A nnU-Net-based automatic segmentation of FCD type II lesions in 3D FLAIR MRI images
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40656161
PubMed Central
PMC12247529
DOI
10.3389/frai.2025.1601815
Knihovny.cz E-zdroje
- Klíčová slova
- deep learning, epilepsy, focal cortical dysplasia, nnU-Net, segmentation,
- Publikační typ
- časopisecké články MeSH
Focal cortical dysplasia (FCD) type II is a common cause of epilepsy and is challenging to detect due to its similarities with other brain conditions. Finding these lesions accurately is essential for successful surgery and seizure control. Manual detection is slow and challenging because the MRI features are subtle. Deep learning, especially convolutional neural networks, has shown great potential in automating image classification and segmentation by learning and extracting features. The nnU-Net framework is known for its ability to adapt its settings, including preprocessing, network design, training, and post-processing, to any new medical imaging task. This study employs an automated slice selection approach that ranks axial FLAIR slices by their peak voxel intensity and retains the five highest-ranked slices per scan, thereby focusing the network on lesion-rich slices and uses nnU-Net to automate the segmentation of FCD type II lesions on 3D FLAIR MRI images. The study was conducted on 85 FCD type II subjects and results are evaluated through 5-fold cross-validation. Using nnU-Net's flexible and robust design, this study aims to improve the accuracy and speed of lesion detection, helping with better presurgical evaluations and outcomes for epilepsy patients.
Department of Applied Mathematics and Scientific Computing IIT Roorkee Roorkee India
Department of Computer Science VŠB Technical University of Ostrava Ostrava Czechia
Department of Mathematics IIT Roorkee Roorkee India
Lassonde School of Engineering York University Toronto ON Canada
Mehta Family School of Data Science and Artificial Intelligence IIT Roorkee Roorkee India
Zobrazit více v PubMed
David B., Kröll-Seger J., Schuch F., Wagner J., Wellmer J., Woermann F., et al. (2021). External validation of automated focal cortical dysplasia detection using morphometric analysis. Epilepsia 62, 1005–1021. doi: 10.1111/epi.16853, PMID: PubMed DOI
Eelbode T., Bertels J., Berman M., Vandermeulen D., Maes F., Bisschops R., et al. (2020). Optimization for medical image segmentation: theory and practice when evaluating with dice score or Jaccard index. IEEE Trans. Med. Imaging 39, 3679–3690. doi: 10.1109/TMI.2020.3002417, PMID: PubMed DOI
Feng C., Zhao H., Li Y., Wen J. (2020). Automatic localization and segmentation of focal cortical dysplasia in FLAIR-negative patients using a convolutional neural network. J. Appl. Clin. Med. Phys. 21, 215–226. doi: 10.1002/acm2.12985, PMID: PubMed DOI PMC
Ganji Z., Azizi S., Faraji R., Zare H. (2024). Application of neuroimaging in diagnosis of focal cortical dysplasia: a survey of computational techniques. Neurocomputing 580:127418. doi: 10.1016/j.neucom.2024.127418 DOI
Ganji Z., Hakak M. A., Zamanpour S. A., Zare H. (2021). Automatic detection of focal cortical dysplasia type II in MRI: is the application of surface-based morphometry and machine learning promising? Front. Hum. Neurosci. 15:608285. doi: 10.3389/fnhum.2021.608285, PMID: PubMed DOI PMC
Gill R. S., Lee H. M., Caldairou B., Hong S. J., Barba C., Deleo F., et al. (2021). Multicenter validation of a deep learning detection algorithm for focal cortical dysplasia. Neurology 97, E1571–E1582. doi: 10.1212/WNL.0000000000012698, PMID: PubMed DOI PMC
House P. M., Kopelyan M., Braniewska N., Silski B., Chudzinska A., Holst B., et al. (2021). Automated detection and segmentation of focal cortical dysplasias (FCDs) with artificial intelligence: presentation of a novel convolutional neural network and its prospective clinical validation. Epilepsy Res. 172:106594. doi: 10.1016/j.eplepsyres.2021.106594, PMID: PubMed DOI
Isensee F., Jaeger P. F., Kohl S. A. A., Petersen J., Maier-Hein K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211. doi: 10.1038/s41592-020-01008-z, PMID: PubMed DOI
Kabat J., Król P.. (2012). Focal cortical dysplasia-review. Available online at: http://www.polradiol.com/fulltxt.php?ICID=882968 (Accessed February 20, 2025). PubMed PMC
Lee H. M., Gill R. S., Fadaie F., Cho K. H., Guiot M. C., Hong S. J., et al. (2020). Unsupervised machine learning reveals lesional variability in focal cortical dysplasia at mesoscopic scale. NeuroImage Clin. 28:102438. doi: 10.1016/J.NICL.2020.102438, PMID: PubMed DOI PMC
Niyas S., Chethana Vaisali S., Show I., Chandrika T. G., Vinayagamani S., Kesavadas C., et al. (2021). Segmentation of focal cortical dysplasia lesions from magnetic resonance images using 3D convolutional neural networks. Biomed. Signal Process. Control 70:102951. doi: 10.1016/j.bspc.2021.102951 DOI
Radiopaedia . (2024). Focal cortical dysplasia. Available online at: https://radiopaedia.org/articles/focal-cortical-dysplasia. (Accessed July 21, 2024)
Schuch F., Walger L., Schmitz M., David B., Bauer T., Harms A., et al. (2023). An open presurgery MRI dataset of people with epilepsy and focal cortical dysplasia type II. Sci. Data 10:475. doi: 10.1038/s41597-023-02386-7, PMID: PubMed DOI PMC
Simozo F. H., Oliveira M. S., Murta-Junior L. O. (2020). Brain tissue classification to detect focal cortical dysplasia in magnetic resonance imaging. Encontro Nacional de Inteligência Artificial e Computacional (ENIAC). 615–625
Spitzer H., Ripart M., Whitaker K., D’Arco F., Mankad K., Chen A. A., et al. (2022). Interpretable surface-based detection of focal cortical dysplasias: a multi-centre epilepsy lesion detection study. Brain 145, 3859–3871. doi: 10.1093/BRAIN/AWAC224, PMID: PubMed DOI PMC
Tiwari A., Srivastava S., Pant M. (2020). Brain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019. Pattern Recogn. Lett. 131, 244–260. doi: 10.1016/j.patrec.2019.11.020 DOI
Wang X., Zhou Y., Deng D., Li H., Guan X., Fang L., et al. (2023). Developing a deep learning model to predict epilepsy recurrence in patients with focal cortical dysplasia type III. Quant. Imaging Med. Surg. 13, 999–1008. doi: 10.21037/qims-22-276, PMID: PubMed DOI PMC
Zhang W., Yu H., Zhang M., Cao G., Kang G., Cai L. (2024). MATPR-UNet: a multi attention two-path residual UNet for focal cortical dysplasia lesions segmentation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1641–1645
Zheng R., Chen R., Chen C., Yang Y., Ge Y., Ye L., et al. (2024). Automated detection of focal cortical dysplasia based on magnetic resonance imaging and positron emission tomography. Seizure 117, 126–132. doi: 10.1016/j.seizure.2024.02.009, PMID: PubMed DOI