Generating 3D Models of Carbohydrates with GLYCAM-Web
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R01 AI155975
NIAID NIH HHS - United States
R01 GM100058
NIGMS NIH HHS - United States
R24 GM136984
NIGMS NIH HHS - United States
U01 CA207824
NCI NIH HHS - United States
PubMed
40654779
PubMed Central
PMC12247649
DOI
10.1101/2025.05.08.652828
PII: 2025.05.08.652828
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The carbohydrate 3D structure-prediction tools (builders) at GLYCAM-Web (glycam.org) are widely used for generating experimentally-consistent 3D structures of oligosaccharides suitable for data interpretation, hypothesis generation, simple visualization, and subsequent molecular dynamics (MD) simulation. The graphical user interface (GUI) enables users to create carbohydrate sequences (e.g. DGalpb1-4DGlcpb1-OH) that are converted to 3D models of the carbohydrate structures in multiple formats, including PDB and OFF (AMBER software format). The resulting structures are energy minimized prior to download and online visualization. There are advanced options for selecting which shapes (rotamers) of the oligosaccharide to generate, and for creating explicitly solvated structures for subsequent MD simulation. The GLYCAM-Web builders integrate known conformational preferences of oligosaccharides, summarized here, and employ the GLYCAM forcefield for energy minimization with algorithms tailored for speed and scalability. Even for large oligosaccharides (100 residues, ~2100 atoms) a 3D structure is typically returned to the user in less than a minute.
Zobrazit více v PubMed
Rosenberg R. D. & Lam L. Correlation between structure and function of heparin. Proc Natl Acad Sci U S A 76, 1218–1222 (1979). 10.1073/pnas.76.3.1218 PubMed DOI PMC
Kadirvelraj R. et al. Understanding the Bacterial Polysaccharide Antigenicity of PubMed DOI PMC
Brisson J.-R. et al. NMR and Molecular Dynamics Studies of the Conformational Epitope of the Type III Group B PubMed
Kirschner K. N. & Woods R. J. Solvent Interactions Determine Carbohydrate Conformation. Proc. Natl. Acad. Sci. U.S.A. 98, 10541–10545 (2001). 10.1073/pnas.191362798 PubMed DOI PMC
Woods R. J. Predicting the Structures of Glycans, Glycoproteins, and Their Complexes. American Chemical Society 118, 8005–8024 (2018). 10.1021/acs.chemrev.8b00032 PubMed DOI PMC
Woods R. J., Edge C. J., Wormald M. R. & Dwek R. A. in Complex Carbohydrates in Drug Research Vol. 36 (eds Bock K, Clausen H., Krogsgaard-Larsen P., & Kofod H.) 15–36 (Munksgaard, 1993).
Woods R. J., Dwek R. A., Edge C. J. & Fraser-Reid B. Molecular Mechanical and Molecular Dynamical Simulations of Glycoproteins and Oligosaccharides. 1. GLYCAM_93 Parameter Development. Journal of Physical Chemistry 99, 3832–3846 (1995). 10.1021/j100011a061 DOI
Kirschner K. N. et al. GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. Journal of Computational Chemistry 29, 622–655 (2008). 10.1002/jcc.20820 PubMed DOI PMC
Ha S. N., Giammona A., Field M. & Brady J. W. A Revised Potential-Energy Surface for Molecular Mechanics Studies of Carbohydrates. Carbohydrate Research 180, 207–221 (1988). 10.1016/0008-6215(88)80078-8 PubMed DOI
Raman E. P., Guvench O. & MacKerell A. D. Jr. CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. Journal of Physical Chemistry B 114, 12981–12994 (2010). PubMed PMC
Guvench O. et al. CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide and Carbohydrate–Protein Modeling. Journal of Chemical Theory and Computation 7, 3162–3180 (2011). 10.1021/ct200328p PubMed DOI PMC
Hansen H. & Hünenberger P. H. A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. Journal of Computational Chemistry 32, 998–1032 (2010). 10.1002/jcc.21675 PubMed DOI
Spieser S. A. H., van Kuik J. A., Kroon-Batenburg L. M. J. & Kroon J. Improved Carbohydrate Force Field for GROMOS: Ring and Hydroxymethyl Group Conformations and Exo-Anomeric Effect. Carbohydrate Research 322, 264–273 (1999).
