Genomic and phenotypic insights into the expanding phylogenetic landscape of the Cryptococcus genus
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R01 AI039115
NIAID NIH HHS - United States
R01 AI050113
NIAID NIH HHS - United States
R01 AI133654
NIAID NIH HHS - United States
PubMed
40666982
PubMed Central
PMC12262581
DOI
10.1101/2025.06.18.660340
PII: 2025.06.18.660340
Knihovny.cz E-zdroje
- Klíčová slova
- Fungal speciation, chromosome evolution, comparative genomics, digital DNA–DNA hybridization, human fungal pathogens, rRNA architecture,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The fungal genus Cryptococcus includes several life-threatening human pathogens as well as diverse saprobic species whose genome architecture, ecology, and evolutionary history remain less well characterized. Understanding how some lineages evolved into major pathogens remains a central challenge and may be advanced by comparisons with their nonpathogenic counterparts. Integrative approaches have become essential for delimiting species and reconstructing evolutionary relationships, particularly in lineages with cryptic diversity or extensive chromosomal rearrangements. Here, we formally characterize six Cryptococcus species representing distinct evolutionary lineages, comprising both newly discovered and previously recognized but unnamed taxa, through a combination of phylogenomic analyses, divergence metrics, chromosomal comparisons, mating assays, and phenotypic profiling. Among pathogenic taxa, we formally name Cryptococcus hyracis sp. nov., corresponding to the previously characterized VGV lineage within the C. gattii complex. In parallel, we describe five saprobic, nonpathogenic species isolated from fruit, soil, and bark beetle galleries, spanning four phylogenetic clades. We identify a strong ecological association with bark beetles for Cryptococcus porticicola sp. nov., the only newly described nonpathogenic species with multiple sequenced strains from diverse sites. In this species, we detect strain-level chromosomal variation and evidence of sexual reproduction, along with population-level signatures of recombination consistent with ongoing genetic exchange. Across the genus, chromosome-level comparisons reveal extensive structural variation, including species- and strain-specific rearrangements that may restrict gene flow. We also identify multiple instances of chromosome number reduction, often associated with centromere inactivation following interchromosomal rearrangements. Comparative metabolic profiling with Biolog phenotype microarrays reveals clade-level differentiation and distinct substrate preferences, which may reflect metabolic divergence and habitat-specific diversification. Notably, we confirm that thermotolerance is restricted to clinically relevant taxa. These findings refine the species-level taxonomy of Cryptococcus, broaden its known genomic and ecological diversity, and strengthen the framework for investigating speciation, adaptation, and the emergence of pathogenicity within the genus.
Department of Agricultural Food and Environmental Sciences University of Perugia Perugia Italy
Department of Infectious Disease Epidemiology Imperial College London London United Kingdom
G K Skryabin Institute of Biochemistry and Physiology of Microorganisms PSCBR RAS Pushchino Russia
Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures Braunschweig Germany
Zobrazit více v PubMed
Vuillemin P. Les blastomycètes pathogènes. Rev Gen Sci Pures Appl. 1901;12:732–51.
Barnett JA. A history of research on yeasts 14: medical yeasts part 2, PubMed DOI
Busse O. Über parasitäre zelleinschlüsse und ihre züchtung. Zentralbl Bakteriol. 1894;16:175–80.
Sanfelice F. Contributo alla morfologia e biologia dei blastomiceti che si sviluppano nei succhi di alcuni frutti. Ann Igien. 1894;4:463–95.
