Disruption of grin2A, an Epilepsy-Associated Gene, Produces Altered Spontaneous Swim Behavior in Zebrafish

. 2025 Aug 13 ; 45 (33) : . [epub] 20250813

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40664506
Odkazy

PubMed 40664506
PubMed Central PMC12352540
DOI 10.1523/jneurosci.0946-25.2025
PII: JNEUROSCI.0946-25.2025
Knihovny.cz E-zdroje

N-Methyl-d-aspartate receptors (NMDARs) control synaptic plasticity and brain development in a manner determined by receptor subunit composition. Pathogenic variants in GRIN2A gene, encoding the NMDAR GluN2A subunit, can cause gain or loss of function of receptors containing the affected subunit and are associated with intellectual disability and epilepsy in patients. While in vitro studies of recombinant receptors have yielded some insights, animal experimental models are essential to better understand the relationship between the molecular pathology of the variants and the disease. Here we introduce a zebrafish model of GluN2A loss of function to study system-level effects of zebrafish grin2Aa and grin2Ab gene deletion. Our electrophysiological analysis revealed functional differences between receptors containing zebrafish GluN2Aa/b and GluN2Bb paralogs comparable with mammalian receptors containing GluN2A versus GluN2B subunits. Both grin2Aa-/- and grin2Ab-/- as well as double-knock-out grin2A-/- zebrafish larvae showed increased locomotor activity in a novel environment. Proteomic analysis suggested that the relative proportion of GluN2B-containing NMDARs may be increased in grin2A mutant fish. Our results highlight fundamental similarities between zebrafish and mammalian NMDAR signaling and validate the use of zebrafish as a model organism to study the neurodevelopmental role of NMDARs. The newly created transgenic zebrafish strains complement the rodent models of GluN2A loss of function and can be used for high-throughput testing of pharmacological or genetic treatment strategies for patients with GRIN2A gene variants.

Zobrazit více v PubMed

Abramova V, et al. (2023) Effects of pregnanolone glutamate and its metabolites on GABAA and NMDA receptors and zebrafish behavior. ACS Chem Neurosci 14:1870–1883. 10.1021/acschemneuro.3c00131 PubMed DOI PMC

Al-Hallaq RA, Conrads TP, Veenstra TD, Wenthold RJ (2007) NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci 27:8334–8343. 10.1523/JNEUROSCI.2155-07.2007 PubMed DOI PMC

Alestrom P, D’Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, Warner S (2020) Zebrafish: housing and husbandry recommendations. Lab Anim 54:213–224. 10.1177/0023677219869037 PubMed DOI PMC

Amin JB, Moody GR, Wollmuth LP (2021) From bedside-to-bench: what disease-associated variants are teaching us about the NMDA receptor. J Physiol 599:397–416. 10.1113/JP278705 PubMed DOI PMC

Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358. 10.1101/gr.144700 PubMed DOI PMC

Bard L, Groc L (2011) Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor. Mol Cell Neurosci 48:298–307. 10.1016/j.mcn.2011.05.009 PubMed DOI

Benke TA, Park K, Krey I, Camp CR, Song R, Ramsey AJ, Yuan H, Traynelis SF, Lemke J (2021) Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs. Neuropharmacology 199:108805. 10.1016/j.neuropharm.2021.108805 PubMed DOI PMC

Berg EM, Mrowka L, Bertuzzi M, Madrid D, Picton LD, El Manira A (2023) Brainstem circuits encoding start, speed, and duration of swimming in adult zebrafish. Neuron 111:372–386.e4. 10.1016/j.neuron.2022.10.034 PubMed DOI

Bruni G, et al. (2016) Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat Chem Biol 12:559–560. 10.1038/nchembio.2097 PubMed DOI PMC

Burnashev N, Szepetowski P (2015) NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol 20:73–82. 10.1016/j.coph.2014.11.008 PubMed DOI

Camp CR, et al. (2023) Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons. Commun Biol 6:952. 10.1038/s42003-023-05298-9 PubMed DOI PMC

Candelas Serra M, et al. (2024) Characterization of mice carrying a neurodevelopmental disease-associated GluN2B(L825V) variant. J Neurosci 44:e2291232024. 10.1523/JNEUROSCI.2291-23.2024 PubMed DOI PMC

