Generating 3D Models of Carbohydrates with GLYCAM-Web

. 2025 May 09 ; () : . [epub] 20250509

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid40654779

Grantová podpora
R01 AI155975 NIAID NIH HHS - United States
R01 GM100058 NIGMS NIH HHS - United States
R24 GM136984 NIGMS NIH HHS - United States
U01 CA207824 NCI NIH HHS - United States

The carbohydrate 3D structure-prediction tools (builders) at GLYCAM-Web (glycam.org) are widely used for generating experimentally-consistent 3D structures of oligosaccharides suitable for data interpretation, hypothesis generation, simple visualization, and subsequent molecular dynamics (MD) simulation. The graphical user interface (GUI) enables users to create carbohydrate sequences (e.g. DGalpb1-4DGlcpb1-OH) that are converted to 3D models of the carbohydrate structures in multiple formats, including PDB and OFF (AMBER software format). The resulting structures are energy minimized prior to download and online visualization. There are advanced options for selecting which shapes (rotamers) of the oligosaccharide to generate, and for creating explicitly solvated structures for subsequent MD simulation. The GLYCAM-Web builders integrate known conformational preferences of oligosaccharides, summarized here, and employ the GLYCAM forcefield for energy minimization with algorithms tailored for speed and scalability. Even for large oligosaccharides (100 residues, ~2100 atoms) a 3D structure is typically returned to the user in less than a minute.

Zobrazit více v PubMed

Rosenberg R. D. & Lam L. Correlation between structure and function of heparin. Proc Natl Acad Sci U S A 76, 1218–1222 (1979). 10.1073/pnas.76.3.1218 PubMed DOI PMC

Kadirvelraj R. et al. Understanding the Bacterial Polysaccharide Antigenicity of PubMed DOI PMC

Brisson J.-R. et al. NMR and Molecular Dynamics Studies of the Conformational Epitope of the Type III Group B PubMed

Kirschner K. N. & Woods R. J. Solvent Interactions Determine Carbohydrate Conformation. Proc. Natl. Acad. Sci. U.S.A. 98, 10541–10545 (2001). 10.1073/pnas.191362798 PubMed DOI PMC

Woods R. J. Predicting the Structures of Glycans, Glycoproteins, and Their Complexes. American Chemical Society 118, 8005–8024 (2018). 10.1021/acs.chemrev.8b00032 PubMed DOI PMC

Woods R. J., Edge C. J., Wormald M. R. & Dwek R. A. in Complex Carbohydrates in Drug Research Vol. 36 (eds Bock K, Clausen H., Krogsgaard-Larsen P., & Kofod H.) 15–36 (Munksgaard, 1993).

Woods R. J., Dwek R. A., Edge C. J. & Fraser-Reid B. Molecular Mechanical and Molecular Dynamical Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development. Journal of Physical Chemistry 99, 3832–3846 (1995). 10.1021/j100011a061 DOI

Kirschner K. N. et al. GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. Journal of Computational Chemistry 29, 622–655 (2008). 10.1002/jcc.20820 PubMed DOI PMC

Ha S. N., Giammona A., Field M. & Brady J. W. A Revised Potential-Energy Surface for Molecular Mechanics Studies of Carbohydrates. Carbohydrate Research 180, 207–221 (1988). 10.1016/0008-6215(88)80078-8 PubMed DOI

Raman E. P., Guvench O. & MacKerell A. D. Jr. CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. Journal of Physical Chemistry B 114, 12981–12994 (2010). PubMed PMC

Guvench O. et al. CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide and Carbohydrate–Protein Modeling. Journal of Chemical Theory and Computation 7, 3162–3180 (2011). 10.1021/ct200328p PubMed DOI PMC

Hansen H. & Hünenberger P. H. A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. Journal of Computational Chemistry 32, 998–1032 (2010). 10.1002/jcc.21675 PubMed DOI

Spieser S. A. H., van Kuik J. A., Kroon-Batenburg L. M. J. & Kroon J. Improved Carbohydrate Force Field for GROMOS: Ring and Hydroxymethyl Group Conformations and Exo-Anomeric Effect. Carbohydrate Research 322, 264–273 (1999).

