Disruption of grin2A, an Epilepsy-Associated Gene, Produces Altered Spontaneous Swim Behavior in Zebrafish
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
40664506
PubMed Central
PMC12352540
DOI
10.1523/jneurosci.0946-25.2025
PII: JNEUROSCI.0946-25.2025
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR-Cas9, Grin genes, channelopathy, glutamate receptors, zebrafish,
- MeSH
- dánio pruhované MeSH
- epilepsie * genetika patofyziologie MeSH
- geneticky modifikovaná zvířata MeSH
- modely nemocí na zvířatech MeSH
- plavání * fyziologie MeSH
- proteiny dánia pruhovaného * genetika MeSH
- receptory N-methyl-D-aspartátu * genetika nedostatek MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- N-methyl D-aspartate receptor subtype 2A MeSH Prohlížeč
- NR2B NMDA receptor MeSH Prohlížeč
- proteiny dánia pruhovaného * MeSH
- receptory N-methyl-D-aspartátu * MeSH
N-Methyl-d-aspartate receptors (NMDARs) control synaptic plasticity and brain development in a manner determined by receptor subunit composition. Pathogenic variants in GRIN2A gene, encoding the NMDAR GluN2A subunit, can cause gain or loss of function of receptors containing the affected subunit and are associated with intellectual disability and epilepsy in patients. While in vitro studies of recombinant receptors have yielded some insights, animal experimental models are essential to better understand the relationship between the molecular pathology of the variants and the disease. Here we introduce a zebrafish model of GluN2A loss of function to study system-level effects of zebrafish grin2Aa and grin2Ab gene deletion. Our electrophysiological analysis revealed functional differences between receptors containing zebrafish GluN2Aa/b and GluN2Bb paralogs comparable with mammalian receptors containing GluN2A versus GluN2B subunits. Both grin2Aa-/- and grin2Ab-/- as well as double-knock-out grin2A-/- zebrafish larvae showed increased locomotor activity in a novel environment. Proteomic analysis suggested that the relative proportion of GluN2B-containing NMDARs may be increased in grin2A mutant fish. Our results highlight fundamental similarities between zebrafish and mammalian NMDAR signaling and validate the use of zebrafish as a model organism to study the neurodevelopmental role of NMDARs. The newly created transgenic zebrafish strains complement the rodent models of GluN2A loss of function and can be used for high-throughput testing of pharmacological or genetic treatment strategies for patients with GRIN2A gene variants.
3rd Faculty of Medicine Charles University Prague 10 100 00 Czech Republic
Faculty of Science Charles University Prague 2 128 00 Czech Republic
Zobrazit více v PubMed
Abramova V, et al. (2023) Effects of pregnanolone glutamate and its metabolites on GABAA and NMDA receptors and zebrafish behavior. ACS Chem Neurosci 14:1870–1883. 10.1021/acschemneuro.3c00131 PubMed DOI PMC
Al-Hallaq RA, Conrads TP, Veenstra TD, Wenthold RJ (2007) NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci 27:8334–8343. 10.1523/JNEUROSCI.2155-07.2007 PubMed DOI PMC
Alestrom P, D’Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, Warner S (2020) Zebrafish: housing and husbandry recommendations. Lab Anim 54:213–224. 10.1177/0023677219869037 PubMed DOI PMC
Amin JB, Moody GR, Wollmuth LP (2021) From bedside-to-bench: what disease-associated variants are teaching us about the NMDA receptor. J Physiol 599:397–416. 10.1113/JP278705 PubMed DOI PMC
Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358. 10.1101/gr.144700 PubMed DOI PMC
Bard L, Groc L (2011) Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor. Mol Cell Neurosci 48:298–307. 10.1016/j.mcn.2011.05.009 PubMed DOI
Benke TA, Park K, Krey I, Camp CR, Song R, Ramsey AJ, Yuan H, Traynelis SF, Lemke J (2021) Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs. Neuropharmacology 199:108805. 10.1016/j.neuropharm.2021.108805 PubMed DOI PMC
