Linking root length and surface area to yield: variety-specific root plasticity in winter wheat across contrasting European environments

. 2025 Dec 08 ; 136 (5-6) : 1219-1237.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40668186

Grantová podpora
EJP Soil
862695 European Union's Horizon 2020 Research and Innovation Programme
Horizon 2020
817970 European Union's Horizon 2020 Framework Programme

BACKGROUND AND AIMS: Understanding the relationship of root traits and crop performance under varying environmental conditions facilitates the exploitation of root characteristics in breeding and variety testing to maintain crop yields under climate change. Therefore, we (1) evaluated differences in root length and surface area between ten winter wheat varieties grown at 11 sites in Europe covering a large pedoclimatic gradient, (2) quantified differences in root response to soil, climate and management conditions between varieties, and (3) evaluated variety-specific relationships of grain yield and root length and surface area under diverse environmental conditions. METHODS: At each site, we sampled the roots to 1 m soil depth after harvest and determined various root traits by scanning and image analysis. The impacts of soil, climate and management on roots and yield of the ten varieties were analysed by means of multivariate mixed models. KEY RESULTS: Root length averaged 1.4 m root piece-1, 5007 m root m-2 soil, and 5300 m root m-2 soil and root surface area 0.039 m2 root piece-1, 40 m2 root m-2 soil, and 43 m2 root m-2 soil in 0.00-0.15 m, 0.15-0.50 m, 0.50-1.00 m soil depth, respectively. The variation in both traits was 10 times higher between sites than varieties, the latter ranging by a factor of 2 within sites. Irrespective of variety, temperature was a major driver of subsoil root traits, suggesting that warmer climates promoted root growth in deeper soil layers. Other soil and climate variables affected root length and/or root surface area of individual varieties, highlighting different degrees of root plasticity. The varieties displayed distinctly different relationships between yield and root traits under varying pedoclimatic conditions, highlighting genetic differences in yield response to environmentally driven root plasticity. CONCLUSIONS: These findings suggest that breeding efforts should target flexible root-yield relationships in the subsoil to maintain crop performance under climate change.

Zobrazit více v PubMed

York  LM. Plans for root scanning trays to use on flatbed scanners. Zenodo. 2020. doi: 10.5281/zenodo.4122423. DOI

Addy  JWG, Ellis  RH, MacLaren  C, Macdonald  AJ, Semenov  MA, Mead  A. 2022. A heteroskedastic model of park grass spring hay yields in response to weather suggests continuing yield decline with climate change in future decades. Journal of the Royal Society Interface  19: 20220361. PubMed PMC

Adeleke  E, Millas  R, McNeal  W, Faris  J, Taheri  A. 2020. Variation analysis of root system development in wheat seedlings using root phenotyping system. Agronomy  10: 206.

Agnolucci  P, De Lipsis  V. 2020. Long-run trend in agricultural yield and climatic factors in Europe. Climatic Change  159: 385–405.

Agrarmeteorologisches Messnetz Sachsen .

Agrometeo . 2024.

Aiken  LS, West  SG. 1991. Multiple regression: testing and interpreting interactions, Vol. 2. Newbury Park, CA: Sage Publications.

Ajjur  SB, Al-Ghamdi  SG. 2021. Evapotranspiration and water availability response to climate change in the Middle East and North Africa. Climatic Change  166: 28.

Akman  H. 2020. Comparison of field crops with tap and fibrous root system at early and late growth stages. Turkish Journal of Agriculture – Food Science and Technology  8: 1181–1187.

Alahmad  S, El Hassouni  K, Bassi  FM, et al.  2019. A major root architecture QTL responding to water limitation in durum wheat. Frontiers in Plant Science  10: 436. PubMed PMC

International Wheat Genome Sequencing Consortium (IWGSC), Appels  R, Eversole  K, et al.  2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science  361: eaar7191. PubMed

Asseng  S, Ritchie  JT, Smucker  AJM, Robertson  MJ. 1998. Root growth and water uptake during water deficit and recovering in wheat. Plant and Soil  201: 265–273.

Bartoń  K. 2023.

Bates  D, Maechler  M, Bolker  B, Walker  S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software  67: 1–48.

Bayerisches Landesamt für Umwelt .

Bengough  AG, McKenzie  BM, Hallett  PD, Valentine  TA. 2011. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany  62: 59–68. PubMed

Biecek  P. 2018. DALEX: explainers for complex predictive models in R. Journal of Machine Learning Research  19: 1–5.

Brás  TA, Seixas  J, Carvalhais  N, Jägermeyr  J. 2021. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters  16: 065012.

Calleja Cabrera  J, Boter  M, Oñate-Sánchez  L, Pernas  M. 2020. Root growth adaptation to climate change in crops. Frontiers in Plant Science  11: 544. PubMed PMC

Chaves  MM, Pereira  JS, Maroco  J, et al.  2002. How plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany  89: 907–916. PubMed PMC

Chen  H, Wei  J, Tian  R, et al.  2022. A major quantitative trait locus for wheat total root length associated with precipitation distribution. Frontiers in Plant Science  13: 995183. PubMed PMC

Colombo  M, Roumet  P, Salon  C, et al.  2022. Genetic analysis of platform-phenotyped root system architecture of bread and durum wheat in relation to agronomic traits. Frontiers in Plant Science  13: 853601. PubMed PMC

Correa  J, Postma  JA, Watt  M, Wojciechowski  T. 2019. Soil compaction and the architectural plasticity of root systems. Journal of Experimental Botany  70: 6019–6034. PubMed PMC

Dinneny  JR. 2019. Developmental responses to water and salinity in root systems. Annual Review of Cell and Developmental Biology  35: 239–257. PubMed

Doolittle  JA, Brevik  EC. 2014. The use of electromagnetic induction techniques in soils studies. Geoderma  223: 33–45.

Duan  D, Feng  X, Wu  N, et al.  2023. Drought eliminates the difference in root trait plasticity and mycorrhizal responsiveness of two semiarid grassland species with contrasting root system. International Journal of Molecular Sciences  24: 10262. PubMed PMC

EUPVP – EU Plant Variety Portal . 2023.

European Environment Agency . 2017. Biogeographical regions in Europe.

FAO .

Federal Office of Meteorology and Climatology MeteoSwiss .

Fox  J, Weisberg  S. 2019.

Fradgley  N, Evans  G, Biernaskie  JM, et al.  2020. Effects of breeding history and crop management on the root architecture of wheat. Plant and Soil  452: 587–600. PubMed PMC

Frasier  I, Noellemeyer  E, Fernandez  R, Quiroga  A. 2016. Direct field method for root biomass quantification in agroecosystems. MethodsX  3: 513–519. PubMed PMC

Fry  EL, Evans  AL, Sturrock  CJ, Bullock  JM, Bardgett  RD. 2018. Root architecture governs plasticity in response to drought. Plant and Soil  433: 189–200. PubMed PMC

Gauch  HG, Qian  S, Piepho  H-P, Zhou  L, Chen  R. 2019. Consequences of PCA graphs, SNP codings, and PCA variants for elucidating population structure. PLoS One  14: e0218306. PubMed PMC

GeoSphere Austria . 2023. DOI

Giorgi  F, Bi  X, Pal  J. 2004. Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071–2100). Climate Dynamics  23: 839–858.

Gogna  A, Schulthess  AW, Röder  MS, Ganal  MW, Reif  JC. 2022. Gabi wheat a panel of European elite lines as central stock for wheat genetic research. Scientific Data  9: 538. PubMed PMC

Gowda  VRP, Henry  A, Yamauchi  A, Shashidhar  HE, Serraj  R. 2011. Root biology and genetic improvement for drought avoidance in rice. Field Crops Research  122: 1–13.

Goyal  RK. 2004. Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agricultural Water Management  69: 1–11.

Gregory  PJ. 2006. Roots and the architecture of root systems. In: Gregory  PJ. ed. Plant roots: growth, activity and interactions with the soil. Oxford: Wiley-Blackwell, 18–44.

Grossman  JD, Rice  KJ. 2012. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evolutionary Applications  5: 850–857. PubMed PMC

Gulino  D, Sayeras  R, Serra  J, et al.  2023. Impact of rising temperatures on historical wheat yield, phenology, and grain size in Catalonia  Frontiers in Plant Science  14: 1245362. PubMed PMC

Guo  H, Ayalew  H, Seethepalli  A, et al.  2021. Functional phenomics and genetics of the root economics space in winter wheat using high-throughput phenotyping of respiration and architecture. New Phytologist  232: 98–112. PubMed PMC

Guo  X, Svane  SF, Füchtbauer  WS, Andersen  JR, Jensen  J, Thorup-Kristensen  K. 2020. Genomic prediction of yield and root development in wheat under changing water availability. Plant Methods  16: 90. PubMed PMC

Hashemi  M, Schneider  K. 2020.

Hecht  VL, Temperton  VM, Nagel  KA, Rascher  U, Postma  JA. 2016. Sowing density: a neglected factor fundamentally affecting root distribution and biomass allocation of field grown spring barley ( PubMed PMC

Heinemann  H, Durand-Maniclas  F, Seidel  F, et al.  2025. Optimising root and grain yield through variety selection in winter wheat across a European climate gradient. European Journal of Soil Science  76: e70077.

Heinemann  H, Hirte  J, Seidel  F, Don  A. 2023. Increasing root biomass derived carbon input to agricultural soils by genotype selection – a review. Plant and Soil  490: 19–30.

Hirte  J, Leifeld  J, Abiven  S, Mayer  J. 2018. Maize and wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials. Field Crops Research  216: 197–208.

Hirte  J, Walder  F, Hess  J, et al.  2021. Enhanced root carbon allocation through organic farming is restricted to topsoils. Science of the Total Environment  755: 143551. PubMed

Hochholdinger  F, Tuberosa  R. 2009. Genetic and genomic dissection of maize root development and architecture. Current Opinion in Plant Biology  12: 172–177. PubMed

Hothorn  T, Bretz  F, Westfall  P. 2008. Simultaneous inference in general parametric models. Biometrical Journal_  50: 346–363. PubMed

Hund  A, Richner  W, Soldati  A, Fracheboud  Y, Stamp  P. 2007. Root morphology and photosynthetic performance of maize inbred lines at low temperature. European Journal of Agronomy  27: 52–61.

Karlova  R, Boer  D, Hayes  S, Testerink  C. 2021. Root plasticity under abiotic stress. Plant Physiology  187: 1057–1070. PubMed PMC

Kassambara  A. 2023.

Kell  DB. 2011. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Annals of Botany  108: 407–418. PubMed PMC

Khan  MA, Gemenet  DC, Villordon  A. 2016. Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Frontiers in Plant Science  7: 1584. PubMed PMC

Kirkegaard  JA, Lilley  JM, Howe  GN, Graham  JM. 2007. Impact of subsoil water use on wheat yield. Australian Journal of Agricultural Research  58: 303–315.

Koevoets  IT, Venema  JH, Elzenga  JTM, Testerink  C. 2016. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Frontiers in Plant Science  7: 1335. PubMed PMC

Kolb  E, Legué  V, Bogeat-Triboulot  M-B. 2017. Physical root–soil interactions. Physical Biology  14: 065004. PubMed

Le Gouis  J, Oury  F-X, Charmet  G. 2020. How changes in climate and agricultural practices influenced wheat production in Western Europe. Journal of Cereal Science  93: 102960.

Lenth  R. 2023.

Li  X, Ingvordsen  CH, Weiss  M, et al.  2019. Deeper roots associated with cooler canopies, higher normalized difference vegetation index, and greater yield in three wheat populations grown on stored soil water. Journal of Experimental Botany  70: 4963–4974. PubMed PMC

Li  C, Li  L, Reynolds  MP, et al.  2021. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. Journal of Experimental Botany  72: 5117–5133. PubMed

Liaw  A, Wiener  M. 2002. Classification and regression by randomForest. R News  2: 18–22.

Lipiec  J, Horn  R, Pietrusiewicz  J, Siczek  A. 2012. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil and Tillage Research  121: 74–81.

Lithuanian Hydrometeorological Service . 2022.

Liu  J, Liu  Y, Wang  S, Cui  Y, Yan  D. 2022. Heat stress reduces root meristem size via induction of plasmodesmal callose accumulation inhibiting phloem unloading in PubMed PMC

Livesley  SJ, Stacey  CL, Gregory  PJ, Buresh  RJ. 1999. Sieve size effects on root length and biomass measurements of maize (

Lobell  DB, Schlenker  W, Costa-Roberts  J. 2011. Climate trends and global crop production since 1980. Science  333: 616–620. PubMed

Lopes  MS. 2022. Will temperature and rainfall changes prevent yield progress in Europe?  Food and Energy Security  11: e372.

Lopes  MS, Reynolds  MP. 2010. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology  37: 147–156.

Lozano-Isla  F. 2023.

Lüdeke  D. 2023.

Lüdeke  D. 2018. Sjmisc: data and variable transformation functions. Journal of Open Source Software  3: 754.

Luo  DG, Ganesh  S, Koolaard  J. 2022.

Lynch  J. 1995. Root architecture and plant productivity. Plant Physiology  109: 7–13. PubMed PMC

Lynch  JP. 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany  112: 347–357. PubMed PMC

Lynch  JP. 2018. Rightsizing root phenotypes for drought resistance. Journal of Experimental Botany  69: 3279–3292. PubMed

Lynch  JP, Wojciechowski  T. 2015. Opportunities and challenges in the subsoil: pathways to deeper rooted crops. Journal of Experimental Botany  66: 2199–2210. PubMed PMC

Madsen  H, Lawrence  D, Lang  M, Martinkova  M, Kjeldsen  TR. 2014. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. Journal of Hydrology  519: 3634–3650.

Maqbool  S, Hassan  MA, Xia  X, York  LM, Rasheed  A, He  Z. 2022. Root system architecture in cereals: progress, challenges and perspective. Plant Journal  110: 23–42. PubMed

Mathew  I, Shimelis  H. 2022. Genetic analyses of root traits: implications for environmental adaptation and new variety development: a review. Plant Breeding  141: 695–718.

Mathew  I, Shimelis  H, Shayanowako  AIT, Laing  M, Chaplot  V. 2019. Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS One  14: e0225383. PubMed PMC

Merotto  A, Mundstock  CM. 1999. Wheat root growth as affected by soil strength. Revista Brasileira de Ciencia do Solo  23: 197–202.

Monyo  JH, Whittington  WJ. 1970. Genetic analysis of root growth in wheat. Journal of Agricultural Science  74: 329–338.

Mooney  SJ, Pridmore  TP, Helliwell  J, Bennett  MJ. 2012. Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant and Soil  352: 1–22.

Moore  FC, Lobell  DB. 2015. The fingerprint of climate trends on European crop yields. Proceedings of the National Academy of Sciences of the United States of America  112: 2670–2675. PubMed PMC

Nelson  GC, Cheung  WWL, Bezner Kerr  R, et al.  2024. Adaptation to climate change and limits in food production systems: physics, the chemistry of biology, and human behavior. Global Change Biology  30: e17489. PubMed

Ober  ES, Alahmad  S, Cockram  J, et al.  2021. Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics  134: 1645–1662. PubMed PMC

Odone  A, Popovic  O, Thorup-Kristensen  K. 2023. Deep roots: implications for nitrogen uptake and drought tolerance among winter wheat cultivars. Plant and Soil  500: 13–32.

Oldenbroek  K, van der Waaij  L. 2015. Textbook animal breeding and genetics for BSc students. Wageningen, The Netherlands: Centre for Genetic Resources, The Netherlands and Animal Breeding and Genomics Centre.

Olsen  SR. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, DC: US Department of Agriculture.

Osmont  KS, Sibout  R, Hardtke  CS. 2007. Hidden branches: developments in root system architecture. Annual Review of Plant Biology  58: 93–113. PubMed

Pariyar  SR, Nagel  KA, Lentz  J, et al.  2021. Variation in root system architecture among the founder parents of two 8-way MAGIC wheat populations for selection in breeding. Agronomy  11: 2452.

Paustian  K, Lehmann  J, Ogle  S, Reay  D, Robertson  GP, Smith  P. 2016. Climate-smart soils. Nature  532: 49–57. PubMed

Piepho  H-P, Möhring  J. 2007. Computing heritability and selection response from unbalanced plant breeding trials. Genetics  177: 1881–1888. PubMed PMC

Pierret  A, Moran  CJ, Doussan  C. 2005. Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytologist  166: 967–980. PubMed

Pinheiro  J, Bates  D. 2006. Mixed-effects models in S and S-PLUS. New York, NY: Springer.

Pinheiro  JB, Bates  D, R Core Team . 2023.

Porter  JR, Gawith  M. 1999. Temperatures and the growth and development of wheat: a review. European Journal of Agronomy  10: 23–36.

Qi  F, Zhang  F. 2020. Cell cycle regulation in the plant response to stress. Frontiers in Plant Science  10: 1765. PubMed PMC

Raffo  MA, Jensen  J. 2023. Gene × gene and genotype × environment interactions in wheat. Crop Science  63: 1779–1793.

Rasse  DP. 2002. Nitrogen deposition and atmospheric CO

Rasse  DP, Smucker  AJM. 1998. Root recolonization of previous root channels in corn and alfalfa rotations. Plant and Soil  204: 203–212.

R Core Team . 2023.

Ribeiro  PR, Fernandez  LG, de Castro  RD, Ligterink  W, Hilhorst  HWM. 2014. Physiological and biochemical responses of PubMed PMC

Rich  SM, Watt  M. 2013. Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. Journal of Experimental Botany  64: 1193–1208. PubMed

RMI, Royal Meteorological Institute of Belgium .

Rogers  ED, Benfey  PN. 2015. Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology  32: 93–98. PubMed

Samset  BH, Zhou  C, Fuglestvedt  JS, Lund  MT, Marotzke  J, Zelinka  MD. 2023. Steady global surface warming from 1973 to 2022 but increased warming rate after 1990. Communications Earth & Environment  4: 400.

Sandhu  N, Raman  KA, Torres  RO, et al.  2016. Rice root architectural plasticity traits and genetic regions for adaptability to variable. Cultivation and Stress Conditions Plant Physiology  171: 2562–2576. PubMed PMC

Schneider  HM, Lynch  JP. 2020. Should root plasticity be a crop breeding target?  Frontiers in Plant Science  11: 546. PubMed PMC

Seethepalli  A, Dhakal  K, Griffiths  M, Guo  H, Freschet  GT, York  LM. 2021. RhizoVision explorer: open-source software for root image analysis and measurement standardization. AoB Plants  13: plab056. PubMed PMC

Seethepalli  A, York  LM. 2021.

Severini  AD, Wasson  AP, Evans  JR, Richards  RA, Watt  M. 2020. Root phenotypes at maturity in diverse wheat and triticale genotypes grown in three field experiments: relationships to shoot selection, biomass, grain yield, flowering time, and environment. Field Crops Research  255: 107870.

Shenoy  A. 2021. grafify: an R package for easy graphs, ANOVAs and post-hoc comparisons. Version 4.0. doi: 10.5281/zenodo.5136508 (31 March 2024, date last accessed). DOI

Shewry  PR, Hey  SJ. 2015. The contribution of wheat to human diet and health. Food and Energy Security  4: 178–202. PubMed PMC

Shoaib  M, Banerjee  BP, Hayden  M, Kant  S. 2022. Roots’ drought adaptive traits in crop improvement. Plants (Basel)  11: 2256. PubMed PMC

Siddique  KHM, Kirby  EJM, Perry  MW. 1989. Ear: stem ratio in old and modern wheat varieties; relationship with improvement in number of grains per ear and yield. Field Crops Research  21: 59–78.

Smith  S, De Smet  I. 2012. Root system architecture: insights from PubMed PMC

Smucker  AJM, McBurney  SL, Srivastava  AK. 1982. Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system. Agronomy Journal  74: 500–503.

Solomon  S, Qin  D, Manning  M  et al.  2007. IPCC, 2007: climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Vol. 4. Cambridge: Cambridge University Press.

Sun  X, Wang  P, Mi  G. 2025. Genotypic differences in maize root morphology in response to low-nitrogen stress. Agronomy  15: 332.

Svoboda  P, Kurešová  G, Raimanová  I, Kunzová  E, Haberle  J. 2020. The effect of different fertilization treatments on wheat root depth and length density distribution in a long-term experiment. Agronomy  10: 1355.

Timaeus  J, Weedon  OD, Finckh  MR. 2021. Combining genetic gain and diversity in plant breeding: heritability of root selection in wheat populations. Sustainability  13: 12778.

Trachsel  S, Kaeppler  SM, Brown  KM, Lynch  JP. 2011. Shovelomics: high throughput phenotyping of maize (

Tripathy  KP, Mishra  AK. 2023. How unusual is the 2022 European Compound Drought and Heatwave event?  Geophysical Research Letters  50: e2023GL105453.

Uga  Y. 2021. Challenges to design-oriented breeding of root system architecture adapted to climate change. Breeding Science  71: 3–12. PubMed PMC

Vu  V. 2011.

Vu  LD, Gevaert  K, De Smet  I. 2019. Feeling the heat: searching for plant thermosensors. Trends in Plant Science  24: 210–219. PubMed

Whalley  WR, Binley  A, Watts  CW, et al.  2017. Methods to estimate changes in soil water for phenotyping root activity in the field. Plant and Soil  415: 407–422. PubMed PMC

Whalley  WR, Leeds-Harrison  PB, Clark  LJ, Gowing  DJG. 2005. Use of effective stress to predict the penetrometer resistance of unsaturated agricultural soils. Soil & Tillage Research  84: 18–27.

Wickham  H. 2007. Reshaping data with the reshape package. Journal of Statistical Software  21: 1–20.

Wickham  H. 2016. Ggplot2: elegant graphics for data analysis. New York: Springer.

Wickham  H, Averick  M, Bryan  J, et al.  2019. Welcome to the tidyverse. Journal of Open Source Software  4: 1686.

Wickham  H, Bryan  J. 2023.

Wickham  H, Seidel  D.

World Reference Base . 2014. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps, Vol. 106. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).

World Reference Base . 2022. World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps, Vol. 4. Vienna, Austria: International Union of Soil Sciences (IUSS).

Xie  Q, Fernando  KMC, Mayes  S, Sparkes  DL. 2017. Identifying seedling root architectural traits associated with yield and yield components in wheat. Annals of Botany  119: 1115–1129. PubMed PMC

Xie  X, Quintana  MR, Sandhu  N, et al.  2021. Establishment method affects rice root plasticity in response to drought and its relationship with grain yield stability. Journal of Experimental Botany  72: 5208–5220. PubMed

Xu  F, Chen  S, Yang  X, et al.  2021. Genome-wide association study on root traits under different growing environments in wheat ( PubMed PMC

Yang  J-C, Zhang  H, Zhang  J-H. 2012. Root morphology and physiology in relation to the yield formation of rice. Journal of Integrative Agriculture: JIA  11: 920–926.

Zhang  Z, Murtagh  F, Van Poucke  S, Lin  S, Lan  P. 2017. Hierarchical cluster analysis in clinical research with heterogeneous study population: highlighting its visualization with R. Annals of Translational Medicine  5: 75. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...