Myopia and daylight-A combination of factors

. 2025 ; 12 () : 1481209. [epub] 20250702

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40672821

The incidence of myopia among school children has risen markedly over the last three decades. In urban areas of South and East Asia, as many as 80-90% of young adults are now myopic. This trend is occurring elsewhere around the world. During the COVID-19 lockdowns, children in many countries were confined indoors and spent an undue amount of time exposed to television screens, computers, and mobile devices. This resulted in an acceleration in the incidence and progression of the condition. Myopia is a significant public health issue as it is a leading cause of blindness and other vision problems. Yet the underlying mechanisms that produce the condition remain elusive. Pseudomyopia has recently been proposed as an independent risk factor for myopia. We hypothesize that pseudomyopia induced by prolonged close work, stress, and anxiety combines and is further amplified by chronically low ambient light levels. If time spent outdoors in daylight is restricted, the effects worsen and together may play a significant part in myopia epidemics.

Zobrazit více v PubMed

Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. (2016) 5:1036–42. 10.1016/j.ophtha.2016.01.006 PubMed DOI

Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. (2012) 6:622–60. 10.1016/j.preteyeres.2012.06.004 PubMed DOI

Haarman AEG, Enthoven CA, Tideman JWL, Tedja MS, Verhoeven VJM, Klaver CCW. The complications of myopia: a review and meta-analysis. Invest Ophthalmol Vis Sci. (2020) 4:49. 10.1167/iovs.61.4.49 PubMed DOI PMC

Li Q, Yang J, He Y, Wang T, Zhong L, Zhu Z, et al. Investigation of the psychological health of first-year high school students with myopia in Guangzhou. Brain Behav. (2020) 4:e01594. 10.1002/brb3.1594 PubMed DOI PMC

Naidoo KS, Fricke TR, Frick KD, Jong M, Naduvilath TJ, Resnikoff S, et al. Potential Lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling. Ophthalmology. (2019) 3:338–46. 10.1016/j.ophtha.2018.10.029 PubMed DOI

Morgan IG, French AN, Ashby RS, Guo X, Ding X, He M, et al. The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res. (2018) 62:134–49. 10.1016/j.preteyeres.2017.09.004 PubMed DOI

Morgan IG, Wu PC, Ostrin LA, Tideman JWL, Yam JC, Lan W, et al. IMI Risk factors for myopia. Invest Ophthalmol Vis Sci. (2021) 5:3. 10.1167/iovs.62.5.3 PubMed DOI PMC

Biswas S, El Kareh A, Qureshi M, Lee DMX, Sun CH, Lam J, et al. The influence of the environment and lifestyle on myopia. J Physiol Anthropol. (2024) 1:7. 10.1186/s40101-024-00354-7 PubMed DOI PMC

Lingham G, Mackey DA, Lucas R, Yazar S. How does spending time outdoors protect against myopia? A review. Br J Ophthalmol. (2020) 5:593–9. 10.1136/bjophthalmol-2019-314675 PubMed DOI

Flitcroft DI, Harb EN, Wildsoet CF. The spatial frequency content of urban and indoor environments as a potential risk factor for myopia development. Invest Ophthalmol Vis Sci. (2020) 11:42. 10.1167/iovs.61.11.42 PubMed DOI PMC

Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res. (2022) 219:109071. 10.1016/j.exer.2022.109071 PubMed DOI PMC

Zhou X, Pardue MT, Iuvone PM, Qu J. Dopamine signaling and myopia development: What are the key challenges. Prog Retin Eye Res. (2017) 61:60–71. 10.1016/j.preteyeres.2017.06.003 PubMed DOI PMC

Carpena-Torres C, Schilling T, Huete-Toral F, Bahmani H, Carracedo G. Increased ocular dopamine levels in rabbits after blue light stimulation of the optic nerve head. Exp Eye Res. (2023) 234:109604. 10.1016/j.exer.2023.109604 PubMed DOI

Thakur S, Dhakal R, Verkicharla PK. Short-term exposure to blue light shows an inhibitory effect on axial elongation in human eyes independent of defocus. Invest Ophthalmol Vis Sci. (2021) 15:22. 10.1167/iovs.62.15.22 PubMed DOI PMC