Kouwijzer M. L. C. E., van Eijck B. P., Kooijman H. & Kroon J. An Extension of the GROMOS Force Field for Carbohydrates, Resulting in Improvement of the Crystal Structure Determination of a-D-Galactose. Acta Cryst. Sect. B 51, 209–220 (1995).
Brisson J.-R. & Carver J. P. Solution Conformation of aD(1–3)- and aD(1–6)-Linked Oligomannosides Using Proton Nuclear Magnetic Resonance. Biochemistry 22, 1362–1368 (1983). PubMed
Homans S. W. Conformation and Dynamics of Oligosaccharides in Solution. Glycobiology 3, 551–555 (1993). PubMed
Neelamegham S. et al. Updates to the Symbol Nomenclature for Glycans guidelines. Glycobiology 29, 620–624 (2019). 10.1093/glycob/cwz045 PubMed DOI PMC
Singh A., Montgomery D., Xue X., Foley B. L. & Woods R. J. GAG Builder: a webtool for modeling 3D structures of glycosaminoglycans. Glycobiology 29, 515–518 (2019). 10.1093/glycob/cwz027 PubMed DOI PMC
Sehnal D. et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res 49, W431–W437 (2021). 10.1093/nar/gkab314 PubMed DOI PMC
Sehnal D. & Grant O. C. Rapidly Display Glycan Symbols in 3D Structures: 3D-SNFG in LiteMol. J Proteome Res 18, 770–774 (2019). 10.1021/acs.jproteome.8b00473 PubMed DOI
Pendrill R., Sawen E. & Widmalm G. Conformation and dynamics at a flexible glycosidic linkage revealed by NMR spectroscopy and molecular dynamics simulations: analysis of beta-L-Fucp-(1-->6)-alpha-D-Glcp-OMe in water solution. J Phys Chem B 117, 14709–14722 (2013). 10.1021/jp409985h PubMed DOI
York W. S. et al. GlyGen: Computational and Informatics Resources for Glycoscience. Glycobiology 30, 72–73 (2020). 10.1093/glycob/cwz080 PubMed DOI PMC
Alocci D. et al. GlyConnect: Glycoproteomics Goes Visual, Interactive, and Analytical. J Proteome Res 18, 664–677 (2019). 10.1021/acs.jproteome.8b00766 PubMed DOI
Miljković M. in Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects (ed Miljkovic Momcilo) 27–56 (Springer New York, 2009).
Wang X. & Woods R. J. Insights into furanose solution conformations: beyond the two-state model. J Biomol NMR 64, 291–305 (2016). 10.1007/s10858-016-0028-y PubMed DOI PMC
Tvaroŝka I. & Bleha T. in Advances in Carbohydrate Chemistry and Biochemistry Vol. 47 (eds Tipson R. Stuart & Horton Derek) 45–123 (Academic Press, 1989).
Lemieux R. U. & Koto S. The conformational properties of glycosidic linkages. Tetrahedron 30, 1933–1944 (1974). 10.1016/S0040-4020(01)97324-7 DOI
Kirschner K. N. & Woods R. J. Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci U S A 98, 10541–10545 (2001). 10.1073/pnas.191362798 PubMed DOI PMC
Woods R. J. Predicting the Structures of Glycans, Glycoproteins, and Their Complexes. Chem Rev 118, 8005–8024 (2018). 10.1021/acs.chemrev.8b00032 PubMed DOI PMC
DeMarco M. L. & Woods R. J. Structural glycobiology: a game of snakes and ladders. Glycobiology 18, 426–440 (2008). 10.1093/glycob/cwn026 PubMed DOI PMC
Thieker D. F., Hadden J. A., Schulten K. & Woods R. J. 3D implementation of the symbol nomenclature for graphical representation of glycans. Glycobiology 26, 786–787 (2016). 10.1093/glycob/cww076 PubMed DOI PMC
McNaught A. D. International Union of Pure and Applied Chemistry and International Union of Biochemistry and Molecular Biology. Joint Commission on Biochemical Nomenclature. Nomenclature of carbohydrates. Carbohydr Res 297, 1–92 (1997). 10.1016/s0008-6215(97)83449-0 PubMed DOI
Tsuchiya S., Yamada I. & Aoki-Kinoshita K. F. GlycanFormatConverter: a conversion tool for translating the complexities of glycans. Bioinformatics 35, 2434–2440 (2019). 10.1093/bioinformatics/bty990 PubMed DOI PMC
Wessels M. R., Pozsgay V., Kasper D. L. & Jennings H. J. Structure and immunochemistry of an oligosaccharide repeating unit of the capsular polysaccharide of type III group B Streptococcus. A revised structure for the type III group B streptococcal polysaccharide antigen. J Biol Chem 262, 8262–8267 (1987). PubMed
