroje

The evolutionarily important Hedgehog (HH) signaling pathway plays a critical role in the development and progression of multiple solid tumors, such as basal cell carcinoma, medulloblastoma, rhabdomyosarcoma, and various gastrointestinal, pulmonary, and brain tumors. The proteins of the Gli (glioma-associated oncogene homologue) family are key mediators of the HH pathway. In the present study, we have focused on triterpenoid derivatives, which have been shown to induce apoptosis and inhibit HH signaling in rhabdomyosarcoma. Utilizing a U-87MG glioblastoma-derived reporter cell line, we screened a structurally diverse library of triterpenoid derivatives to identify potential antagonists of Gli-mediated transcription. We revealed two derivatives that not only selectively inhibited Gli-mediated gene transactivation but also displayed greater potency than the known Gli1 inhibitor GANT61. These compounds also demonstrated dose- and time-dependent inhibition of U-87MG tumor cell proliferation in vitro. Further mechanistic studies provided genetic evidence for the inhibition of the downstream HH pathway by these compounds, via reduced expression of Gli1 and its transcription targets. However, these compounds did not affect the ciliary localization of Smoothened (Smo). Our findings suggest that the observed inhibitory effects are likely due to a direct interaction between our compounds and Gli1.

Zobrazit více v PubMed

Ostrom Q.T., Gittleman H., de Blank P.M., Finlay J.L., Gurney J.G., McKean-Cowdin R., et al. American brain tumor association adolescent and young adult primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol. 2016;18(Suppl 1):i1–i50. PubMed PMC

Ostrom Q.T., Gittleman H., Truitt G., Boscia A., Kruchko C., Barnholtz-Sloan J.S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol. 2018;20:iv1–iv86. PubMed PMC

Weller M., Cloughesy T., Perry J.R., Wick W. Standards of care for treatment of recurrent glioblastoma--are we there yet? Neuro Oncol. 2013;15:4–27. PubMed PMC

Seystahl K., Wick W., Weller M. Therapeutic options in recurrent glioblastoma--An update. Crit. Rev. Oncol. Hematol. 2016;99:389–408. PubMed

Melamed J.R., Morgan J.T., Ioele S.A., Gleghorn J.P., Sims-Mourtada J., Day E.S. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget. 2018;9:27000–27015. PubMed PMC

Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J.B., et al. European organisation for research and treatment of cancer brain tumor and radiotherapy groups, and national cancer Institute of Canada clinical trials group (2005) radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996. PubMed

Hegi M.E., Diserens A.-C., Gorlia T., Hamou M.-F., de Tribolet N., Weller M., et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005;352:997–1003. PubMed

Dimitropoulos K., Giannopoulou E., Argyriou A.A., Zolota V., Petsas T., Tsiata E., et al. The effects of anti-VEGFR and anti-EGFR agents on glioma cell migration through implication of growth factors with integrins. Anticancer Res. 2010;30:4987–4992. PubMed

Appiah-Kubi K., Wang Y., Qian H., Wu M., Yao X., Wu Y., et al. Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumor Biol. 2016;37:10053–10066. PubMed

Pearson J.R.D., Regad T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target. Ther. 2017;2:1–11. PubMed PMC

Clement V., Sanchez P., de Tribolet N., Radovanovic I., Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 2007;17:165–172. PubMed PMC

Karhadkar S.S., Bova G.S., Abdallah N., Dhara S., Gardner D., Maitra A., et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004;431:707–712. PubMed

Watkins D.N., Berman D.M., Burkholder S.G., Wang B., Beachy P.A., Baylin S.B. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422:313–317. PubMed

Berman D.M., Karhadkar S.S., Maitra A., Montes De Oca R., Gerstenblith M.R., Briggs K., et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425:846–851. PubMed

Takezaki T., Hide T., Takanaga H., Nakamura H., Kuratsu J., Kondo T. Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 2011;102:1306–1312. PubMed PMC

Takebe N., Miele L., Harris P.J., Jeong W., Bando H., Kahn M., et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 2015;12:445–464. PubMed PMC

Eichberger T., Sander V., Schnidar H., Regl G., Kasper M., Schmid C., et al. Overlapping and distinct transcriptional regulator properties of the GLI1 and GLI2 oncogenes. Genomics. 2006;87:616–632. PubMed

Po A., Ferretti E., Miele E., De Smaele E., Paganelli A., Canettieri G., et al. Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO J. 2010;29:2646–2658. PubMed PMC