Kouwijzer M. L. C. E., van Eijck B. P., Kooijman H. & Kroon J. An Extension of the GROMOS Force Field for Carbohydrates, Resulting in Improvement of the Crystal Structure Determination of a-D-Galactose. Acta Cryst. Sect. B 51, 209–220 (1995).

Brisson J.-R. & Carver J. P. Solution Conformation of aD(1–3)- and aD(1–6)-Linked Oligomannosides Using Proton Nuclear Magnetic Resonance. Biochemistry 22, 1362–1368 (1983). PubMed

Homans S. W. Conformation and Dynamics of Oligosaccharides in Solution. Glycobiology 3, 551–555 (1993). PubMed

Neelamegham S. et al. Updates to the Symbol Nomenclature for Glycans guidelines. Glycobiology 29, 620–624 (2019). 10.1093/glycob/cwz045 PubMed DOI PMC

Singh A., Montgomery D., Xue X., Foley B. L. & Woods R. J. GAG Builder: a webtool for modeling 3D structures of glycosaminoglycans. Glycobiology 29, 515–518 (2019). 10.1093/glycob/cwz027 PubMed DOI PMC

Sehnal D. et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res 49, W431–W437 (2021). 10.1093/nar/gkab314 PubMed DOI PMC

Sehnal D. & Grant O. C. Rapidly Display Glycan Symbols in 3D Structures: 3D-SNFG in LiteMol. J Proteome Res 18, 770–774 (2019). 10.1021/acs.jproteome.8b00473 PubMed DOI

Pendrill R., Sawen E. & Widmalm G. Conformation and dynamics at a flexible glycosidic linkage revealed by NMR spectroscopy and molecular dynamics simulations: analysis of beta-L-Fucp-(1-->6)-alpha-D-Glcp-OMe in water solution. J Phys Chem B 117, 14709–14722 (2013). 10.1021/jp409985h PubMed DOI

York W. S. et al. GlyGen: Computational and Informatics Resources for Glycoscience. Glycobiology 30, 72–73 (2020). 10.1093/glycob/cwz080 PubMed DOI PMC

Alocci D. et al. GlyConnect: Glycoproteomics Goes Visual, Interactive, and Analytical. J Proteome Res 18, 664–677 (2019). 10.1021/acs.jproteome.8b00766 PubMed DOI

Miljković M. in Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects (ed Miljkovic Momcilo) 27–56 (Springer New York, 2009).

Wang X. & Woods R. J. Insights into furanose solution conformations: beyond the two-state model. J Biomol NMR 64, 291–305 (2016). 10.1007/s10858-016-0028-y PubMed DOI PMC

Tvaroŝka I. & Bleha T. in Advances in Carbohydrate Chemistry and Biochemistry Vol. 47 (eds Tipson R. Stuart & Horton Derek) 45–123 (Academic Press, 1989).

Lemieux R. U. & Koto S. The conformational properties of glycosidic linkages. Tetrahedron 30, 1933–1944 (1974). 10.1016/S0040-4020(01)97324-7 DOI

Kirschner K. N. & Woods R. J. Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci U S A 98, 10541–10545 (2001). 10.1073/pnas.191362798 PubMed DOI PMC

Woods R. J. Predicting the Structures of Glycans, Glycoproteins, and Their Complexes. Chem Rev 118, 8005–8024 (2018). 10.1021/acs.chemrev.8b00032 PubMed DOI PMC

DeMarco M. L. & Woods R. J. Structural glycobiology: a game of snakes and ladders. Glycobiology 18, 426–440 (2008). 10.1093/glycob/cwn026 PubMed DOI PMC

Thieker D. F., Hadden J. A., Schulten K. & Woods R. J. 3D implementation of the symbol nomenclature for graphical representation of glycans. Glycobiology 26, 786–787 (2016). 10.1093/glycob/cww076 PubMed DOI PMC

McNaught A. D. International Union of Pure and Applied Chemistry and International Union of Biochemistry and Molecular Biology. Joint Commission on Biochemical Nomenclature. Nomenclature of carbohydrates. Carbohydr Res 297, 1–92 (1997). 10.1016/s0008-6215(97)83449-0 PubMed DOI

Tsuchiya S., Yamada I. & Aoki-Kinoshita K. F. GlycanFormatConverter: a conversion tool for translating the complexities of glycans. Bioinformatics 35, 2434–2440 (2019). 10.1093/bioinformatics/bty990 PubMed DOI PMC