Sattelle B. M., Hansen S. U., Gardiner J. & Almond A. Free energy landscapes of iduronic acid and related monosaccharides. Journal of the American Chemical Society 132, 13132–13134 (2010). 10.1021/ja1054143 PubMed DOI
Jin L., Hricovini M., Deakin J. A., Lyon M. & Uhrin D. Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin. Glycobiology 19, 1185–1196 (2009). 10.1093/glycob/cwp105 PubMed DOI PMC
Muñoz-García J. C., Corzana F., de Paz J. L., Angulo J. & Nieto P. M. Conformations of the iduronate ring in short heparin fragments described by time-averaged distance restrained molecular dynamics. Glycobiology 23, 1220–1229 (2013). 10.1093/glycob/cwt058 PubMed DOI
Forster M. J. & Mulloy B. Molecular-Dynamics Study of Iduronate Ring Conformation. Biopolymers 33, 575–588 (1993).
Fadda E. & Woods R. J. Molecular simulations of carbohydrates and protein-carbohydrate interactions: motivation, issues and prospects. Drug Discov Today 15, 596–609 (2010). 10.1016/j.drudis.2010.06.001 PubMed DOI PMC
Petrescu A. J., Milac A. L., Petrescu S. M., Dwek R. A. & Wormald M. R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114 (2004). 10.1093/glycob/cwh008 PubMed DOI
French A. D., Montgomery D. W., Prevost N. T., Edwards J. V. & Woods R. J. Comparison of cellooligosaccharide conformations in complexes with proteins with energy maps for cellobiose. Carbohydr Polym 264, 118004 (2021). 10.1016/j.carbpol.2021.118004 PubMed DOI PMC
Zhang W. et al. Conformational Populations of beta-(1-->4) O-Glycosidic Linkages Using Redundant NMR J-Couplings and Circular Statistics. J Phys Chem B 121, 3042–3058 (2017). 10.1021/acs.jpcb.7b02252 PubMed DOI PMC
Meredith R. J., Woods R. J., Carmichael I. & Serianni A. S. Reconciling MA’AT and molecular dynamics models of linkage conformation in oligosaccharides. Phys Chem Chem Phys 22, 14454–14457 (2020). 10.1039/d0cp01389g PubMed DOI PMC
Meredith R. J., Carmichael I., Woods R. J. & Serianni A. S. MA’AT Analysis: Probability Distributions of Molecular Torsion Angles in Solution from NMR Spectroscopy. Acc Chem Res 56, 2313–2328 (2023). 10.1021/acs.accounts.3c00286 PubMed DOI
Zhang W. et al. Does Inter-Residue Hydrogen Bonding in beta-(1-->4)-Linked Disaccharides Influence Linkage Conformation in Aqueous Solution? J Phys Chem B 128, 2317–2325 (2024). 10.1021/acs.jpcb.3c07448 PubMed DOI
Almond A. Multiscale modeling of glycosaminoglycan structure and dynamics: current methods and challenges. Curr Opin Struct Biol 50, 58–64 (2018). 10.1016/j.sbi.2017.11.008 PubMed DOI
Jardetzky O. On the nature of molecular conformations inferred from high-resolution NMR. Biochim Biophys Acta 621, 227–232 (1980). 10.1016/0005-2795(80)90174-9 PubMed DOI
Gonzalez-Outeiriño J., Kirschner K. N., Thobhani S. & Woods R. J. Reconciling Solvent Effects on Rotamer Populations in Carbohydrates: a Joint MD and NMR Analysis. Canadian Journal of Chemistry 84, 569–579 (2006). 10.1139/V06-036 PubMed DOI PMC
Nivedha A. K., Makeneni S., Foley B. L., Tessier M. B. & Woods R. J. Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff. J Comput Chem 35, 526–539 (2014). 10.1002/jcc.23517 PubMed DOI PMC
Shao C. et al. Modernized uniform representation of carbohydrate molecules in the Protein Data Bank. Glycobiology 31, 1204–1218 (2021). 10.1093/glycob/cwab039 PubMed DOI PMC
Berman H. M. et al. The Protein Data Bank. Nucleic Acids Res 28, 235–242 (2000). 10.1093/nar/28.1.235 PubMed DOI PMC
Agirre J., Davies G., Wilson K. & Cowtan K. Carbohydrate anomalies in the PDB. Nat Chem Biol 11, 303 (2015). 10.1038/nchembio.1798 PubMed DOI
Kirschner K. N. et al. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29, 622–655 (2008). 10.1002/jcc.20820 PubMed DOI PMC
Rao V. S. R. Conformation of carbohydrates. (Harwood Academic Publishers, 1998).