Berg EM, Mrowka L, Bertuzzi M, Madrid D, Picton LD, El Manira A (2023) Brainstem circuits encoding start, speed, and duration of swimming in adult zebrafish. Neuron 111:372–386.e4. 10.1016/j.neuron.2022.10.034 PubMed DOI
Bruni G, et al. (2016) Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat Chem Biol 12:559–560. 10.1038/nchembio.2097 PubMed DOI PMC
Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82. 10.1016/j.coph.2014.11.008 PubMed DOI
Camp CR, et al. (2023) Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons. Commun Biol 6:952. 10.1038/s42003-023-05298-9 PubMed DOI PMC
Candelas Serra M, et al. (2024) Characterization of mice carrying a neurodevelopmental disease-associated GluN2B(L825V) variant. J Neurosci 44:e2291232024. 10.1523/JNEUROSCI.2291-23.2024 PubMed DOI PMC
Chang YF, Imam JS, Wilkinson ME (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74. 10.1146/annurev.biochem.76.050106.093909 PubMed DOI
Chen W, Tankovic A, Burger PB, Kusumoto H, Traynelis SF, Yuan H (2017) Functional evaluation of a de novo GRIN2A mutation identified in a patient with profound global developmental delay and refractory epilepsy. Mol Pharmacol 91:317–U388. 10.1124/mol.116.106781 PubMed DOI PMC
Cox JA, Kucenas S, Voigt MM (2005) Molecular characterization and embryonic expression of the family of N-methyl-D-aspartate receptor subunit genes in the zebrafish. Dev Dynam 234:756–766. 10.1002/dvdy.20532 PubMed DOI
de Visser JA, et al. (2003) Perspective: evolution and detection of genetic robustness. Evolution 57:1959–1972. 10.1111/j.0014-3820.2003.tb00377.x PubMed DOI
Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61. 10.1016/S0031-6997(24)01394-2 PubMed DOI
Dooley CM, Scahill C, Fenyes F, Kettleborough RN, Stemple DL, Busch-Nentwich EM (2013) Multi-allelic phenotyping–a systematic approach for the simultaneous analysis of multiple induced mutations. Methods 62:197–206. 10.1016/j.ymeth.2013.04.013 PubMed DOI PMC
Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H (1997) NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci 17:2469–2476. 10.1523/JNEUROSCI.17-07-02469.1997 PubMed DOI PMC
Furutani-Seiki M, Wittbrodt J (2004) Medaka and zebrafish, an evolutionary twin study. Mech Dev 121:629–637. 10.1016/j.mod.2004.05.010 PubMed DOI
Garcia-Recio A, Santos-Gomez A, Soto D, Julia-Palacios N, Garcia-Cazorla A, Altafaj X, Olivella M (2021) GRIN database: a unified and manually curated repertoire of GRIN variants. Hum Mutat 42:8–18. 10.1002/humu.24141 PubMed DOI
Gray JA, Shi Y, Usui H, During MJ, Sakimura K, Nicoll RA (2011) Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron 71:1085–1101. 10.1016/j.neuron.2011.08.007 PubMed DOI PMC
Griffin A, et al. (2021) Phenotypic analysis of catastrophic childhood epilepsy genes. Commun Biol 4:680. 10.1038/s42003-021-02221-y PubMed DOI PMC
Hansen KB, Ogden KK, Yuan H, Traynelis SF (2014) Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81:1084–1096. 10.1016/j.neuron.2014.01.035 PubMed DOI PMC
Hansen KB, et al. (2021) Structure, function, and pharmacology of glutamate receptor Ion channels. Pharmacol Rev 73:298–487. 10.1124/pharmrev.120.000131 PubMed DOI PMC
Horzmann KA, Freeman JL (2016) Zebrafish get connected: investigating neurotransmission targets and alterations in chemical toxicity. Toxics 4:1–19. 10.3390/toxics4030019 PubMed DOI PMC
Howe K, et al. (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503. 10.1038/nature12111 PubMed DOI PMC
Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF (2016) Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci 132:115–121. 10.1016/j.jphs.2016.10.002 PubMed DOI PMC
Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704–717. 10.1016/j.neuron.2013.10.025 PubMed DOI PMC
Jesuthasan S (2012) Fear, anxiety, and control in the zebrafish. Dev Neurobiol 72:395–403. 10.1002/dneu.20873 PubMed DOI