Jeong H, Kurihara T, Jiang X, Kondo S, Ueno Y, Hayashi Y, et al. Suppressive effects of violet light transmission on myopia progression in a mouse model of lens-induced myopia. Exp Eye Res. (2023) 228:109414. 10.1016/j.exer.2023.109414 PubMed DOI

Torii H, Kurihara T, Seko Y, Negishi K, Ohnuma K, Inaba T, et al. Violet light exposure can be a preventive strategy against myopia progression. EBioMedicine. (2017) 15:210–9. 10.1016/j.ebiom.2016.12.007 PubMed DOI PMC

Muralidharan AR, Low SWY, Lee YC, Barathi VA, Saw SM, Milea D, et al. Recovery From form-deprivation myopia in chicks is dependent upon the fullness and correlated color temperature of the light spectrum. Invest Ophthalmol Vis Sci. (2022) 2:16. 10.1167/iovs.63.2.16 PubMed DOI PMC

Swiatczak B. Chromatic light therapy for inhibiting myopia progression: human studies. Klin Monbl Augenheilkd. (2024) 241:1126–8. 10.1055/a-2322-9892 PubMed DOI

Zhou L, Tong L, Li Y, Williams BT, Qiu K. Photobiomodulation therapy retarded axial length growth in children with myopia: evidence from a 12-month randomized controlled trial evidence. Sci Rep. (2023) 13:3321. 10.1038/s41598-023-30500-7 PubMed DOI PMC

Cao K, Tian L, Ma DL, Zhao SQ Li A, Jin ZB, Jie Y. Daily low-level red light for spherical equivalent error and axial length in children with myopia: a randomized clinical trial. JAMA Ophthalmol. (2024) 6:560–7. 10.1001/jamaophthalmol.2024.0801 PubMed DOI PMC

Ostrin LA, Schill AW. Red light instruments for myopia exceed safety limits. Ophthalmic Physiol Opt. (2024) 2:241–8. 10.1111/opo.13272 PubMed DOI PMC

Lawrenson JG, Shah R, Huntjens B, Downie LE, Virgili G, Dhakal R, et al. Interventions for myopia control in children: a living systematic review and network meta-analysis. Cochrane Database Syst Rev. (2023) 2:CD014758. 10.1002/14651858.CD014758.pub2 PubMed DOI PMC

Li D, Min S, Li X. Is spending more time outdoors able to prevent and control myopia in children and adolescents? A meta-analysis. Ophthalmic Res. (2024) 1:393–404. 10.1159/000539229 PubMed DOI

Kido A, Miyake M, Watanabe N. Interventions to increase time spent outdoors for preventing incidence and progression of myopia in children. Cochrane Database Syst Rev. (2024) 6:CD013549. 10.1002/14651858.CD013549.pub2 PubMed DOI PMC

Eppenberger LS, Sturm V. The role of time exposed to outdoor light for myopia prevalence and progression: a literature review. Clin Ophthalmol. (2020) 14:1875–90. 10.2147/OPTH.S245192 PubMed DOI PMC

Muralidharan AR, Lança C, Biswas S, Barathi VA, Wan Yu, Shermaine L, et al. Light and myopia: from epidemiological studies to neurobiological mechanisms. Ther Adv Ophthalmol. (2021) 13:25158414211059246. 10.1177/25158414211059246 PubMed DOI PMC

Liang J, Pu Y, Chen J, Liu M, Ouyang B, Jin Z, et al. Global prevalence, trend and projection of myopia in children and adolescents from 1990 to 2050: a comprehensive systematic review and meta-analysis. Br J Ophthalmol. (2024) 2024:bjo-2024-325427. 10.1136/bjo-2024-325427 PubMed DOI

Cohn H. Untersuchungen der Augen von 10,060 Schulkindern nebst Vorschlagen zur Verbesserung der den Augen nachtheiligen Schuleinrichtungen. In:Fleischer F, editor. Eine atiologische Studie Leipzig. Leipzig: (1867).

Cohn H. Hygiene of the Eye in Schools. London: Simpkin, Marshall and Co. (1886).

Hobday R. Myopia and daylight in schools: a neglected aspect of public health? Perspect Public Health. (2016) 1:50–5. 10.1177/1757913915576679 PubMed DOI

Harman NB. The effects of school life upon the vision of the child. Proc R Soc Med. (1909) 2:206–16. 10.1177/003591570900201485 PubMed DOI PMC

Rai BB, Ashby RS, French AN, Maddess T. Rural-urban differences in myopia prevalence among myopes presenting to Bhutanese retinal clinical services: a 3-year national study. Graefes Arch Clin Exp Ophthalmol. (2021) 259:613–21. 10.1007/s00417-020-04891-6 PubMed DOI

Fuchs E. The Textbook of Ophthalmology (Second Edition: ). New York: D Appleton & Company. (1901).

Duke-Elder S. The Practice Refraction (Second Edition: ) London: J & A Churchill Ltd. (1935).

Hartmann E. Psychosomatic phenomena in ophthalmology. Br J Ophthalmol. (1949) 8:461–76. 10.1136/bjo.33.8.461 PubMed DOI PMC

Morgan IG, Rose KA. Myopia: is the nature-nurture debate finally over? Clin Exp Optom. (2018) 102:3–17. 10.1111/cxo.12845 PubMed DOI

Laan D, Tan ETC, Huis In Het V. Myopia progression in children during home confinement in the COVID-19 pandemic: a systematic review and meta-analysis. J Optom. (2024) 1:100493. 10.1016/j.optom.2023.100493 PubMed DOI PMC

Ma M, Xiong S, Zhao S, Zheng Z, Sun T, Li C, et al. COVID-19 home quarantine accelerated the progression of myopia in children aged 7 to 12 years in China. Invest Ophthalmol Vis Sci. (2021) 10:37. 10.1167/iovs.62.10.37 PubMed DOI PMC

Yang Z, Wang X, Zhang S, Ye H, Chen Y, Xia Y. Pediatric myopia progression during the COVID-19 pandemic home quarantine and the risk factors: a systematic review and meta-analysis. Front Public Health. (2022) 10:835449. 10.3389/fpubh.2022.835449 PubMed DOI PMC

Guo C, Li Y, Luo L, Lin J, Qiu K, Zhang M. Progression and incidence of myopia among schoolchildren in the post- COVID-19 pandemic period: a prospective cohort study in Shantou, China. BMJ Open. (2023) 8:e074548. 10.1136/bmjopen-2023-074548 PubMed DOI PMC

Harrison L, Carducci B, Klein JD, Bhutta ZA. Indirect effects of COVID-19 on child and adolescent mental health: an overview of systematic reviews. BMJ Glob Health. (2022) 12:e010713. 10.1136/bmjgh-2022-010713 PubMed DOI PMC

Panchal U, Salazar de Pablo G, Franco M, Moreno C, Parellada M, Arango C, et al. The impact of COVID-19 lockdown on child and adolescent mental health: systematic review. Eur Child Adolesc Psychiatry. (2023) 7:1151–77. 10.1007/s00787-021-01856-w PubMed DOI PMC

Sun W, Yu M, Wu J. Han X, Han X, Jan C, Song J, et al. Pseudomyopia as an independent risk factor for myopia onset: a prospective cohort study among school-aged children. Br J Ophthalmol. (2024) 6:873–8. 10.1136/bjo-2022-322330 PubMed DOI PMC

García-Montero M, Felipe-Márquez G, Arriola-Villalobos P, Garzón N. Pseudomyopia: A review. Vision (Basel). (2022) 1:17. 10.3390/vision6010017 PubMed DOI PMC

Savin LH. Functional spasm of accommodation. Br J Ophthalmol. (1959) 43:3–8. 10.1136/bjo.43.1.3 PubMed DOI PMC

Mark HH. Johannes Kepler on the eye and vision. Am J Ophthalmol. (1971) 72:869–78. 10.1016/0002-9394(71)91682-5 PubMed DOI

Sorsby A, Benjamin B. Modes of inheritance of errors of refraction. J Med Genet. (1973) 2:161–4. 10.1136/jmg.10.2.161 PubMed DOI PMC

Mutti DO, Zadnik K. Has near work's star fallen? Optom Vis Sci. (2009) 86:76–78. 10.1097/OPX.0b013e31819974ae PubMed DOI

Gajjar S, Ostrin LA, A. systematic review of near work and myopia: measurement, relationships, mechanisms and clinical corollaries. Acta Ophthalmol. (2022) 4:376–87. 10.1111/aos.15043 PubMed DOI

Jiang D, Lin H, Li C, Liu L, Xiao H, Lin Y, et al. Longitudinal association between myopia and parental myopia and outdoor time among students in Wenzhou: a 25-year longitudinal cohort study. BMC Ophthalmol. (2021) 1:11. 10.1186/s12886-020-01763-9 PubMed DOI PMC

Gordon-Shaag A, Shneor E, Doron R, Levine J, Ostrin LA. Environmental and behavioral factors with refractive error in Israeli boys. Optom Vis Sci. (2021) 8:959–70. 10.1097/OPX.0000000000001755 PubMed DOI PMC

Dutheil F, Oueslati T, Delamarre L, Castanon J, Maurin C, Chiambaretta F, et al. Myopia and near work: a systematic review and meta-analysis. Int J Environ Res Public Health. (2023) 1:875. 10.3390/ijerph20010875 PubMed DOI PMC

Jan C, Li L, Keay L, Stafford RS, Congdon N, Morgan I. Prevention of myopia, China. Bull World Health Organ. (2020) 6:435–7. 10.2471/BLT.19.240903 PubMed DOI PMC

Ong E, Ciuffreda KJ. Nearwork-induced transient myopia. A critical review. Doc Ophthalmol. (1995) 91:57–85. 10.1007/BF01204624 PubMed DOI

Sivaraman V, Rizwana JH, Ramani K, Price H, Calver R, Pardhan S, et al. Near work- induced transient myopia in Indian subjects. Clin Exp Optom. (2015) 6:541–6. 10.1111/cxo.12306 PubMed DOI

Vasudevan B, Ciuffreda KJ. Additivity of near work–induced transient myopia and its decay characteristics in different refractive groups. Investig Opthalmol Vis Sci. (2008) 49:836–41. 10.1167/iovs.07-0197 PubMed DOI

Ciuffreda KJ, Vasudevan B. Nearwork-induced transient myopia (NITM) and permanent myopia–is there a link? Ophthalmic Physiol Opt. (2008) 2:103–14. 10.1111/j.1475-1313.2008.00550.x PubMed DOI

Schaeffel F, Swiatczak B. Mechanisms of emmetropization and what might go wrong in myopia. Vision Res. (2024) 220:108402. 10.1016/j.visres.2024.108402 PubMed DOI

Vreeman RC, Carroll AE. Medical myths. BMJ. (2007) 7633:1288–9. 10.1136/bmj.39420.420370.25 PubMed DOI PMC

You QS, Wu LJ, Duan JL, Luo YX, Liu LJ, Li X, et al. Factors associated with myopia in school children in China: the Beijing childhood eye study. PLOS One. (2012) 7:e52668. 10.1371/journal.pone.0052668 PubMed DOI PMC

French AN, Morgan IG, Mitchell P, Rose KA. Risk factors for incident myopia in Australian schoolchildren: the Sydney adolescent vascular and eye study. Ophthalmology. (2013) 10:2100–8. 10.1016/j.ophtha.2013.02.035 PubMed DOI

Read SA, Collins MJ, Vincent SJ. Light exposure and eye growth in childhood. Invest Ophthalmol Vis Sci. (2015) 11:6779–87. 10.1167/iovs.14-15978 PubMed DOI

Landis EG, Yang V, Brown DM, Pardue MT, Read SA. Dim light exposure and myopia in children. Invest Ophthalmol Vis Sci. (2018) 12:4804–11. 10.1167/iovs.18-24415 PubMed DOI PMC

Landis EG, Park HN, Chrenek M, He L, Sidhu C, Chakraborty R, et al. Ambient light regulates retinal dopamine signaling and myopia susceptibility. Invest Ophthalmol Vis Sci. (2021) 1:28. 10.1167/iovs.62.1.28 PubMed DOI PMC