Chang YF, Imam JS, Wilkinson ME (2007) The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 76:51–74. 10.1146/annurev.biochem.76.050106.093909 PubMed DOI

Chen W, Tankovic A, Burger PB, Kusumoto H, Traynelis SF, Yuan H (2017) Functional evaluation of a de novo GRIN2A mutation identified in a patient with profound global developmental delay and refractory epilepsy. Mol Pharmacol 91:317–U388. 10.1124/mol.116.106781 PubMed DOI PMC

Cox JA, Kucenas S, Voigt MM (2005) Molecular characterization and embryonic expression of the family of N-methyl-D-aspartate receptor subunit genes in the zebrafish. Dev Dynam 234:756–766. 10.1002/dvdy.20532 PubMed DOI

de Visser JA, et al. (2003) Perspective: evolution and detection of genetic robustness. Evolution 57:1959–1972. 10.1111/j.0014-3820.2003.tb00377.x PubMed DOI

Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61. 10.1016/S0031-6997(24)01394-2 PubMed DOI

Dooley CM, Scahill C, Fenyes F, Kettleborough RN, Stemple DL, Busch-Nentwich EM (2013) Multi-allelic phenotyping–a systematic approach for the simultaneous analysis of multiple induced mutations. Methods 62:197–206. 10.1016/j.ymeth.2013.04.013 PubMed DOI PMC

Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H (1997) NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci 17:2469–2476. 10.1523/JNEUROSCI.17-07-02469.1997 PubMed DOI PMC

Furutani-Seiki M, Wittbrodt J (2004) Medaka and zebrafish, an evolutionary twin study. Mech Dev 121:629–637. 10.1016/j.mod.2004.05.010 PubMed DOI

Garcia-Recio A, Santos-Gomez A, Soto D, Julia-Palacios N, Garcia-Cazorla A, Altafaj X, Olivella M (2021) GRIN database: a unified and manually curated repertoire of GRIN variants. Hum Mutat 42:8–18. 10.1002/humu.24141 PubMed DOI

Gray JA, Shi Y, Usui H, During MJ, Sakimura K, Nicoll RA (2011) Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron 71:1085–1101. 10.1016/j.neuron.2011.08.007 PubMed DOI PMC

Griffin A, et al. (2021) Phenotypic analysis of catastrophic childhood epilepsy genes. Commun Biol 4:680. 10.1038/s42003-021-02221-y PubMed DOI PMC

Hansen KB, Ogden KK, Yuan H, Traynelis SF (2014) Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81:1084–1096. 10.1016/j.neuron.2014.01.035 PubMed DOI PMC

Hansen KB, et al. (2021) Structure, function, and pharmacology of glutamate receptor Ion channels. Pharmacol Rev 73:298–487. 10.1124/pharmrev.120.000131 PubMed DOI PMC

Horzmann KA, Freeman JL (2016) Zebrafish get connected: investigating neurotransmission targets and alterations in chemical toxicity. Toxics 4:1–19. 10.3390/toxics4030019 PubMed DOI PMC

Howe K, et al. (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503. 10.1038/nature12111 PubMed DOI PMC

Hu C, Chen W, Myers SJ, Yuan H, Traynelis SF (2016) Human GRIN2B variants in neurodevelopmental disorders. J Pharmacol Sci 132:115–121. 10.1016/j.jphs.2016.10.002 PubMed DOI PMC

Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704–717. 10.1016/j.neuron.2013.10.025 PubMed DOI PMC

Jesuthasan S (2012) Fear, anxiety, and control in the zebrafish. Dev Neurobiol 72:395–403. 10.1002/dneu.20873 PubMed DOI

Kellermayer B, et al. (2018) Differential nanoscale topography and functional role of GluN2-NMDA receptor subtypes at glutamatergic synapses. Neuron 100:106–119.e7. 10.1016/j.neuron.2018.09.012 PubMed DOI

Kettleborough RN, et al. (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496:494–497. 10.1038/nature11992 PubMed DOI PMC

Kim EJ, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781. 10.1038/nrn1517 PubMed DOI

Korinek M, et al. (2024) Disease-associated variants in GRIN1, GRIN2A and GRIN2B genes: insights into NMDA receptor structure, function, and pathophysiology. Physiol Res 73:S413–S434. 10.33549/physiolres.935346 PubMed DOI PMC

Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740. 10.1126/science.7569905 PubMed DOI

Kutsuwada T, et al. (1996) Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron 16:333–344. 10.1016/S0896-6273(00)80051-3 PubMed DOI

Lang XP, Wang L, Zhang ZB (2016) Stability evaluation of reference genes for real-time PCR in zebrafish exposed to cadmium chloride and subsequently infected by bacteria. Aquat Toxicol 170:240–250. 10.1016/j.aquatox.2015.11.029 PubMed DOI

Lester RA, Clements JD, Westbrook GL, Jahr CE (1990) Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346:565–567. 10.1038/346565a0 PubMed DOI

Leung LC, Mourrain P (2016) DRUG DISCOVERY zebrafish uncover novel antipsychotics. Nat Chem Biol 12:468–469. 10.1038/nchembio.2114 PubMed DOI

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. 10.1006/meth.2001.1262 PubMed DOI

Luo J, Wang Y, Yasuda RP, Dunah AW, Wolfe BB (1997) The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol 51:79–86. 10.1124/mol.51.1.79 PubMed DOI

Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136. 10.1152/physrev.00014.2003 PubMed DOI

McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP (2014) Multinotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150–7158. 10.1021/ac502040v PubMed DOI PMC

Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704. 10.1016/S0955-0674(99)00039-3 PubMed DOI

Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540. 10.1016/0896-6273(94)90210-0 PubMed DOI

Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12:982–988. 10.1038/nmeth.3543 PubMed DOI PMC

Moussavi Nik SH, Newman M, Ganesan S, Chen M, Martins R, Verdile G, Lardelli M (2014) Hypoxia alters expression of zebrafish microtubule-associated protein tau (mapta, maptb) gene transcripts. BMC Res Notes 7:767. 10.1186/1756-0500-7-767 PubMed DOI PMC

Nagy E, Maquat LE (1998) A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 23:198–199. 10.1016/S0968-0004(98)01208-0 PubMed DOI

Ogden KK, et al. (2017) Molecular mechanism of disease-associated mutations in the pre-M1 helix of NMDA receptors and potential rescue pharmacology. PLoS Genet 13:e1006536. 10.1371/journal.pgen.1006536 PubMed DOI PMC

Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V (2010) The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 40:46–57. 10.1016/j.nbd.2010.05.010 PubMed DOI

Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400. 10.1038/nrn3504 PubMed DOI

Rauner C, Kohr G (2011) Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem 286:7558–7566. 10.1074/jbc.M110.182600 PubMed DOI PMC

Rebbapragada I, Lykke-Andersen J (2009) Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr Opin Cell Biol 21:394–402. 10.1016/j.ceb.2009.02.007 PubMed DOI

Rouf MA, Wen L, Mahendra Y, Wang JX, Zhang K, Liang S, Wang YM, Li ZG, Wang YQ, Wang GX (2023) The recent advances and future perspectives of genetic compensation studies in the zebrafish model. Genes Dis 10:468–479. 10.1016/j.gendis.2021.12.003 PubMed DOI PMC

Sakimura K, et al. (1995) Reduced hippocampal Ltp and spatial-learning in mice lacking nmda receptor epsilon-1 subunit. Nature 373:151–155. 10.1038/373151a0 PubMed DOI

Santos-Gómez A, et al. (2020) Disease-associated GRIN protein truncating variants trigger NMDA receptor loss-of-function. Hum Mol Genet 29:3859–3871. 10.1093/hmg/ddaa220 PubMed DOI

Schnorr SJ, Steenbergen PJ, Richardson MK, Champagne DL (2012) Measuring thigmotaxis in larval zebrafish. Behav Brain Res 228:367–374. 10.1016/j.bbr.2011.12.016 PubMed DOI

Schorge S, Colquhoun D (2003) Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 23:1151–1158. 10.1523/JNEUROSCI.23-04-01151.2003 PubMed DOI PMC

Soto D, Altafaj X, Sindreu C, Bayes A (2014) Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun Integr Biol 7:e27887. 10.4161/cib.27887 PubMed DOI PMC