Kellermayer B, et al. (2018) Differential nanoscale topography and functional role of GluN2-NMDA receptor subtypes at glutamatergic synapses. Neuron 100:106–119.e7. 10.1016/j.neuron.2018.09.012 PubMed DOI
Kettleborough RN, et al. (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496:494–497. 10.1038/nature11992 PubMed DOI PMC
Kim EJ, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781. 10.1038/nrn1517 PubMed DOI
Korinek M, et al. (2024) Disease-associated variants in GRIN1, GRIN2A and GRIN2B genes: insights into NMDA receptor structure, function, and pathophysiology. Physiol Res 73:S413–S434. 10.33549/physiolres.935346 PubMed DOI PMC
Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740. 10.1126/science.7569905 PubMed DOI
Kutsuwada T, et al. (1996) Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16:333–344. 10.1016/S0896-6273(00)80051-3 PubMed DOI
Lang XP, Wang L, Zhang ZB (2016) Stability evaluation of reference genes for real-time PCR in zebrafish exposed to cadmium chloride and subsequently infected by bacteria. Aquat Toxicol 170:240–250. 10.1016/j.aquatox.2015.11.029 PubMed DOI
Lester RA, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346:565–567. 10.1038/346565a0 PubMed DOI
Leung LC, Mourrain P (2016) DRUG DISCOVERY zebrafish uncover novel antipsychotics. Nat Chem Biol 12:468–469. 10.1038/nchembio.2114 PubMed DOI
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. 10.1006/meth.2001.1262 PubMed DOI
Luo J, Wang Y, Yasuda RP, Dunah AW, Wolfe BB (1997) The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol 51:79–86. 10.1124/mol.51.1.79 PubMed DOI
Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136. 10.1152/physrev.00014.2003 PubMed DOI
McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP (2014) Multinotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150–7158. 10.1021/ac502040v PubMed DOI PMC
Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704. 10.1016/S0955-0674(99)00039-3 PubMed DOI
Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540. 10.1016/0896-6273(94)90210-0 PubMed DOI
Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12:982–988. 10.1038/nmeth.3543 PubMed DOI PMC
Moussavi Nik SH, Newman M, Ganesan S, Chen M, Martins R, Verdile G, Lardelli M (2014) Hypoxia alters expression of zebrafish microtubule-associated protein tau (mapta, maptb) gene transcripts. BMC Res Notes 7:767. 10.1186/1756-0500-7-767 PubMed DOI PMC
Nagy E, Maquat LE (1998) A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 23:198–199. 10.1016/S0968-0004(98)01208-0 PubMed DOI
Ogden KK, et al. (2017) Molecular mechanism of disease-associated mutations in the pre-M1 helix of NMDA receptors and potential rescue pharmacology. PLoS Genet 13:e1006536. 10.1371/journal.pgen.1006536 PubMed DOI PMC
Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V (2010) The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 40:46–57. 10.1016/j.nbd.2010.05.010 PubMed DOI
Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400. 10.1038/nrn3504 PubMed DOI
Rauner C, Kohr G (2011) Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem 286:7558–7566. 10.1074/jbc.M110.182600 PubMed DOI PMC
Rebbapragada I, Lykke-Andersen J (2009) Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr Opin Cell Biol 21:394–402. 10.1016/j.ceb.2009.02.007 PubMed DOI
Rouf MA, Wen L, Mahendra Y, Wang JX, Zhang K, Liang S, Wang YM, Li ZG, Wang YQ, Wang GX (2023) The recent advances and future perspectives of genetic compensation studies in the zebrafish model. Genes Dis 10:468–479. 10.1016/j.gendis.2021.12.003 PubMed DOI PMC
Sakimura K, et al. (1995) Reduced hippocampal Ltp and spatial-learning in mice lacking nmda receptor epsilon-1 subunit. Nature 373:151–155. 10.1038/373151a0 PubMed DOI
Santos-Gómez A, et al. (2020) Disease-associated GRIN protein truncating variants trigger NMDA receptor loss-of-function. Hum Mol Genet 29:3859–3871. 10.1093/hmg/ddaa220 PubMed DOI