Lim Y.-R. & Oh D.-K. Microbial metabolism and biotechnological production of D-allose. Applied Microbiology and Biotechnology 91, 229–235 (2011). 10.1007/s00253-011-3370-8 PubMed DOI
Kamitori S. X-ray structures of Enterobacter cloacae allose-binding protein in complexes with monosaccharides demonstrate its unique recognition mechanism for high affinity to allose. Biochemical and Biophysical Research Communications 682, 187–192 (2023). 10.1016/j.bbrc.2023.10.016 PubMed DOI
Stack R. J. Identification of L-altrose in the extracellular polysaccharide from Butyrivibrio fibrisolvens strain CF3. FEMS Microbiology Letters 48, 83–87 (1987). 10.1111/j.1574-6968.1987.tb02520.x DOI
Kotake T., Yamanashi Y., Imaizumi C. & Tsumuraya Y. Metabolism of L-arabinose in plants. J Plant Res 129, 781–792 (2016). 10.1007/s10265-016-0834-z PubMed DOI PMC
Labourel A. et al. The mechanism by which arabinoxylanases can recognize highly decorated xylans. Journal of Biological Chemistry 291, 22149–22159 (2016). 10.1074/jbc.M116.743948 PubMed DOI PMC
Honta H., Inamura T., Konishi T., Satoh S. & Iwai H. UDP-arabinopyranose mutase gene expressions are required for the biosynthesis of the arabinose side chain of both pectin and arabinoxyloglucan, and normal leaf expansion in Nicotiana tabacum. Journal of Plant Research 131, 307–317 (2018). 10.1007/s10265-017-0985-6 PubMed DOI
Naidu D. S., Hlangothi S. P. & John M. J. Bio-based products from xylan: A review. Carbohydr. Polym. 179, 28–41 (2018). 10.1016/j.carbpol.2017.09.064 PubMed DOI
Limtiaco J. F. K., Beni S., Jones C. J., Langeslay D. J. & Larive C. K. NMR methods to monitor the enzymatic depolymerization of heparin. Analytical and Bioanalytical Chemistry 399, 593–603 (2011). 10.1007/s00216-010-4132-7 PubMed DOI PMC
Han Z.-R., Xing X.-H., Yu G.-L., Zeng Y.-Y. & Zhang L.-J. Heparinase digestion-based disaccharide composition analysis of heparin and heparinoid drugs. Chinese Journal of Analytical Chemistry 43, 964–970 (2015). 10.1016/S1872-2040(15)60835-0 DOI
Moon A. F. et al. Structural analysis of the sulfotransferase (3-O-sulfotransferase isoform 3) involved in the biosynthesis of an entry receptor for herpes simplex virus 1. Journal of Biological Chemistry 279, 45185–45193 (2004). 10.1074/jbc.M405013200 PubMed DOI PMC
Hwang J. J. et al. The human brain produces fructose from glucose. JCI Insight 2 (2017). 10.1172/jci.insight.90508 PubMed DOI PMC
Xia J. & Case D. A. Sucrose in aqueous solution revisited, Part 1: Molecular dynamics simulations and direct and indirect dipolar coupling analysis. Biopolymers 97, 276–288 (2012). 10.1002/bip.22017 PubMed DOI PMC
Stanley P., Moremen K. W., Lewis N. E., Taniguchi N. & Aebi M. Essentials of Glycobiology. Chapter 9: N-Glycans. 4th edn, (Cold Spring Harbor (NY), 2022).