Wessels M. R., Pozsgay V., Kasper D. L. & Jennings H. J. Structure and immunochemistry of an oligosaccharide repeating unit of the capsular polysaccharide of type III group B Streptococcus. A revised structure for the type III group B streptococcal polysaccharide antigen. J Biol Chem 262, 8262–8267 (1987). PubMed

Sattelle B. M., Hansen S. U., Gardiner J. & Almond A. Free energy landscapes of iduronic acid and related monosaccharides. Journal of the American Chemical Society 132, 13132–13134 (2010). 10.1021/ja1054143 PubMed DOI

Jin L., Hricovini M., Deakin J. A., Lyon M. & Uhrin D. Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin. Glycobiology 19, 1185–1196 (2009). 10.1093/glycob/cwp105 PubMed DOI PMC

Muñoz-García J. C., Corzana F., de Paz J. L., Angulo J. & Nieto P. M. Conformations of the iduronate ring in short heparin fragments described by time-averaged distance restrained molecular dynamics. Glycobiology 23, 1220–1229 (2013). 10.1093/glycob/cwt058 PubMed DOI

Forster M. J. & Mulloy B. Molecular-Dynamics Study of Iduronate Ring Conformation. Biopolymers 33, 575–588 (1993).

Fadda E. & Woods R. J. Molecular simulations of carbohydrates and protein-carbohydrate interactions: motivation, issues and prospects. Drug Discov Today 15, 596–609 (2010). 10.1016/j.drudis.2010.06.001 PubMed DOI PMC

Petrescu A. J., Milac A. L., Petrescu S. M., Dwek R. A. & Wormald M. R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114 (2004). 10.1093/glycob/cwh008 PubMed DOI

French A. D., Montgomery D. W., Prevost N. T., Edwards J. V. & Woods R. J. Comparison of cellooligosaccharide conformations in complexes with proteins with energy maps for cellobiose. Carbohydr Polym 264, 118004 (2021). 10.1016/j.carbpol.2021.118004 PubMed DOI PMC

Zhang W. et al. Conformational Populations of beta-(1-->4) O-Glycosidic Linkages Using Redundant NMR J-Couplings and Circular Statistics. J Phys Chem B 121, 3042–3058 (2017). 10.1021/acs.jpcb.7b02252 PubMed DOI PMC

Meredith R. J., Woods R. J., Carmichael I. & Serianni A. S. Reconciling MA’AT and molecular dynamics models of linkage conformation in oligosaccharides. Phys Chem Chem Phys 22, 14454–14457 (2020). 10.1039/d0cp01389g PubMed DOI PMC

Meredith R. J., Carmichael I., Woods R. J. & Serianni A. S. MA’AT Analysis: Probability Distributions of Molecular Torsion Angles in Solution from NMR Spectroscopy. Acc Chem Res 56, 2313–2328 (2023). 10.1021/acs.accounts.3c00286 PubMed DOI

Zhang W. et al. Does Inter-Residue Hydrogen Bonding in beta-(1-->4)-Linked Disaccharides Influence Linkage Conformation in Aqueous Solution? J Phys Chem B 128, 2317–2325 (2024). 10.1021/acs.jpcb.3c07448 PubMed DOI

Almond A. Multiscale modeling of glycosaminoglycan structure and dynamics: current methods and challenges. Curr Opin Struct Biol 50, 58–64 (2018). 10.1016/j.sbi.2017.11.008 PubMed DOI

Jardetzky O. On the nature of molecular conformations inferred from high-resolution NMR. Biochim Biophys Acta 621, 227–232 (1980). 10.1016/0005-2795(80)90174-9 PubMed DOI

Gonzalez-Outeiriño J., Kirschner K. N., Thobhani S. & Woods R. J. Reconciling Solvent Effects on Rotamer Populations in Carbohydrates: a Joint MD and NMR Analysis. Canadian Journal of Chemistry 84, 569–579 (2006). 10.1139/V06-036 PubMed DOI PMC

Nivedha A. K., Makeneni S., Foley B. L., Tessier M. B. & Woods R. J. Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff. J Comput Chem 35, 526–539 (2014). 10.1002/jcc.23517 PubMed DOI PMC