Schnorr SJ, Steenbergen PJ, Richardson MK, Champagne DL (2012) Measuring thigmotaxis in larval zebrafish. Behav Brain Res 228:367–374. 10.1016/j.bbr.2011.12.016 PubMed DOI
Schorge S, Colquhoun D (2003) Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 23:1151–1158. 10.1523/JNEUROSCI.23-04-01151.2003 PubMed DOI PMC
Soto D, Altafaj X, Sindreu C, Bayes A (2014) Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun Integr Biol 7:e27887. 10.4161/cib.27887 PubMed DOI PMC
Sproston NR, Ashworth JJ (2018) Role of C-reactive protein at sites of inflammation and infection. Front Immunol 9:754. 10.3389/fimmu.2018.00754 PubMed DOI PMC
Swanger SA, et al. (2016) Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet 99:1261–1280. 10.1016/j.ajhg.2016.10.002 PubMed DOI PMC
Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J (2019) The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol 37:761–774. 10.1016/j.tibtech.2018.12.002 PubMed DOI
Thyme SB, et al. (2019) Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions. Cell 177:478–491 e420. 10.1016/j.cell.2019.01.048 PubMed DOI PMC
Tovar KR, McGinley MJ, Westbrook GL (2013) Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci 33:9150–9160. 10.1523/JNEUROSCI.0829-13.2013 PubMed DOI PMC
Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19:4180–4188. 10.1523/JNEUROSCI.19-10-04180.1999 PubMed DOI PMC
Traynelis SF, et al. (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496. 10.1124/pr.109.002451 PubMed DOI PMC
Tyanova S, Cox J (2018) Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol Biol 1711:133–148. 10.1007/978-1-4939-7493-1_7 PubMed DOI
Vauti F, Stegemann LA, Vogele V, Koster RW (2020) All-age whole mount in situ hybridization to reveal larval and juvenile expression patterns in zebrafish. PLoS One 15:e0237167. 10.1371/journal.pone.0237167 PubMed DOI PMC
Vyklicky V, et al. (2018) Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Front Mol Neurosci 11:110. 10.3389/fnmol.2018.00110 PubMed DOI PMC
Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504. 10.1037/0033-2909.83.3.482 PubMed DOI
Wang WC, McLean DL (2014) Selective responses to tonic descending commands by temporal summation in a spinal motor pool. Neuron 83:708–721. 10.1016/j.neuron.2014.06.021 PubMed DOI PMC
Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), Ed 4. Eugene, OR: University of Oregon Press.
Wisniewski JR, Hein MY, Cox J, Mann M (2014) A “proteomic ruler” for protein copy number and concentration estimation without spike-in standards. Mol Cell Proteomics 13:3497–3506. 10.1074/mcp.M113.037309 PubMed DOI PMC
Won S, Levy JM, Nicoll RA, Roche KW (2017) MAGUKs: multifaceted synaptic organizers. Curr Opin Neurobiol 43:94–101. 10.1016/j.conb.2017.01.006 PubMed DOI PMC
Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of the zebrafish brain: a topological atlas. Basel: Birkhäuser Verlag. 10.1007/978-3-0348-8979-7 DOI
Wyllie DJ, Livesey MR, Hardingham GE (2013) Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74:4–17. 10.1016/j.neuropharm.2013.01.016 PubMed DOI PMC
XiangWei W, Jiang Y, Yuan H (2018) De novo mutations and rare variants occurring in NMDA receptors. Curr Opin Physiol 2:27–35. 10.1016/j.cophys.2017.12.013 PubMed DOI PMC
Yuan H, et al. (2014) Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 5:3251. 10.1038/ncomms4251 PubMed DOI PMC
Zoodsma JD, Chan K, Bhandiwad AA, Golann DR, Liu G, Syed SA, Napoli AJ, Burgess HA, Sirotkin HI, Wollmuth LP (2020) A model to study NMDA receptors in early nervous system development. J Neurosci 40:3631–3645. 10.1523/JNEUROSCI.3025-19.2020 PubMed DOI PMC
Zoodsma JD, Keegan EJ, Moody GR, Bhandiwad AA, Napoli AJ, Burgess HA, Wollmuth LP, Sirotkin HI (2022) Disruption of grin2B, an ASD-associated gene, produces social deficits in zebrafish. Mol Autism 13:38. 10.1186/s13229-022-00516-3 PubMed DOI PMC