Stecca B., Ruiz i Altaba A. Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J. Mol. Cell Biol. 2010;2:84–95. PubMed PMC

Callahan C.A., Ofstad T., Horng L., Wang J.K., Zhen H.H., Coulombe P.A., et al. MIM/BEG4, a Sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes Dev. 2004;18:2724–2729. PubMed PMC

Reiter J.F., Skarnes W.C. Tectonic, a novel regulator of the Hedgehog pathway required for both activation and inhibition. Genes Dev. 2006;20:22–27. PubMed PMC

Kogerman P., Grimm T., Kogerman L., Krause D., Undén A.B., Sandstedt B., et al. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat. Cell Biol. 1999;1:312–319. PubMed

Ruiz i Altaba A., Mas C., Stecca B. The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol. 2007;17:438–447. PubMed PMC

Bhatia N., Thiyagarajan S., Elcheva I., Saleem M., Dlugosz A., Mukhtar H., et al. Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J. Biol. Chem. 2006;281:19320–19326. PubMed

Svärd J., Heby-Henricson K., Persson-Lek M., Rozell B., Lauth M., Bergström A., et al. Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell. 2006;10:187–197. PubMed

Dahlén A., Fletcher C.D.M., Mertens F., Fletcher J.A., Perez-Atayde A.R., Hicks M.J., et al. Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: pericytoma with t(7;12) Am. J. Pathol. 2004;164:1645–1653. PubMed PMC

Di Marcotullio L., Ferretti E., De Smaele E., Argenti B., Mincione C., Zazzeroni F., et al. REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc. Natl. Acad. Sci. U. S. A. 2004;101:10833–10838. PubMed PMC

Lauth M., Bergström Å., Shimokawa T., Toftgård R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl. Acad. Sci. U. S. A. 2007;104:8455–8460. PubMed PMC

Shahi M.H., Holt R., Rebhun R.B. Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells. PLoS One. 2014;9 PubMed PMC

Srivastava R.K., Kaylani S.Z., Edrees N., Li C., Talwelkar S.S., Xu J., et al. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget. 2014;5:12151–12165. PubMed PMC

Wickström M., Dyberg C., Shimokawa T., Milosevic J., Baryawno N., Fuskevåg O.M., et al. Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo. Int. J. Cancer. 2013;132:1516–1524. PubMed

List A., Beran M., DiPersio J., Slack J., Vey N., Rosenfeld C.S., et al. Opportunities for Trisenox (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia. 2003;17:1499–1507. PubMed

Infante P., Alfonsi R., Botta B., Mori M., Di Marcotullio L. Targeting GLI factors to inhibit the Hedgehog pathway. Trends Pharmacol. Sci. 2015;36:547–558. PubMed

Eichenmüller M., Hemmerlein B., von Schweinitz D., Kappler R. Betulinic acid induces apoptosis and inhibits hedgehog signalling in rhabdomyosarcoma. Br. J. Cancer. 2010;103:43–51. PubMed PMC

Sarek J., Kvasnica M., Urban M., Klinot J., Hajduch M. Correlation of cytotoxic activity of betulinines and their hydroxy analogues. Bioorg. Med. Chem. Lett. 2005;15:4196–4200. PubMed

Šarek J., Klinot J., Džubák P., Klinotová E., Nosková V., Křeček V., et al. New lupane derived compounds with pro-apoptotic activity in cancer cells: synthesis and Structure−Activity relationships. J. Med. Chem. 2003;46:5402–5415. PubMed

Borkova L., Adamek R., Kalina P., Drašar P., Dzubak P., Gurska S., et al. Synthesis and cytotoxic activity of triterpenoid thiazoles derived from allobetulin, methyl betulonate, methyl oleanonate, and oleanonic acid. ChemMedChem. 2017;12:390–398. PubMed

Sidova V., Zoufaly P., Pokorny J., Dzubak P., Hajduch M., Popa I., et al. Cytotoxic conjugates of betulinic acid and substituted triazoles prepared by Huisgen Cycloaddition from 30-azidoderivatives. PLoS One. 2017;12 PubMed PMC

Biedermann D., Urban M., Budesinsky M., Kvasnica M., Sarek J. Study of addition of difluorocarbene on double bond of triterpenes. J. Fluor. Chem. 2013;148:30–35.