Shao C. et al. Modernized uniform representation of carbohydrate molecules in the Protein Data Bank. Glycobiology 31, 1204–1218 (2021). 10.1093/glycob/cwab039 PubMed DOI PMC

Berman H. M. et al. The Protein Data Bank. Nucleic Acids Res 28, 235–242 (2000). 10.1093/nar/28.1.235 PubMed DOI PMC

Agirre J., Davies G., Wilson K. & Cowtan K. Carbohydrate anomalies in the PDB. Nat Chem Biol 11, 303 (2015). 10.1038/nchembio.1798 PubMed DOI

Kirschner K. N. et al. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29, 622–655 (2008). 10.1002/jcc.20820 PubMed DOI PMC

Rao V. S. R. Conformation of carbohydrates. (Harwood Academic Publishers, 1998).

Lim Y.-R. & Oh D.-K. Microbial metabolism and biotechnological production of D-allose. Applied Microbiology and Biotechnology 91, 229–235 (2011). 10.1007/s00253-011-3370-8 PubMed DOI

Kamitori S. X-ray structures of Enterobacter cloacae allose-binding protein in complexes with monosaccharides demonstrate its unique recognition mechanism for high affinity to allose. Biochemical and Biophysical Research Communications 682, 187–192 (2023). 10.1016/j.bbrc.2023.10.016 PubMed DOI

Stack R. J. Identification of L-altrose in the extracellular polysaccharide from Butyrivibrio fibrisolvens strain CF3. FEMS Microbiology Letters 48, 83–87 (1987). 10.1111/j.1574-6968.1987.tb02520.x DOI

Kotake T., Yamanashi Y., Imaizumi C. & Tsumuraya Y. Metabolism of L-arabinose in plants. J Plant Res 129, 781–792 (2016). 10.1007/s10265-016-0834-z PubMed DOI PMC

Labourel A. et al. The mechanism by which arabinoxylanases can recognize highly decorated xylans. Journal of Biological Chemistry 291, 22149–22159 (2016). 10.1074/jbc.M116.743948 PubMed DOI PMC

Honta H., Inamura T., Konishi T., Satoh S. & Iwai H. UDP-arabinopyranose mutase gene expressions are required for the biosynthesis of the arabinose side chain of both pectin and arabinoxyloglucan, and normal leaf expansion in Nicotiana tabacum. Journal of Plant Research 131, 307–317 (2018). 10.1007/s10265-017-0985-6 PubMed DOI

Naidu D. S., Hlangothi S. P. & John M. J. Bio-based products from xylan: A review. Carbohydr. Polym. 179, 28–41 (2018). 10.1016/j.carbpol.2017.09.064 PubMed DOI

Limtiaco J. F. K., Beni S., Jones C. J., Langeslay D. J. & Larive C. K. NMR methods to monitor the enzymatic depolymerization of heparin. Analytical and Bioanalytical Chemistry 399, 593–603 (2011). 10.1007/s00216-010-4132-7 PubMed DOI PMC

Han Z.-R., Xing X.-H., Yu G.-L., Zeng Y.-Y. & Zhang L.-J. Heparinase digestion-based disaccharide composition analysis of heparin and heparinoid drugs. Chinese Journal of Analytical Chemistry 43, 964–970 (2015). 10.1016/S1872-2040(15)60835-0 DOI

Moon A. F. et al. Structural analysis of the sulfotransferase (3-O-sulfotransferase isoform 3) involved in the biosynthesis of an entry receptor for herpes simplex virus 1. Journal of Biological Chemistry 279, 45185–45193 (2004). 10.1074/jbc.M405013200 PubMed DOI PMC

Hwang J. J. et al. The human brain produces fructose from glucose. JCI Insight 2 (2017). 10.1172/jci.insight.90508 PubMed DOI PMC

Xia J. & Case D. A. Sucrose in aqueous solution revisited, Part 1: Molecular dynamics simulations and direct and indirect dipolar coupling analysis. Biopolymers 97, 276–288 (2012). 10.1002/bip.22017 PubMed DOI PMC

Stanley P., Moremen K. W., Lewis N. E., Taniguchi N. & Aebi M. Essentials of Glycobiology. Chapter 9: N-Glycans. 4th edn, (Cold Spring Harbor (NY), 2022).

Seki H. et al. Structural basis for the specific cleavage of core-fucosylated N-glycans by endo-B-N-acetylglucosaminidase from the fungus Cordyceps militaris. Journal of Biological Chemistry 294, 17143–17154 (2019). 10.1074/jbc.RA119.010842 PubMed DOI PMC

Guvench O., Martin D. & Greene M. Pyranose ring puckering thermodynamics for glycan monosaccharides associated with vertebrate proteins. Int. J. Mol. Sci. 23 (2022). PubMed PMC

Alibay I. & Bryce R. A. Ring puckering landscapes of glycosaminoglycan-related monosaccharides from molecular dynamics simulations. J. Chem. Inf. Model. 59, 4729–4741 (2019). 10.1021/acs.jcim.9b00529 PubMed DOI

Ouyang Y., Zhao J. & Wang S. Multifunctional hydrogels based on chitosan, hyaluronic acid and other biological macromolecules for the treatment of inflammatory bowel disease: A review. Int. J. Biol. Macromol. 227, 505–523 (2023). 10.1016/j.ijbiomac.2022.12.032 PubMed DOI

Cybulska J., Brzyska A., Zdunek A. & Woliński K. Simulation of force spectroscopy experiments on galacturonic acid oligomers. PLOS ONE 9, e107896 (2014). 10.1371/journal.pone.0107896 PubMed DOI PMC

Brockhausen I., Schachter H. & Stanley P. in Essentials of Glycobiology (eds Varki Ajit, Cummings R. D., & Esko J. D.) (Cold Spring Harbor Press, 2022).

Sanz-Martinez I., Pereira S., Merino P., Corzana F. & Hurtado-Guerrero R. Molecular recognition of GalNAc in mucin-type O-glycosylation. Accounts of Chemical Research 56, 548–560 (2023). 10.1021/acs.accounts.2c00723 PubMed DOI PMC

Shriver Z., Capila I., Venkataraman G. & Sasisekharan R. in Heparin - A Century of Progress (eds Lever Rebecca, Mulloy Barbara, & Page Clive P.) 159–176 (Springer Berlin Heidelberg, 2012).

Sattelle B. M. & Almond A. Is N-acetyl-d-glucosamine a rigid 4C1 chair? Glycobiology 21, 1651–1662 (2011). 10.1093/glycob/cwr101 PubMed DOI PMC

Swain M., Brisson J.-R., Sprott G. D., Cooper F. P. & Patel G. B. Identification of β-l-gulose as the sugar moiety of the main polar lipid of Thermoplasma acidophilum. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1345, 56–64 (1997). 10.1016/S0005-2760(96)00163-4 PubMed DOI

Hsieh P.-H., Thieker D. F., Guerrini M., Woods R. J. & Liu J. Uncovering the relationship between sulphation patterns and conformation of iduronic acid in heparan sulphate. Scientific Reports 6, 29602 (2016). 10.1038/srep29602 PubMed DOI PMC

Guerrini M. et al. Conformational transitions induced in heparin octasaccharides by binding with antithrombin III. Biochemical Journal 399, 191–198 (2006). 10.1042/BJ20060656 PubMed DOI PMC

Lewis A. L. et al. Cataloging natural sialic acids and other nonulosonic acids (NulOs), and their representation using the Symbol Nomenclature for Glycans. Glycobiology 33, 99–103 (2023). 10.1093/glycob/cwac072 PubMed DOI PMC

Wang W. et al. Human prostate-specific antigen carries N-glycans with ketodeoxynononic acid. Engineering 26, 119–131 (2023). 10.1016/j.eng.2023.02.009 DOI

Telford J. C. et al. The Aspergillus fumigatus sialidase Is a 3-Deoxy-d-glycero-d-galacto-2-nonulosonic Acid Hydrolase (KDNase): Structual and mechanistic insights. Journal of Biological Chemistry 286, 10783–10792 (2011). 10.1074/jbc.M110.207043 PubMed DOI PMC

Kosma P. Progress in Kdo-glycoside chemistry. Tetrahedron Letters 57, 2133–2142 (2016). 10.1016/j.tetlet.2016.04.005 PubMed DOI PMC

Holst O. The structures of core regions from enterobacterial lipopolysaccharides – an update. FEMS Microbiology Letters 271, 3–11 (2007). 10.1111/j.1574-6968.2007.00708.x PubMed DOI

Nguyen H. P. et al. Germline antibody recognition of distinct carbohydrate epitopes. Nature Structural & Molecular Biology 10, 1019–1025 (2003). 10.1038/nsb1014 PubMed DOI

Wagstaff B. A., Rejzek M. & Field R. A. Identification of a Kdn biosynthesis pathway in the haptophyte Prymnesium parvum suggests widespread sialic acid biosynthesis among microalgae. Journal of Biological Chemistry 293, 16277–16290 (2018). 10.1074/jbc.RA118.004921 PubMed DOI PMC

Khoo K.-H. et al. Chemistry of the lyxose-containing mycobacteriophage receptors of mycobacterium phlei/mycobacterium smegmatis. Biochemistry 35, 11812–11819 (1996). 10.1021/bi961055+ PubMed DOI

Moons S. J., Adema G. J., Derks M. T. G. M., Boltje T. J. & Büll C. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 29, 433–445 (2019). 10.1093/glycob/cwz026 PubMed DOI

Gorenflos López J. L. et al. Real-time monitoring of the sialic acid biosynthesis pathway by NMR. Chem. Sci. 14, 3482–3492 (2023). 10.1039/D2SC06986E PubMed DOI PMC

Crouch E. et al. Critical role of Arg/Lys343 in the species-dependent recognition of phosphatidylinositol by pulmonary surfactant protein D. Biochemistry 46, 5160–5169 (2007). 10.1021/bi700037x PubMed DOI

Martinez J. et al. Crystal structures of N-acetylmannosamine kinase provide insights into enzyme activity and inhibition*. Journal of Biological Chemistry 287, 13656–13665 (2012). 10.1074/jbc.M111.318170 PubMed DOI PMC

Spiwok V. & Tvaroška I. Conformational free energy surface of α-N-acetylneuraminic acid: An interplay between hydrogen bonding and solvation. The Journal of Physical Chemistry B 113, 9589–9594 (2009). 10.1021/jp8113495 PubMed DOI

Yu X. et al. Structural basis of rotavirus strain preference toward N-acetyl- or N-glycolylneuraminic acid-containing receptors. Journal of Virology 86, 13456–13466 (2012). 10.1128/jvi.06975-11 PubMed DOI PMC

Liu X. et al. Molecular insights into the assembly and functional diversification of typhoid toxin. mBio 13, e01916–01921 (2022). 10.1128/mbio.01916-21 PubMed DOI PMC

Matsuo T., Suzuki H., Hashiguchi M. & Izumori K. D-Psicose is a rare sugar that provides no energy to growing rats. J. Nutr. Sci. Vitaminol. 48, 77–80 (2002). 10.3177/jnsv.48.77 PubMed DOI

Mu W., Zhang W., Feng Y., Jiang B. & Zhou L. Recent advances on applications and biotechnological production of d-psicose. Applied Microbiology and Biotechnology 94, 1461–1467 (2012). 10.1007/s00253-012-4093-1 PubMed DOI

Herve du Penhoat P. C. M. & Perlin A. S. A carbon-13 N.M.R. spectral study of D-psicose: anomeric and ring-form equilibria of solutions of 2-hexuloses. Carbohydr. Res. 36, 111–120 (1974). 10.1016/S0008-6215(00)81996-5 DOI

Puspitasari Y. E. et al. Saponin and fatty acid profiling of the sea cucumber holothuria atra, α-glucosidase inhibitory activity and the identification of a novel triterpene glycoside. Nutrients 15 (2023). 10.3390/nu15041033 PubMed DOI PMC

Kalinin V. I., Silchenko A. S., Avilov S. A., Stonik V. A. & Smirnov A. V. Sea cucumbers triterpene glycosides, the recent progress in structural elucidation and chemotaxonomy. Phytochemistry Reviews 4, 221–236 (2005). 10.1007/s11101-005-1354-y DOI

Rockey W. M., Dowd M. K., Reilly P. J. & French A. D. Modeling of deoxy- and dideoxyaldohexopyranosyl ring puckering with MM3(92). Carbohydr. Res. 335, 261–273 (2001). 10.1016/S0008-6215(01)00240-3 PubMed DOI

Jiang N., Dillon F. M., Silva A., Gomez-Cano L. & Grotewold E. Rhamnose in plants - from biosynthesis to diverse functions. Plant Science 302, 110687 (2021). 10.1016/j.plantsci.2020.110687 PubMed DOI

Vulliez-Le Normand B. et al. Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody. Proc. Natl. Acad. Sci. 105, 9976–9981 (2008). 10.1073/pnas.0801711105 PubMed DOI PMC

Sinden R. R. in DNA Structure and Function (ed Sinden Richard R.) 1–57 (Academic Press, 1994).

Egli M. in The excitement of discovery: selected papers of alexander rich Vol. Volume 11 Series in Structural Biology 309–315 (WORLD SCIENTIFIC, 2018).

Guzik G. P. & Stachowicz W. Study on radiation-induced radicals giving rise to stable EPR signal suitable for the detection of irradiation in L-sorbose-containing fruits. Nukleonika 61, 461–465 (2016). doi: 10.1515/nuka-2016-0075 DOI

Sugiura M. et al. Identification, functional characterization, and crystal structure determination of bacterial levoglucosan dehydrogenase. Journal of Biological Chemistry 293, 17375–17386 (2018). 10.1074/jbc.RA118.004963 PubMed DOI PMC

Ortiz A. D. et al. D-tagatose: A rare sugar with functional properties and antimicrobial potential against oral species. Nutrients 16 (2024). PubMed PMC

Pazur J. H., Kane J. A., Dropkin D. J. & Jackman L. M. Glycans from streptococcal cell walls: An antigenic triheteroglycan of 6-deoxy-l-talose, l-rhamnose and d-galactose from Streptococcus bovis. Archives of Biochemistry and Biophysics 150, 382–391 (1972). 10.1016/0003-9861(72)90053-7 PubMed DOI

Jann B. et al. NMR investigation of the 6-deoxy-l-talose-containing O45, O45-related (O45rel), and O66 polysaccharides of Escherichia coli. Carbohydr. Res. 278, 155–165 (1995). 10.1016/0008-6215(95)00243-6 PubMed DOI

Huang T.-Y., Zulueta M. M. L. & Hung S.-C. One-pot strategies for the synthesis of the tetrasaccharide linkage region of proteoglycans. Organic Letters 13, 1506–1509 (2011). 10.1021/ol200192d PubMed DOI

Kruskal J. B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the Merican Mathematical Society 7, 48–50 (1956). 10.1090/S0002-9939-1956-0078686-7 DOI

Cheetham N. W., Dasgupta P. & Ball G. E. NMR and modelling studies of disaccharide conformation. Carbohydr Res 338, 955–962 (2003). 10.1016/s0008-6215(03)00069-7 PubMed DOI

Wormald M. R. et al. Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102, 371–386 (2002). 10.1021/cr990368i PubMed DOI

Woods R. J. Three-dimensional structures of oligosaccharides. Curr Opin Struct Biol 5, 591–598 (1995). 10.1016/0959-440x(95)80049-2 PubMed DOI

Lovell S. C., Word J. M., Richardson J. S. & Richardson D. C. The Penultimate Rotamer Library. Proteins: Structure, Function, and Genetics 40, 389–408 (2000). PubMed

Bock K. & Lemieux R. U. The conformational properties of sucrose in aqueous solution: intramolecular hydrogen-bonding. Carbohydrate Research 100, 63–74 (1982). 10.1016/S0008-6215(00)81026-5 DOI

Case D. A. et al. AmberTools. J Chem Inf Model 63, 6183–6191 (2023). 10.1021/acs.jcim.3c01153 PubMed DOI PMC

Roe D. R. & Cheatham T. E. 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput 9, 3084–3095 (2013). 10.1021/ct400341p PubMed DOI

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W. & Klein M. L. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics 79, 926–935 (1983). 10.1063/1.445869 DOI

Mahoney M. W. & Jorgensen W. L. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. The Journal of Chemical Physics 112, 8910–8922 (2000). 10.1063/1.481505 DOI

Funcke W., von Sonntag C. & Triantaphylides C. Detection of the open-chain forms of D-fructose and L-sorbose in aqueous solution by using 13C-n.m.r. spectroscopy. Carbohydr. Res. 75, 305–309 (1979). 10.1016/S0008-6215(00)84649-2 DOI