Rajasingham R, Govender NP, Jordan A, Loyse A, Shroufi A, Denning DW, et al. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect Dis. 2022;22(12):1748–55. Epub 20220829. doi: 10.1016/S1473-3099(22)00499-6. PubMed DOI PMC
Kwon-Chung KJ. A new genus, PubMed
Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J. Spores as infectious propagules of PubMed DOI PMC
Tugume L, Ssebambulidde K, Kasibante J, Ellis J, Wake RM, Gakuru J, et al. Cryptococcal meningitis. Nat Rev Dis Primers. 2023;9(1):62. Epub 2023/11/10. doi: 10.1038/s41572-023-00472-z. PubMed DOI
Casalini G, Giacomelli A, Antinori S. The WHO fungal priority pathogens list: a crucial reappraisal to review the prioritisation. Lancet Microbe. 2024;5(7):717–24. Epub 20240409. doi: 10.1016/S2666-5247(24)00042-9. PubMed DOI
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the PubMed DOI
Fraser JA, Giles SS, Wenink EC, Geunes-Boyer SG, Wright JR, Diezmann S, et al. Same-sex mating and the origin of the Vancouver Island PubMed DOI
Byrnes EJ 3rd, Li W, Ren P, Lewit Y, Voelz K, Fraser JA, et al. A diverse population of PubMed DOI PMC
Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, Billmyre RB, et al. Importance of resolving fungal nomenclature: the case of multiple pathogenic species in the PubMed DOI PMC
Poplin V, Smith C, Caceres DH, Herkert PF, Jegede O, Thompson GR 3rd, et al. Geographical distribution of the PubMed DOI PMC
Farrer RA, Chang M, Davis MJ, van Dorp L, Yang D-H, Shea T, et al. A new lineage of PubMed DOI PMC
Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “species complex” nomenclature for the etiologic agents of Cryptococcosis. mSphere. 2017;2(1). Epub 2017/01/20. doi: 10.1128/mSphere.00357-16. PubMed DOI PMC
Petch T. Notes on entomogenous fungi. Trans Brit Mycol Soc. 1931;16:209–45.
Rodriguez-Carres M, Findley K, Sun S, Dietrich FS, Heitman J. Morphological and genomic characterization of PubMed DOI PMC
Liu XZ, Wang QM, Goker M, Groenewald M, Kachalkin AV, Lumbsch HT, et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol. 2015;81:85–147. doi: 10.1016/j.simyco.2015.12.001. PubMed DOI PMC
Passer AR, Clancey SA, Shea T, David-Palma M, Averette AF, Boekhout T, et al. Obligate sexual reproduction of a homothallic fungus closely related to the PubMed DOI PMC
Passer AR, Coelho MA, Billmyre RB, Nowrousian M, Mittelbach M, Yurkov AM, et al. Genetic and genomic analyses reveal boundaries between species closely related to PubMed DOI PMC
Begerow D, Kemler M, Feige A, Yurkov A. Parasitism in yeasts. In: Buzzini P, Lachance M-A, Yurkov A, editors. Yeasts in Natural Ecosystems: Ecology. Cham: Springer International Publishing; 2017. p. 179–210.
Guterres DC, Ndacnou MK, Saavedra-Tobar LM, Salcedo-Sarmiento S, Colman AA, Evans HC, et al. PubMed DOI PMC
Coelho MA, David-Palma M, Aylward J, Pham NQ, Visagie CM, Fuchs T, et al. Decoding PubMed DOI PMC
Coelho MA, David-Palma M, Marincowitz S, Aylward J, Pham NQ, Yurkov AM, et al. Tracing the evolution and genomic dynamics of mating-type loci in DOI
Kachalkin AV, Turchetti B, Inácio J, Carvalho C, Mašínová T, Pontes A, et al. Rare and undersampled dimorphic basidiomycetes. Mycol Prog. 2019. doi: 10.1007/s11557-019-01491-5. DOI
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, et al. Comparative genomics of the closely related fungal genera PubMed DOI PMC
Yurkov AM, Rohl O, Pontes A, Carvalho C, Maldonado C, Sampaio JP. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome. FEMS Yeast Res. 2016;16(1):fov103. doi: 10.1093/femsyr/fov103. PubMed DOI
Steenkamp ET, Wingfield MJ, McTaggart AR, Wingfield BD. Fungal species and their boundaries matter – Definitions, mechanisms and practical implications. Fungal Biol Rev. 2018;32(2):104–16. doi: 10.1016/j.fbr.2017.11.002. DOI