Seki H. et al. Structural basis for the specific cleavage of core-fucosylated N-glycans by endo-B-N-acetylglucosaminidase from the fungus Cordyceps militaris. Journal of Biological Chemistry 294, 17143–17154 (2019). 10.1074/jbc.RA119.010842 PubMed DOI PMC
Guvench O., Martin D. & Greene M. Pyranose ring puckering thermodynamics for glycan monosaccharides associated with vertebrate proteins. Int. J. Mol. Sci. 23 (2022). PubMed PMC
Alibay I. & Bryce R. A. Ring puckering landscapes of glycosaminoglycan-related monosaccharides from molecular dynamics simulations. J. Chem. Inf. Model. 59, 4729–4741 (2019). 10.1021/acs.jcim.9b00529 PubMed DOI
Ouyang Y., Zhao J. & Wang S. Multifunctional hydrogels based on chitosan, hyaluronic acid and other biological macromolecules for the treatment of inflammatory bowel disease: A review. Int. J. Biol. Macromol. 227, 505–523 (2023). 10.1016/j.ijbiomac.2022.12.032 PubMed DOI
Cybulska J., Brzyska A., Zdunek A. & Woliński K. Simulation of force spectroscopy experiments on galacturonic acid oligomers. PLOS ONE 9, e107896 (2014). 10.1371/journal.pone.0107896 PubMed DOI PMC
Brockhausen I., Schachter H. & Stanley P. in Essentials of Glycobiology (eds Varki Ajit, Cummings R. D., & Esko J. D.) (Cold Spring Harbor Press, 2022).
Sanz-Martinez I., Pereira S., Merino P., Corzana F. & Hurtado-Guerrero R. Molecular recognition of GalNAc in mucin-type O-glycosylation. Accounts of Chemical Research 56, 548–560 (2023). 10.1021/acs.accounts.2c00723 PubMed DOI PMC
Shriver Z., Capila I., Venkataraman G. & Sasisekharan R. in Heparin - A Century of Progress (eds Lever Rebecca, Mulloy Barbara, & Page Clive P.) 159–176 (Springer Berlin Heidelberg, 2012).
Sattelle B. M. & Almond A. Is N-acetyl-d-glucosamine a rigid 4C1 chair? Glycobiology 21, 1651–1662 (2011). 10.1093/glycob/cwr101 PubMed DOI PMC
Swain M., Brisson J.-R., Sprott G. D., Cooper F. P. & Patel G. B. Identification of β-l-gulose as the sugar moiety of the main polar lipid of Thermoplasma acidophilum. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1345, 56–64 (1997). 10.1016/S0005-2760(96)00163-4 PubMed DOI
Hsieh P.-H., Thieker D. F., Guerrini M., Woods R. J. & Liu J. Uncovering the relationship between sulphation patterns and conformation of iduronic acid in heparan sulphate. Scientific Reports 6, 29602 (2016). 10.1038/srep29602 PubMed DOI PMC
Guerrini M. et al. Conformational transitions induced in heparin octasaccharides by binding with antithrombin III. Biochemical Journal 399, 191–198 (2006). 10.1042/BJ20060656 PubMed DOI PMC
Lewis A. L. et al. Cataloging natural sialic acids and other nonulosonic acids (NulOs), and their representation using the Symbol Nomenclature for Glycans. Glycobiology 33, 99–103 (2023). 10.1093/glycob/cwac072 PubMed DOI PMC
Wang W. et al. Human prostate-specific antigen carries N-glycans with ketodeoxynononic acid. Engineering 26, 119–131 (2023). 10.1016/j.eng.2023.02.009 DOI
Telford J. C. et al. The Aspergillus fumigatus sialidase Is a 3-Deoxy-d-glycero-d-galacto-2-nonulosonic Acid Hydrolase (KDNase): Structual and mechanistic insights. Journal of Biological Chemistry 286, 10783–10792 (2011). 10.1074/jbc.M110.207043 PubMed DOI PMC
Kosma P. Progress in Kdo-glycoside chemistry. Tetrahedron Letters 57, 2133–2142 (2016). 10.1016/j.tetlet.2016.04.005 PubMed DOI PMC
Holst O. The structures of core regions from enterobacterial lipopolysaccharides – an update. FEMS Microbiology Letters 271, 3–11 (2007). 10.1111/j.1574-6968.2007.00708.x PubMed DOI
Nguyen H. P. et al. Germline antibody recognition of distinct carbohydrate epitopes. Nature Structural & Molecular Biology 10, 1019–1025 (2003). 10.1038/nsb1014 PubMed DOI
Wagstaff B. A., Rejzek M. & Field R. A. Identification of a Kdn biosynthesis pathway in the haptophyte Prymnesium parvum suggests widespread sialic acid biosynthesis among microalgae. Journal of Biological Chemistry 293, 16277–16290 (2018). 10.1074/jbc.RA118.004921 PubMed DOI PMC
Khoo K.-H. et al. Chemistry of the lyxose-containing mycobacteriophage receptors of mycobacterium phlei/mycobacterium smegmatis. Biochemistry 35, 11812–11819 (1996). 10.1021/bi961055+ PubMed DOI
Moons S. J., Adema G. J., Derks M. T. G. M., Boltje T. J. & Büll C. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 29, 433–445 (2019). 10.1093/glycob/cwz026 PubMed DOI
Gorenflos López J. L. et al. Real-time monitoring of the sialic acid biosynthesis pathway by NMR. Chem. Sci. 14, 3482–3492 (2023). 10.1039/D2SC06986E PubMed DOI PMC
Crouch E. et al. Critical role of Arg/Lys343 in the species-dependent recognition of phosphatidylinositol by pulmonary surfactant protein D. Biochemistry 46, 5160–5169 (2007). 10.1021/bi700037x PubMed DOI
Martinez J. et al. Crystal structures of N-acetylmannosamine kinase provide insights into enzyme activity and inhibition*. Journal of Biological Chemistry 287, 13656–13665 (2012). 10.1074/jbc.M111.318170 PubMed DOI PMC
Spiwok V. & Tvaroška I. Conformational free energy surface of α-N-acetylneuraminic acid: An interplay between hydrogen bonding and solvation. The Journal of Physical Chemistry B 113, 9589–9594 (2009). 10.1021/jp8113495 PubMed DOI
Yu X. et al. Structural basis of rotavirus strain preference toward N-acetyl- or N-glycolylneuraminic acid-containing receptors. Journal of Virology 86, 13456–13466 (2012). 10.1128/jvi.06975-11 PubMed DOI PMC
Liu X. et al. Molecular insights into the assembly and functional diversification of typhoid toxin. mBio 13, e01916–01921 (2022). 10.1128/mbio.01916-21 PubMed DOI PMC
Matsuo T., Suzuki H., Hashiguchi M. & Izumori K. D-Psicose is a rare sugar that provides no energy to growing rats. J. Nutr. Sci. Vitaminol. 48, 77–80 (2002). 10.3177/jnsv.48.77 PubMed DOI
Mu W., Zhang W., Feng Y., Jiang B. & Zhou L. Recent advances on applications and biotechnological production of d-psicose. Applied Microbiology and Biotechnology 94, 1461–1467 (2012). 10.1007/s00253-012-4093-1 PubMed DOI
Herve du Penhoat P. C. M. & Perlin A. S. A carbon-13 N.M.R. spectral study of D-psicose: anomeric and ring-form equilibria of solutions of 2-hexuloses. Carbohydr. Res. 36, 111–120 (1974). 10.1016/S0008-6215(00)81996-5 DOI
Puspitasari Y. E. et al. Saponin and fatty acid profiling of the sea cucumber holothuria atra, α-glucosidase inhibitory activity and the identification of a novel triterpene glycoside. Nutrients 15 (2023). 10.3390/nu15041033 PubMed DOI PMC
Kalinin V. I., Silchenko A. S., Avilov S. A., Stonik V. A. & Smirnov A. V. Sea cucumbers triterpene glycosides, the recent progress in structural elucidation and chemotaxonomy. Phytochemistry Reviews 4, 221–236 (2005). 10.1007/s11101-005-1354-y DOI
Rockey W. M., Dowd M. K., Reilly P. J. & French A. D. Modeling of deoxy- and dideoxyaldohexopyranosyl ring puckering with MM3(92). Carbohydr. Res. 335, 261–273 (2001). 10.1016/S0008-6215(01)00240-3 PubMed DOI
Jiang N., Dillon F. M., Silva A., Gomez-Cano L. & Grotewold E. Rhamnose in plants - from biosynthesis to diverse functions. Plant Science 302, 110687 (2021). 10.1016/j.plantsci.2020.110687 PubMed DOI
Vulliez-Le Normand B. et al. Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody. Proc. Natl. Acad. Sci. 105, 9976–9981 (2008). 10.1073/pnas.0801711105 PubMed DOI PMC
Sinden R. R. in DNA Structure and Function (ed Sinden Richard R.) 1–57 (Academic Press, 1994).
Egli M. in The excitement of discovery: selected papers of alexander rich Vol. Volume 11 Series in Structural Biology 309–315 (WORLD SCIENTIFIC, 2018).
Guzik G. P. & Stachowicz W. Study on radiation-induced radicals giving rise to stable EPR signal suitable for the detection of irradiation in L-sorbose-containing fruits. Nukleonika 61, 461–465 (2016). doi: 10.1515/nuka-2016-0075 DOI
Sugiura M. et al. Identification, functional characterization, and crystal structure determination of bacterial levoglucosan dehydrogenase. Journal of Biological Chemistry 293, 17375–17386 (2018). 10.1074/jbc.RA118.004963 PubMed DOI PMC
Ortiz A. D. et al. D-tagatose: A rare sugar with functional properties and antimicrobial potential against oral species. Nutrients 16 (2024). PubMed PMC
Pazur J. H., Kane J. A., Dropkin D. J. & Jackman L. M. Glycans from streptococcal cell walls: An antigenic triheteroglycan of 6-deoxy-l-talose, l-rhamnose and d-galactose from Streptococcus bovis. Archives of Biochemistry and Biophysics 150, 382–391 (1972). 10.1016/0003-9861(72)90053-7 PubMed DOI
Jann B. et al. NMR investigation of the 6-deoxy-l-talose-containing O45, O45-related (O45rel), and O66 polysaccharides of Escherichia coli. Carbohydr. Res. 278, 155–165 (1995). 10.1016/0008-6215(95)00243-6 PubMed DOI
Huang T.-Y., Zulueta M. M. L. & Hung S.-C. One-pot strategies for the synthesis of the tetrasaccharide linkage region of proteoglycans. Organic Letters 13, 1506–1509 (2011). 10.1021/ol200192d PubMed DOI
Kruskal J. B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the Merican Mathematical Society 7, 48–50 (1956). 10.1090/S0002-9939-1956-0078686-7 DOI
Cheetham N. W., Dasgupta P. & Ball G. E. NMR and modelling studies of disaccharide conformation. Carbohydr Res 338, 955–962 (2003). 10.1016/s0008-6215(03)00069-7 PubMed DOI
Wormald M. R. et al. Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102, 371–386 (2002). 10.1021/cr990368i PubMed DOI
Woods R. J. Three-dimensional structures of oligosaccharides. Curr Opin Struct Biol 5, 591–598 (1995). 10.1016/0959-440x(95)80049-2 PubMed DOI
Lovell S. C., Word J. M., Richardson J. S. & Richardson D. C. The Penultimate Rotamer Library. Proteins: Structure, Function, and Genetics 40, 389–408 (2000). PubMed
Bock K. & Lemieux R. U. The conformational properties of sucrose in aqueous solution: intramolecular hydrogen-bonding. Carbohydrate Research 100, 63–74 (1982). 10.1016/S0008-6215(00)81026-5 DOI
Case D. A. et al. AmberTools. J Chem Inf Model 63, 6183–6191 (2023). 10.1021/acs.jcim.3c01153 PubMed DOI PMC
Roe D. R. & Cheatham T. E. 3rd. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput 9, 3084–3095 (2013). 10.1021/ct400341p PubMed DOI
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W. & Klein M. L. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics 79, 926–935 (1983). 10.1063/1.445869 DOI
Mahoney M. W. & Jorgensen W. L. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. The Journal of Chemical Physics 112, 8910–8922 (2000). 10.1063/1.481505 DOI
Funcke W., von Sonntag C. & Triantaphylides C. Detection of the open-chain forms of D-fructose and L-sorbose in aqueous solution by using 13C-n.m.r. spectroscopy. Carbohydr. Res. 75, 305–309 (1979). 10.1016/S0008-6215(00)84649-2 DOI
Jeffrey G. A. & Huang D.-b. The hydrogen bonding in the crystal structure of raffinose pentahydrate. Carbohydr. Res. 206, 173–182 (1990). 10.1016/0008-6215(90)80058-B PubMed DOI