Borkova L., Gurska S., Dzubak P., Burianova R., Hajduch M., Sarek J., et al. Lupane and 18α-oleanane derivatives substituted in the position 2, their cytotoxicity and influence on cancer cells. Eur. J. Med. Chem. 2016;121:120–131. PubMed

Hodoň J., Frydrych I., Trhlíková Z., Pokorný J., Borková L., Benická S., et al. Triterpenoid pyrazines and pyridines – synthesis, cytotoxicity, mechanism of action, preparation of prodrugs. Eur. J. Med. Chem. 2022;243 PubMed

Krajcovicova S., Stankova J., Dzubak P., Hajduch M., Soural M., Urban M. A synthetic approach for the rapid preparation of BODIPY conjugates and their use in imaging of cellular drug uptake and distribution. Chemistry. 2018;24:4957–4966. PubMed

Pokorny J., Krajcovicova S., Hajduch M., Holoubek M., Gurska S., Dzubak P., et al. Triterpenic azines, a new class of compounds with selective cytotoxicity to leukemia cells CCRF-CEM. Future Med. Chem. 2018;10:483–491. PubMed

Wang Y., Zhou Z., Walsh C.T., McMahon A.P. Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc. Natl. Acad. Sci. U. S. A. 2009;106:2623–2628. PubMed PMC

Linder B., Weber S., Dittmann K., Adamski J., Hahn H., Uhmann A. A functional and putative physiological role of calcitriol in patched1/smoothened interaction. J. Biol. Chem. 2015;290:19614–19628. PubMed PMC

Arai M.A., Tateno C., Hosoya T., Koyano T., Kowithayakorn T., Ishibashi M. Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana. Bioorg. Med. Chem. 2008;16:9420–9424. PubMed

Auld D.S., Thorne N., Nguyen D.-T., Inglese J. A specific mechanism for nonspecific activation in reporter-gene assays. ACS Chem. Biol. 2008;3:463–470. PubMed PMC

Subramanyam R., Gollapudi A., Bonigala P., Chinnaboina M., Amooru D.G. Betulinic acid binding to human serum albumin: a study of protein conformation and binding affinity. J. Photochem. Photobiol. B. 2009;94:8–12. PubMed

Banker M.J., Clark T.H. Plasma/serum protein binding determinations. Curr. Drug Metab. 2008;9:854–859. PubMed

Sanchez P., Hernández A.M., Stecca B., Kahler A.J., DeGueme A.M., Barrett A., et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Natl. Acad. Sci. U. S. A. 2004;101:12561–12566. PubMed PMC

Kimura H., Stephen D., Joyner A., Curran T. Gli1 is important for medulloblastoma formation in Ptc1+/- mice. Oncogene. 2005;24:4026–4036. PubMed

Nilsson M., Undèn A.B., Krause D., Malmqwist U., Raza K., Zaphiropoulos P.G., et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl. Acad. Sci. U. S. A. 2000;97:3438–3443. PubMed PMC

Velazquez-Campoy A., Freire E. Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat. Protoc. 2006;1:186–191. PubMed

Zhang X., Yue P., Page B.D.G., Li T., Zhao W., Namanja A.T., et al. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc. Natl. Acad. Sci. U. S. A. 2012;109:9623–9628. PubMed PMC

Santos H.A., Manzanares J.A., Murtomäki L., Kontturi K. Thermodynamic analysis of binding between drugs and glycosaminoglycans by isothermal titration calorimetry and fluorescence spectroscopy. Eur. J. Pharm. Sci. 2007;32:105–114. PubMed

Durairaj C., Kadam R.S., Chandler J.W., Hutcherson S.L., Kompella U.B. Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. Invest. Ophthalmol. Vis. Sci. 2010;51:5804–5816. PubMed

Barbieri F., Cagnoli M., Ragni N., Foglia G., Bruzzo C., Pedullà F., et al. Increased Cyclin D1 expression is associated with features of malignancy and disease recurrence in ovarian tumors. Clin. Cancer Res. 1999;5:1837–1842. PubMed

Bar E.E., Chaudhry A., Farah M.H., Eberhart C.G. Hedgehog signaling promotes medulloblastoma survival via BclII. Am. J. Pathol. 2007;170:347–355. PubMed PMC

Borková L., Frydrych I., Vránová B., Jakubcová N., Lišková B., Gurská S., et al. Lupane derivatives containing various aryl substituents in the position 3 have selective cytostatic effect in leukemic cancer cells including resistant phenotypes. Eur. J. Med. Chem. 2022;244 PubMed

Maresca L., Crivaro E., Migliorini F., Anichini G., Giammona A., Pepe S., et al. Targeting GLI1 and GLI2 with small molecule inhibitors to suppress GLI-dependent transcription and tumor growth. Pharmacol. Res. 2023;195 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...