James TY, Stajich JE, Hittinger CT, Rokas A. Toward a Fully Resolved Fungal Tree of Life. Annu Rev Microbiol. 2020;74:291–313. Epub 2020/07/15. doi: 10.1146/annurev-micro-022020-051835. PubMed DOI
Libkind D, Cadez N, Opulente DA, Langdon QK, Rosa CA, Sampaio JP, et al. Towards yeast taxogenomics: lessons from novel species descriptions based on complete genome sequences. FEMS Yeast Res. 2020;20(6). Epub 2020/07/28. doi: 10.1093/femsyr/foaa042. PubMed DOI
Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60. Epub 2013/02/26. doi: 10.1186/1471-2105-14-60. PubMed DOI PMC
Liu F, Hu ZD, Yurkov A, Chen XH, Bao WJ, Ma Q, et al. PubMed DOI PMC
Desjardins CA, Giamberardino C, Sykes SM, Yu CH, Tenor JL, Chen Y, et al. Population genomics and the evolution of virulence in the fungal pathogen PubMed DOI PMC
Sun S, Yadav V, Billmyre RB, Cuomo CA, Nowrousian M, Wang L, et al. Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination. PLOS Biol. 2017;15(8):e2002527. Epub 2017/08/12. doi: 10.1371/journal.pbio.2002527. PubMed DOI PMC
Yadav V, Sun S, Coelho MA, Heitman J. Centromere scission drives chromosome shuffling and reproductive isolation. Proc Natl Acad Sci U S A. 2020;117(14):7917–28. Epub 2020/03/21. doi: 10.1073/pnas.1918659117. PubMed DOI PMC
Statzell-Tallman A, Belloch C, Fell JW. PubMed DOI
Metin B, Findley K, Heitman J. The mating type locus ( PubMed DOI PMC
Guerreiro MA, Springer DJ, Rodrigues JA, Rusche LN, Findley K, Heitman J, et al. Molecular and genetic evidence for a tetrapolar mating system in the basidiomycetous yeast PubMed DOI PMC
Janbon G, Ormerod KL, Paulet D, Byrnes EJ 3rd, Yadav V, Chatterjee G, et al. Analysis of the genome and transcriptome of PubMed DOI PMC
Yadav V, Sun S, Billmyre RB, Thimmappa BC, Shea T, Lintner R, et al. RNAi is a critical determinant of centromere evolution in closely related fungi. Proc Natl Acad Sci U S A. 2018. Epub 2018/03/07. doi: 10.1073/pnas.1713725115. PubMed DOI PMC
Schotanus K, Heitman J. Centromere deletion in PubMed DOI PMC
Schotanus K, Yadav V, Heitman J. Epigenetic dynamics of centromeres and neocentromeres in PubMed DOI PMC
Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, et al. Loss of centromere function drives karyotype evolution in closely related PubMed DOI PMC
Coelho MA, Ianiri G, David-Palma M, Theelen B, Goyal R, Narayanan A, et al. Frequent transitions in mating-type locus chromosomal organization in PubMed DOI PMC
Narayanan A, Reza MH, Sanyal K. Behind the scenes: Centromere-driven genomic innovations in fungal pathogens. PLOS Pathog. 2024;20(3):e1012080. Epub 2024/03/28. doi: 10.1371/journal.ppat.1012080. PubMed DOI PMC
Zhu X, Williamson PR. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 2004;5(1):1–10. doi: 10.1016/j.femsyr.2004.04.004. PubMed DOI
Williamson PR. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol. 1994;176(3):656–64. doi: 10.1128/jb.176.3.656-664.1994. PubMed DOI PMC
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Holla S, et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data. 2020;7(1):228. Epub 20200713. doi: 10.1038/s41597-020-0567-7. PubMed DOI PMC
Kazartsev I, Shorohova E, Kapitsa E, Kushnevskaya H. Decaying DOI
Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, et al. The PubMed DOI PMC
Franco Ortega S, Ferrocino I, Adams I, Silvestri S, Spadaro D, Gullino ML, et al. Monitoring and surveillance of aerial mycobiota of rice paddy through DNA metabarcoding and qPCR. J Fungi (Basel). 2020;6(4). Epub 20201217. doi: 10.3390/jof6040372. PubMed DOI PMC
