• This record comes from PubMed

Galaxy QCxMS for straightforward semi-empirical quantum mechanical EI-MS prediction

. 2025 ; 2025 () : gigabyte160. [epub] 20250704

Status PubMed-not-MEDLINE Language English Country China Media electronic-ecollection

Document type Journal Article

High-performance computing (HPC) environments are crucial for computational research, including quantum chemistry (QC), but pose challenges for non-expert users. Researchers with limited computational knowledge struggle to utilise domain-specific software and access mass spectra prediction for in silico annotation. Here, we provide a robust workflow that leverages interoperable file formats for molecular structures to ensure integration across various QC tools. The quantum chemistry package for mass spectral predictions after electron ionization or collision-induced dissociation has been integrated into the Galaxy platform, enabling automated analysis of fragmentation mechanisms. The extended tight binding quantum chemistry package, chosen for its balance between accuracy and computational efficiency, provides molecular geometry optimisation. A Docker image encapsulates the necessary software stack. We demonstrated the workflow for four molecules, highlighting the scalability and efficiency of our solution via runtime performance analysis. This work shows how non-HPC users can make these predictions effortlessly, using advanced computational tools without needing in-depth expertise.

See more in PubMed

Aksenov AA, Da Silva R, Knight R et al. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem., 2017; 1: 0054. doi: 10.1038/s41570-017-0054. DOI

David A, Chaker J, Price EJ et al. Towards a comprehensive characterisation of the human internal chemical exposome: challenges and perspectives. Environ. Int., 2021; 156: 106630. doi: 10.1016/j.envint.2021.106630. PubMed DOI

Chao A, Al-Ghoul H, McEachran AD et al. In silico MS/MS spectra for identifying unknowns: a critical examination using CFM-ID algorithms and ENTACT mixture samples. Anal. Bioanal. Chem., 2020; 412: 1303–1315. doi: 10.1007/s00216-019-02351-7. PubMed DOI PMC

Bremer PL, Vaniya A, Kind T et al. How well can we predict mass spectra from structures? Benchmarking competitive fragmentation modeling for metabolite identification on untrained tandem mass spectra. J. Chem. Inf. Model., 2022; 62: 4049–4056. doi: 10.1021/acs.jcim.2c00936. PubMed DOI PMC

Grimme S. . Towards first principles calculation of electron impact mass spectra of molecules. Angew. Chem. Int. Ed., 2013; 52(24): 6306–6312. doi: 10.1002/anie.201300158. PubMed DOI

Koopman J, Grimme S. . Calculation of electron ionization mass spectra with semiempirical GFNn-xTB methods. ACS Omega, 2019; 4(12): 15120–15133. doi: 10.1021/acsomega.9b02011. PubMed DOI PMC

Koopman J, Grimme S. . From QCEIMS to QCxMS: a tool to routinely calculate CID mass spectra using molecular dynamics. J. Am. Soc. Mass Spectrom., 2021; 32(7): 1735–1751. doi: 10.1021/jasms.1c00098. PubMed DOI

The Galaxy Community . The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Res., 2024; 05: gkae410. doi: 10.1093/nar/gkae410. PubMed DOI PMC

Batut B, Hiltemann S, Bagnacani A et al. Community-driven data analysis training for biology. Cell Syst., 2018; 6(6): 752–758.e1. doi: 10.1016/j.cels.2018.05.012. PubMed DOI PMC

Rasche H, Hyde C, Davis J et al. Training infrastructure as a service. GigaScience, 2022; 12: giad048. doi: 10.1093/gigascience/giad048/7217081. PubMed DOI PMC

Hiltemann S, Rasche H, Gladman S et al. Galaxy training: a powerful framework for teaching! PLoS Comput. Biol., 2023; 19(1): e1010752. doi: 10.1371/journal.pcbi.1010752. PubMed DOI PMC

Grimme S, Bannwarth C, Shushkov P. . A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-Block elements ( PubMed DOI

Bannwarth C, Ehlert S, Grimme S. . GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput., 2019; 15(3): 1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI

Hecht H, Rojas WY, Ahmad Z et al. Quantum chemistry-based prediction of electron ionization mass spectra for environmental chemicals. Anal. Chem., 2024; 96(33): 13652–13662. doi: 10.1021/acs.analchem.4c02589. PubMed DOI PMC

Barker M, Hong NPC, Katz DS et al. Introducing the FAIR principles for research software. Sci. Data, 2022; 9: 622. doi: 10.1038/s41597-022-01710-x. PubMed DOI PMC

Bray SA, Lucas X, Kumar A et al. The ChemicalToolbox: reproducible, user-friendly cheminformatics analysis on the Galaxy platform. J. Cheminform., 2020; 12: 40. doi: 10.1186/s13321-020-00442-7. PubMed DOI PMC

O’Boyle NM, Banck M, James CA et al. Open babel: an open chemical toolbox. J. Cheminform., 2011; 3: 33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC

Nekrutenko A. . Using dataset collections (Galaxy Training Materials). 2024; https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/collections/tutorial.html (Online; Accessed 24 July 2024).