Beevers C. A., McDonald T. R. R., Robertson J. H. & Stern F. The crystal structure of sucrose. Acta Crystallographica 5, 689–690 (1952). doi: 10.1107/S0365110X52001908 DOI
Prestegard J. H. A consensus structural motif for the capsular polysaccharide of Cryptococcus Neoformans by NMR/MD. Proc Natl Acad Sci U S A 121, e2322413121 (2024). 10.1073/pnas.2322413121 PubMed DOI PMC
Schachner L. F. et al. Exposing the molecular heterogeneity of glycosylated biotherapeutics. Nat Commun 15, 3259 (2024). 10.1038/s41467-024-47693-8 PubMed DOI PMC
Day C. J. et al. The essential malaria protein PfCyRPA targets glycans to invade erythrocytes. Cell Rep 43, 114012 (2024). 10.1016/j.celrep.2024.114012 PubMed DOI
Ives C. M. et al. Restoring protein glycosylation with GlycoShape. Nat Methods 21, 2117–2127 (2024). 10.1038/s41592-024-02464-7 PubMed DOI PMC
Murphy P. V. et al. Small lectin ligands as a basis for applications in glycoscience and glycomedicine. Chem Soc Rev 53, 9428–9445 (2024). 10.1039/d4cs00642a PubMed DOI
Urban J. et al. Predicting glycan structure from tandem mass spectrometry via deep learning. Nat Methods 21, 1206–1215 (2024). 10.1038/s41592-024-02314-6 PubMed DOI PMC
Widmalm G. Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy. JACS Au 4, 20–39 (2024). 10.1021/jacsau.3c00639 PubMed DOI PMC
Brunetti N. S. et al. SARS-CoV-2 uses CD4 to infect T helper lymphocytes. Elife 12 (2023). 10.7554/eLife.84790 PubMed DOI PMC
Amos R. A. et al. Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I. Nat Plants 8, 1289–1303 (2022). 10.1038/s41477-022-01270-3 PubMed DOI PMC
Purushotham P. et al. Mechanism of mixed-linkage glucan biosynthesis by barley cellulose synthase-like CslF6 (1,3;1,4)-beta-glucan synthase. Sci Adv 8, eadd1596 (2022). 10.1126/sciadv.add1596 PubMed DOI PMC
Pang Y. T., Acharya A., Lynch D. L., Pavlova A. & Gumbart J. C. SARS-CoV-2 spike opening dynamics and energetics reveal the individual roles of glycans and their collective impact. Commun Biol 5, 1170 (2022). 10.1038/s42003-022-04138-6 PubMed DOI PMC
Canales A. et al. Revealing the Specificity of Human H1 Influenza A Viruses to Complex N-Glycans. JACS Au 3, 868–878 (2023). 10.1021/jacsau.2c00664 PubMed DOI PMC
Unione L., Arda A., Jimenez-Barbero J. & Millet O. NMR of glycoproteins: profiling, structure, conformation and interactions. Curr Opin Struct Biol 68, 9–17 (2021). 10.1016/j.sbi.2020.09.009 PubMed DOI
Klontz E. H. et al. Structure and dynamics of an alpha-fucosidase reveal a mechanism for highly efficient IgG transfucosylation. Nat Commun 11, 6204 (2020). 10.1038/s41467-020-20044-z PubMed DOI PMC
Ishida T., Parks J. M. & Smith J. C. Insight into the Catalytic Mechanism of GH11 Xylanase: Computational Analysis of Substrate Distortion Based on a Neutron Structure. J Am Chem Soc 142, 17966–17980 (2020). 10.1021/jacs.0c02148 PubMed DOI
Tanaka K. et al. WURCS: the Web3 unique representation of carbohydrate structures. J Chem Inf Model 54, 1558–1566 (2014). 10.1021/ci400571e PubMed DOI
McNaught A. D. Nomenclature of carbohydrates (recommendations 1996). Adv Carbohydr Chem Biochem 52, 43–177 (1997). PubMed
Bernstein H. J. et al. Specification of the Crystallographic Information File format, version 2.0. Journal of Applied Crystallography 49, 277–284 (2016). doi: 10.1107/S1600576715021871 DOI