Gschwend F, Hartmann M, Mayerhofer J, Hug AS, Enkerli J, Gubler A, et al. Site and land-use associations of soil bacteria and fungi define core and indicative taxa. FEMS Microbiol Ecol. 2022;97(12). doi: 10.1093/femsec/fiab165. PubMed DOI PMC
Sannino C, Borruso L, Mezzasoma A, Battistel D, Ponti S, Turchetti B, et al. Abiotic factors affecting the bacterial and fungal diversity of permafrost in a rock glacier in the Stelvio Pass (Italian Central Alps). Appl Soil Ecol. 2021;166:104079. doi: 10.1016/j.apsoil.2021.104079. DOI
Luis P, Saint-Genis G, Vallon L, Bourgeois C, Bruto M, Marchand C, et al. Contrasted ecological niches shape fungal and prokaryotic community structure in mangroves sediments. Environ Microbiol. 2019;21(4):1407–24. Epub 20190319. doi: 10.1111/1462-2920.14571. PubMed DOI
Gostincar C. Towards Genomic Criteria for Delineating Fungal Species. J Fungi (Basel). 2020;6(4). Epub 2020/10/30. doi: 10.3390/jof6040246. PubMed DOI PMC
Lachance MA, Lee DK, Hsiang T. Delineating yeast species with genome average nucleotide identity: a calibration of ANI with haplontic, heterothallic PubMed DOI
Lucking R, Aime MC, Robbertse B, Miller AN, Aoki T, Ariyawansa HA, et al. Fungal taxonomy and sequence-based nomenclature. Nat Microbiol. 2021;6(5):540–8. Epub 20210426. doi: 10.1038/s41564-021-00888-x. PubMed DOI PMC
Boekhout T, Aime MC, Begerow D, Gabaldon T, Heitman J, Kemler M, et al. The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. Fungal Divers. 2021;109(1):27–55. Epub 20210626. doi: 10.1007/s13225-021-00475-9. PubMed DOI PMC
Billmyre RB, Croll D, Li W, Mieczkowski P, Carter DA, Cuomo CA, et al. Highly recombinant VGII PubMed DOI PMC
Kobayashi Y, Kayamori A, Aoki K, Shiwa Y, Matsutani M, Fujita N, et al. Chromosome-level genome assemblies of Cutaneotrichosporon spp. (Trichosporonales, Basidiomycota) reveal imbalanced evolution between nucleotide sequences and chromosome synteny. BMC Genomics. 2023;24(1):609. Epub 2023/10/12. doi: 10.1186/s12864-023-09718-2. PubMed DOI PMC
Greig D, Travisano M, Louis EJ, Borts RH. A role for the mismatch repair system during incipient speciation in PubMed
Liti G, Barton DB, Louis EJ. Sequence diversity, reproductive isolation and species concepts in PubMed DOI PMC
Priest SJ, Coelho MA, Mixao V, Clancey SA, Xu Y, Sun S, et al. Factors enforcing the species boundary between the human pathogens PubMed DOI PMC
Priest SJ, Yadav V, Roth C, Dahlmann TA, Kück U, Magwene PM, et al. Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of PubMed DOI PMC
Seidl MF, Kramer HM, Cook DE, Fiorin GL, van den Berg GCM, Faino L, et al. Repetitive elements contribute to the diversity and evolution of centromeres in the fungal genus PubMed DOI PMC
Ola M, O’Brien CE, Coughlan AY, Ma Q, Donovan PD, Wolfe KH, et al. Polymorphic centromere locations in the pathogenic yeast PubMed DOI PMC
Bergeron J, Drouin G. The evolution of 5S ribosomal RNA genes linked to the rDNA units of fungal species. Curr Genet. 2008;54(3):123–31. Epub 2008/08/16. doi: 10.1007/s00294-008-0201-2. PubMed DOI
McStay B, Grummt I. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol. 2008;24:131–57. Epub 2008/07/12. doi: 10.1146/annurev.cellbio.24.110707.175259. PubMed DOI
Rooney AP, Ward TJ. Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci U S A. 2005;102(14):5084–9. doi: 10.1073/pnas.0409689102. PubMed DOI PMC
Kapitonov VV, Jurka J. A novel class of SINE elements derived from 5S rRNA. Mol Biol Evol. 2003;20(5):694–702. Epub 2003/04/08. doi: 10.1093/molbev/msg075. PubMed DOI
Feng B, Li Y, Xu B, Liu H, Steenwyk JL, David KT, et al. Unique trajectory of gene family evolution from genomic analysis of nearly all known species in an ancient yeast lineage. Mol Syst Biol. 2025. Epub 2025/05/28. doi: 10.1038/s44320-025-00118-0. PubMed DOI PMC