Jeffrey G. A. & Huang D.-b. The hydrogen bonding in the crystal structure of raffinose pentahydrate. Carbohydr. Res. 206, 173–182 (1990). 10.1016/0008-6215(90)80058-B PubMed DOI

Beevers C. A., McDonald T. R. R., Robertson J. H. & Stern F. The crystal structure of sucrose. Acta Crystallographica 5, 689–690 (1952). doi: 10.1107/S0365110X52001908 DOI

Prestegard J. H. A consensus structural motif for the capsular polysaccharide of Cryptococcus Neoformans by NMR/MD. Proc Natl Acad Sci U S A 121, e2322413121 (2024). 10.1073/pnas.2322413121 PubMed DOI PMC

Schachner L. F. et al. Exposing the molecular heterogeneity of glycosylated biotherapeutics. Nat Commun 15, 3259 (2024). 10.1038/s41467-024-47693-8 PubMed DOI PMC

Day C. J. et al. The essential malaria protein PfCyRPA targets glycans to invade erythrocytes. Cell Rep 43, 114012 (2024). 10.1016/j.celrep.2024.114012 PubMed DOI

Ives C. M. et al. Restoring protein glycosylation with GlycoShape. Nat Methods 21, 2117–2127 (2024). 10.1038/s41592-024-02464-7 PubMed DOI PMC

Murphy P. V. et al. Small lectin ligands as a basis for applications in glycoscience and glycomedicine. Chem Soc Rev 53, 9428–9445 (2024). 10.1039/d4cs00642a PubMed DOI

Urban J. et al. Predicting glycan structure from tandem mass spectrometry via deep learning. Nat Methods 21, 1206–1215 (2024). 10.1038/s41592-024-02314-6 PubMed DOI PMC

Widmalm G. Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy. JACS Au 4, 20–39 (2024). 10.1021/jacsau.3c00639 PubMed DOI PMC

Brunetti N. S. et al. SARS-CoV-2 uses CD4 to infect T helper lymphocytes. Elife 12 (2023). 10.7554/eLife.84790 PubMed DOI PMC

Amos R. A. et al. Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I. Nat Plants 8, 1289–1303 (2022). 10.1038/s41477-022-01270-3 PubMed DOI PMC

Purushotham P. et al. Mechanism of mixed-linkage glucan biosynthesis by barley cellulose synthase-like CslF6 (1,3;1,4)-beta-glucan synthase. Sci Adv 8, eadd1596 (2022). 10.1126/sciadv.add1596 PubMed DOI PMC

Pang Y. T., Acharya A., Lynch D. L., Pavlova A. & Gumbart J. C. SARS-CoV-2 spike opening dynamics and energetics reveal the individual roles of glycans and their collective impact. Commun Biol 5, 1170 (2022). 10.1038/s42003-022-04138-6 PubMed DOI PMC

Canales A. et al. Revealing the Specificity of Human H1 Influenza A Viruses to Complex N-Glycans. JACS Au 3, 868–878 (2023). 10.1021/jacsau.2c00664 PubMed DOI PMC

Unione L., Arda A., Jimenez-Barbero J. & Millet O. NMR of glycoproteins: profiling, structure, conformation and interactions. Curr Opin Struct Biol 68, 9–17 (2021). 10.1016/j.sbi.2020.09.009 PubMed DOI

Klontz E. H. et al. Structure and dynamics of an alpha-fucosidase reveal a mechanism for highly efficient IgG transfucosylation. Nat Commun 11, 6204 (2020). 10.1038/s41467-020-20044-z PubMed DOI PMC

Ishida T., Parks J. M. & Smith J. C. Insight into the Catalytic Mechanism of GH11 Xylanase: Computational Analysis of Substrate Distortion Based on a Neutron Structure. J Am Chem Soc 142, 17966–17980 (2020). 10.1021/jacs.0c02148 PubMed DOI

Tanaka K. et al. WURCS: the Web3 unique representation of carbohydrate structures. J Chem Inf Model 54, 1558–1566 (2014). 10.1021/ci400571e PubMed DOI

McNaught A. D. Nomenclature of carbohydrates (recommendations 1996). Adv Carbohydr Chem Biochem 52, 43–177 (1997). PubMed

Bernstein H. J. et al. Specification of the Crystallographic Information File format, version 2.0. Journal of Applied Crystallography 49, 277–284 (2016). doi: 10.1107/S1600576715021871 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...