Hecht H, Troják M, Čech M et al. RECETOX/galaxytools: v0.4.0. Zenodo. 2024; 10.5281/zenodo.12820724. DOI

RECETOX . Galaxy tools for Untargeted Mass Spectrometry Analysis. GitHub. https://github.com/RECETOX/galaxytools.

Ison J, Kalaš M, Jonassen I et al. EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats. Bioinformatics, 2013; 29: 1325–1332. doi: 10.1093/bioinformatics/btt113. PubMed DOI PMC

Ison J, Ienasescu H, Chmura P et al. The bio.tools registry of software tools and data resources for the life sciences. Genome Biol., 2019; 20: 164. doi: 10.1186/s13059-019-1772-6. PubMed DOI PMC

da Veiga Leprevost F, Grüning BA, Aflitos SA et al. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics, 2017; 33(16): 2580–2582. doi: 10.1093/bioinformatics/btx192. PubMed DOI PMC

Grüning B, Dale R, Sjödin A et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat. Methods, 2018; 15: 475–476. doi: 10.1038/s41592-018-0046-7. PubMed DOI PMC

Nome T, van den Beek M, Bernt M et al. Use Apptainer containers for running Galaxy jobs (Galaxy Training Materials). 2024; https://training.galaxyproject.org/training-material/topics/admin/tutorials/apptainer/tutorial.html (Online; Accessed 24 July 2024).

Grüning B, Chilton J, Köster J et al. Practical computational reproducibility in the life sciences. Cell Syst., 2018; 6(6): 631–635. doi: 10.1016/j.cels.2018.03.014. PubMed DOI PMC

de Visser C, Johansson LF, Kulkarni P et al. Ten quick tips for building FAIR workflows. PLOS Comput. Biol., 2023; 19(9): e1011369, doi: 10.1371/journal.pcbi.1011369. PubMed DOI PMC

Soiland-Reyes S, Sefton P, Crosas M et al. Packaging research artefacts with RO-Crate. Data Sci., 2022; 5(2): 97–138. doi: 10.3233/DS-210053. DOI

RECETOX . Galaxy Histories with in silico mass spectra of Mirex, Ethylene, Benzophenone and Enilconazole predicted via QCxMS. Zenodo. 2024; 10.5281/zenodo.12806459. DOI

Sloggett C, Goonasekera N, Afgan E. . BioBlend: automating pipeline analyses within Galaxy and CloudMan. Bioinformatics, 2013; 29(13): 1685–1686. doi: 10.1093/bioinformatics/btt199. PubMed DOI PMC

Ahmad Z, Hecht H, Rojas W. . End-to-end EI+ mass spectra prediction workflow using QCxMS. WorkflowHub. 2025; 10.48546/WORKFLOWHUB.WORKFLOW.897.3. DOI

Goble C, Soiland-Reyes S, Bacall F et al. Implementing FAIR Digital Objects in the EOSC-Life Workflow Collaboratory. Zenodo. 2021; 10.5281/zenodo.4605654. DOI

Jakiela J, Hecht H. . Predicting EI+ mass spectra with QCxMS (Galaxy Training Materials). 2024; https://training.galaxyproject.org/training-material/topics/metabolomics/tutorials/qcxms-predictions/tutorial.html (Online; Accessed 2 October 2024).

Garcia L, Batut B, Burke ML et al. Ten simple rules for making training materials FAIR. PLOS Comput. Biol., 2020; 16(5): e1007854. doi: 10.1371/journal.pcbi.1007854. PubMed DOI PMC

Bauer CA, Grimme S. . Elucidation of electron ionization induced fragmentations of adenine by semiempirical and density functional molecular dynamics. J. Phys. Chem. A, 2014; 118: 11479–11484. doi: 10.1021/jp5096618. PubMed DOI

Wang S, Kind T, Tantillo DJ et al. Predicting in silico electron ionization mass spectra using quantum chemistry. J. Cheminform., 2020; 12: 63. doi: 10.1186/s13321-020-00470-3. PubMed DOI PMC

Wang S, Kind T, Bremer PL et al. Beyond the ground state: predicting electron ionization mass spectra using excited-state molecular dynamics. J. Chem. Inf. Model., 2022; 62: 4403–4410. doi: 10.1021/acs.jcim.2c00597. PubMed DOI PMC

Lee J, Kind T, Tantillo DJ et al. Evaluating the accuracy of the QCEIMS approach for computational prediction of electron ionization mass spectra of purines and pyrimidines. Metabolites, 2022; 12(1): 68. doi: 10.3390/metabo12010068. PubMed DOI PMC

Ahmad Z, Hecht H, Rojas W. . End-to-end spectra predictions: multi atoms dataset. WorkflowHub. 2024; 10.48546/WORKFLOWHUB.WORKFLOW.897.1. DOI

Hecht H, Troják M, Čech M et al. Galaxy tools for Untargeted Mass Spectrometry Analysis. 2025; [Computer software]. Software Heritage https://archive.softwareheritage.org/browse/snapshot/185690f3e21f005fd085a1bf9400627de8c84b59/directory/?origin_url=https://github.com/RECETOX/galaxytools.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...