David KT, Schraiber JG, Crandall JG, Labella AL, Opulente DA, Harrison MC, et al. Convergent expansions of keystone gene families drive metabolic innovation in Saccharomycotina yeasts. Proc Natl Acad Sci U S A. 2025;122(23):e2500165122. Epub 2025/06/03. doi: 10.1073/pnas.2500165122. PubMed DOI PMC
Missall TA, Moran JM, Corbett JA, Lodge JK. Distinct stress responses of two functional laccases in PubMed DOI PMC
Waterman SR, Hacham M, Panepinto J, Hu G, Shin S, Williamson PR. Cell wall targeting of laccase of PubMed DOI PMC
Pukkila-Worley R, Gerrald QD, Kraus PR, Boily MJ, Davis MJ, Giles SS, et al. Transcriptional network of multiple capsule and melanin genes governed by the PubMed DOI PMC
Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol. 2022;7(5):607–19. Epub 20220504. doi: 10.1038/s41564-022-01112-0. PubMed DOI PMC
Gusa A, Williams JD, Cho JE, Averette AF, Sun S, Shouse EM, et al. Transposon mobilization in the human fungal pathogen PubMed DOI PMC
Gusa A, Yadav V, Roth C, Williams JD, Shouse EM, Magwene P, et al. Genome-wide analysis of heat stress-stimulated transposon mobility in the human fungal pathogen PubMed DOI PMC
Mackey AI, Fraunfelter V, Shaltz S, McCormick J, Schroeder C, Perfect JR, et al. Temperature and genetic background drive mobilization of diverse transposable elements in a critical human fungal pathogen. bioRxiv. 2025. Epub 2025/06/06. doi: 10.1101/2025.05.19.654958. DOI
Sun S, Priest SJ, Heitman J. PubMed DOI PMC
Peterson PP, Choi JT, Fu C, Cowen LE, Sun S, Bahn YS, et al. The PubMed DOI PMC
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36. Epub 2017/03/17. doi: 10.1101/gr.215087.116. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. Epub 2012/04/18. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. Epub 2013/01/19. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3. Epub 2009/06/10. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Steenwyk JL, Buida TJ, Labella AL, Li Y, Shen XX, Rokas A. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics. 2021;37(16):2325–31. Epub 2021/02/10. doi: 10.1093/bioinformatics/btab096. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. Epub 2020/02/06. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110(10):1281–6. Epub 2017/02/17. doi: 10.1007/s10482-017-0844-4. PubMed DOI
Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol. 2021;59(5):476–80. Epub 2021/04/29. doi: 10.1007/s12275-021-1154-0. PubMed DOI
Coombe L, Kazemi P, Wong J, Birol I, Warren RL. Multi-genome synteny detection using minimizer graph mappings. bioRxiv. 2024:2024.02.07.579356. doi: 10.1101/2024.02.07.579356. DOI
Coombe L, Warren RL, Birol I. ntSynt-viz: Visualizing synteny patterns across multiple genomes. bioRxiv. 2025:2025.01.15.633221. doi: 10.1101/2025.01.15.633221. DOI
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–10. Epub 2011/02/01. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC
Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006;172(4):2665–81. Epub 2006/02/21. doi: 10.1534/genetics.105.048975. PubMed DOI PMC
Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for Isolation, Phenotypic Characterization and Maintenance of Yeasts. In: Kurtzman CP, Fell JW, Boekhout T, editors. The Yeasts: A Taxonomic Study. 5th ed. London: Elsevier; 2011. p. 87–110.
Upadhya R, Probst C, Alspaugh JA, Lodge JK. Measuring Stress Phenotypes in PubMed DOI PMC
Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4(10):914–9. doi: 10.1111/2041-210X.12073. DOI
Vetrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34(13):2292–4. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC