A nnU-Net-based automatic segmentation of FCD type II lesions in 3D FLAIR MRI images

. 2025 ; 8 () : 1601815. [epub] 20250627

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40656161

Focal cortical dysplasia (FCD) type II is a common cause of epilepsy and is challenging to detect due to its similarities with other brain conditions. Finding these lesions accurately is essential for successful surgery and seizure control. Manual detection is slow and challenging because the MRI features are subtle. Deep learning, especially convolutional neural networks, has shown great potential in automating image classification and segmentation by learning and extracting features. The nnU-Net framework is known for its ability to adapt its settings, including preprocessing, network design, training, and post-processing, to any new medical imaging task. This study employs an automated slice selection approach that ranks axial FLAIR slices by their peak voxel intensity and retains the five highest-ranked slices per scan, thereby focusing the network on lesion-rich slices and uses nnU-Net to automate the segmentation of FCD type II lesions on 3D FLAIR MRI images. The study was conducted on 85 FCD type II subjects and results are evaluated through 5-fold cross-validation. Using nnU-Net's flexible and robust design, this study aims to improve the accuracy and speed of lesion detection, helping with better presurgical evaluations and outcomes for epilepsy patients.

Zobrazit více v PubMed

David B., Kröll-Seger J., Schuch F., Wagner J., Wellmer J., Woermann F., et al. (2021). External validation of automated focal cortical dysplasia detection using morphometric analysis. Epilepsia 62, 1005–1021. doi: 10.1111/epi.16853, PMID: PubMed DOI

Eelbode T., Bertels J., Berman M., Vandermeulen D., Maes F., Bisschops R., et al. (2020). Optimization for medical image segmentation: theory and practice when evaluating with dice score or Jaccard index. IEEE Trans. Med. Imaging 39, 3679–3690. doi: 10.1109/TMI.2020.3002417, PMID: PubMed DOI

Feng C., Zhao H., Li Y., Wen J. (2020). Automatic localization and segmentation of focal cortical dysplasia in FLAIR-negative patients using a convolutional neural network. J. Appl. Clin. Med. Phys. 21, 215–226. doi: 10.1002/acm2.12985, PMID: PubMed DOI PMC

Ganji Z., Azizi S., Faraji R., Zare H. (2024). Application of neuroimaging in diagnosis of focal cortical dysplasia: a survey of computational techniques. Neurocomputing 580:127418. doi: 10.1016/j.neucom.2024.127418 DOI

Ganji Z., Hakak M. A., Zamanpour S. A., Zare H. (2021). Automatic detection of focal cortical dysplasia type II in MRI: is the application of surface-based morphometry and machine learning promising? Front. Hum. Neurosci. 15:608285. doi: 10.3389/fnhum.2021.608285, PMID: PubMed DOI PMC

Gill R. S., Lee H. M., Caldairou B., Hong S. J., Barba C., Deleo F., et al. (2021). Multicenter validation of a deep learning detection algorithm for focal cortical dysplasia. Neurology 97, E1571–E1582. doi: 10.1212/WNL.0000000000012698, PMID: PubMed DOI PMC

House P. M., Kopelyan M., Braniewska N., Silski B., Chudzinska A., Holst B., et al. (2021). Automated detection and segmentation of focal cortical dysplasias (FCDs) with artificial intelligence: presentation of a novel convolutional neural network and its prospective clinical validation. Epilepsy Res. 172:106594. doi: 10.1016/j.eplepsyres.2021.106594, PMID: PubMed DOI

Isensee F., Jaeger P. F., Kohl S. A. A., Petersen J., Maier-Hein K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211. doi: 10.1038/s41592-020-01008-z, PMID: PubMed DOI

Kabat J., Król P.. (2012). Focal cortical dysplasia-review. Available online at: http://www.polradiol.com/fulltxt.php?ICID=882968 (Accessed February 20, 2025). PubMed PMC

Lee H. M., Gill R. S., Fadaie F., Cho K. H., Guiot M. C., Hong S. J., et al. (2020). Unsupervised machine learning reveals lesional variability in focal cortical dysplasia at mesoscopic scale. NeuroImage Clin. 28:102438. doi: 10.1016/J.NICL.2020.102438, PMID: PubMed DOI PMC

Niyas S., Chethana Vaisali S., Show I., Chandrika T. G., Vinayagamani S., Kesavadas C., et al. (2021). Segmentation of focal cortical dysplasia lesions from magnetic resonance images using 3D convolutional neural networks. Biomed. Signal Process. Control 70:102951. doi: 10.1016/j.bspc.2021.102951 DOI

Radiopaedia . (2024). Focal cortical dysplasia. Available online at: https://radiopaedia.org/articles/focal-cortical-dysplasia. (Accessed July 21, 2024)

Schuch F., Walger L., Schmitz M., David B., Bauer T., Harms A., et al. (2023). An open presurgery MRI dataset of people with epilepsy and focal cortical dysplasia type II. Sci. Data 10:475. doi: 10.1038/s41597-023-02386-7, PMID: PubMed DOI PMC

Simozo F. H., Oliveira M. S., Murta-Junior L. O. (2020). Brain tissue classification to detect focal cortical dysplasia in magnetic resonance imaging. Encontro Nacional de Inteligência Artificial e Computacional (ENIAC). 615–625

Spitzer H., Ripart M., Whitaker K., D’Arco F., Mankad K., Chen A. A., et al. (2022). Interpretable surface-based detection of focal cortical dysplasias: a multi-centre epilepsy lesion detection study. Brain 145, 3859–3871. doi: 10.1093/BRAIN/AWAC224, PMID: PubMed DOI PMC

Tiwari A., Srivastava S., Pant M. (2020). Brain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019. Pattern Recogn. Lett. 131, 244–260. doi: 10.1016/j.patrec.2019.11.020 DOI

Wang X., Zhou Y., Deng D., Li H., Guan X., Fang L., et al. (2023). Developing a deep learning model to predict epilepsy recurrence in patients with focal cortical dysplasia type III. Quant. Imaging Med. Surg. 13, 999–1008. doi: 10.21037/qims-22-276, PMID: PubMed DOI PMC

Zhang W., Yu H., Zhang M., Cao G., Kang G., Cai L. (2024). MATPR-UNet: a multi attention two-path residual UNet for focal cortical dysplasia lesions segmentation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1641–1645

Zheng R., Chen R., Chen C., Yang Y., Ge Y., Ye L., et al. (2024). Automated detection of focal cortical dysplasia based on magnetic resonance imaging and positron emission tomography. Seizure 117, 126–132. doi: 10.1016/j.seizure.2024.02.009, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...