Sproston NR, Ashworth JJ (2018) Role of C-reactive protein at sites of inflammation and infection. Front Immunol 9:754. 10.3389/fimmu.2018.00754 PubMed DOI PMC

Swanger SA, et al. (2016) Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet 99:1261–1280. 10.1016/j.ajhg.2016.10.002 PubMed DOI PMC

Taylor SC, Nadeau K, Abbasi M, Lachance C, Nguyen M, Fenrich J (2019) The ultimate qPCR experiment: producing publication quality, reproducible data the first time. Trends Biotechnol 37:761–774. 10.1016/j.tibtech.2018.12.002 PubMed DOI

Thyme SB, et al. (2019) Phenotypic landscape of schizophrenia-associated genes defines candidates and their shared functions. Cell 177:478–491 e420. 10.1016/j.cell.2019.01.048 PubMed DOI PMC

Tovar KR, McGinley MJ, Westbrook GL (2013) Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci 33:9150–9160. 10.1523/JNEUROSCI.0829-13.2013 PubMed DOI PMC

Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19:4180–4188. 10.1523/JNEUROSCI.19-10-04180.1999 PubMed DOI PMC

Traynelis SF, et al. (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496. 10.1124/pr.109.002451 PubMed DOI PMC

Tyanova S, Cox J (2018) Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol Biol 1711:133–148. 10.1007/978-1-4939-7493-1_7 PubMed DOI

Vauti F, Stegemann LA, Vogele V, Koster RW (2020) All-age whole mount in situ hybridization to reveal larval and juvenile expression patterns in zebrafish. PLoS One 15:e0237167. 10.1371/journal.pone.0237167 PubMed DOI PMC

Vyklicky V, et al. (2018) Surface expression, function, and pharmacology of disease-associated mutations in the membrane domain of the human GluN2B subunit. Front Mol Neurosci 11:110. 10.3389/fnmol.2018.00110 PubMed DOI PMC

Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504. 10.1037/0033-2909.83.3.482 PubMed DOI

Wang WC, McLean DL (2014) Selective responses to tonic descending commands by temporal summation in a spinal motor pool. Neuron 83:708–721. 10.1016/j.neuron.2014.06.021 PubMed DOI PMC

Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), Ed 4. Eugene, OR: University of Oregon Press.

Wisniewski JR, Hein MY, Cox J, Mann M (2014) A “proteomic ruler” for protein copy number and concentration estimation without spike-in standards. Mol Cell Proteomics 13:3497–3506. 10.1074/mcp.M113.037309 PubMed DOI PMC

Won S, Levy JM, Nicoll RA, Roche KW (2017) MAGUKs: multifaceted synaptic organizers. Curr Opin Neurobiol 43:94–101. 10.1016/j.conb.2017.01.006 PubMed DOI PMC

Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of the zebrafish brain: a topological atlas. Basel: Birkhäuser Verlag. 10.1007/978-3-0348-8979-7 DOI

Wyllie DJ, Livesey MR, Hardingham GE (2013) Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74:4–17. 10.1016/j.neuropharm.2013.01.016 PubMed DOI PMC

XiangWei W, Jiang Y, Yuan H (2018) De novo mutations and rare variants occurring in NMDA receptors. Curr Opin Physiol 2:27–35. 10.1016/j.cophys.2017.12.013 PubMed DOI PMC

Yuan H, et al. (2014) Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 5:3251. 10.1038/ncomms4251 PubMed DOI PMC

Zoodsma JD, Chan K, Bhandiwad AA, Golann DR, Liu G, Syed SA, Napoli AJ, Burgess HA, Sirotkin HI, Wollmuth LP (2020) A model to study NMDA receptors in early nervous system development. J Neurosci 40:3631–3645. 10.1523/JNEUROSCI.3025-19.2020 PubMed DOI PMC

Zoodsma JD, Keegan EJ, Moody GR, Bhandiwad AA, Napoli AJ, Burgess HA, Wollmuth LP, Sirotkin HI (2022) Disruption of grin2B, an ASD-associated gene, produces social deficits in zebrafish. Mol Autism 13:38. 10.1186/s13229-022-00516-3 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...