Irigaraya LF, Bernateneb J, Szepsc A, Albertazzid R, Cortíneze F, Lanca C, et al. Children's bedroom illumination while reading at night. Oftalmología Clínica y Experimental. (2024) 4:e516–e522. 10.70313/2718.7446.v17.n04.362 DOI

Cohen Y, Iribarren R, Ben-Eli H, Massarwa A, Shama-Bakri N, Chassid O. Light intensity in nursery schools: a possible factor in refractive development. Asia Pac J Ophthalmol (Phila). (2022) 1:66–71. 10.1097/APO.0000000000000474 PubMed DOI

Donovan L, Sankaridurg P, Ho A, Chen X, Lin Z, Thomas V, et al. Myopia progression in Chinese children is slower in summer than in winter. Optom Vis Sci. (2012) 8:1196–202. 10.1097/OPX.0b013e3182640996 PubMed DOI PMC

Gwiazda J Deng L Manny R Norton TT the CLEERE Study Group . Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Invest Ophthalmol Vis Sci. (2014) 55:752–8. 10.1167/iovs.13-13029 PubMed DOI PMC

Cui D, Trier K, Munk Ribel-Madsen S. Effect of day length on eye growth, myopia progression, and change of corneal power in myopic children. Ophthalmology. (2013) 120:1074–9. 10.1016/j.ophtha.2012.10.022 PubMed DOI

Rusnak S, Salcman V, Hecova L, Kasl Z. Myopia progression risk: seasonal and lifestyle variations in axial length growth in Czech children. J Ophthalmol. (2018) 2018:5076454. 10.1155/2018/5076454 PubMed DOI PMC

Hua WJ, Jin JX, Wu XY, Yang JW, Jiang X, Gao GP, et al. Elevated light levels in schools have a protective effect on myopia. Ophthalmic Physiol Opt. (2015) 35:252–62. 10.1111/opo.12207 PubMed DOI

Ganne P, Najeeb S, Chaitanya G, Sharma A, Krishnappa NC. Digital eye strain epidemic amid COVID-19 pandemic – a cross-sectional survey. Ophthalmic Epidemiol. (2021) 28:285–92. 10.1080/09286586.2020.1862243 PubMed DOI

Lotfy NM, Shafik HM, Nassief M. Risk factor assessment of digital eye strain during the COVID-19 pandemic: a cross-sectional survey. Med Hypothesis Discov Innov Ophthalmol. (2022) 3:119–28. 10.51329/mehdiophthal1455 PubMed DOI PMC

Mylona I, Glynatsis MN, Floros GD, Kandarakis S. Spotlight on digital eye strain. Clin Optom (Auckl). (2023) 15:29–36. 10.2147/OPTO.S389114 PubMed DOI PMC

Rosenfield M. Computer vision syndrome: a review of ocular causes and potential treatments. Ophthalmic Physiol Opt. (2011) 5:502–15. 10.1111/j.1475-1313.2011.00834.x PubMed DOI

Sheppard AL, Wolffsohn JS. Digital eye strain: prevalence, measurement and amelioration. BMJ Open Ophthalmol. (2018) 3:e000146. 10.1136/bmjophth-2018-000146 PubMed DOI PMC

Pucker AD, Kerr AM, Sanderson J, Lievens C. Digital eye strain: updated perspectives. Clin Optom (Auckl). (2024) 16:233–246. 10.2147/OPTO.S412382 PubMed DOI PMC

Liang X, Wei S, Ming L, Zhao S, Zhang Y, Wang N. The impact of different postures on acute intraocular pressure and accommodation responses during reading. BMC Ophthalmology. (2024) 24:405. 10.1186/s12886-024-03675-4 PubMed DOI PMC

Zetterberg C, Forsman M, Richter HO. Neck/shoulder discomfort due to visually demanding experimental near work is influenced by previous neck pain, task duration, astigmatism, internal eye discomfort and accommodation. PLoS ONE. (2017) 8:e0182439. 10.1371/journal.pone.0182439 PubMed DOI PMC

Lee H, Lee Y. Effects of postural changes using a standing desk on the craniovertebral angle, muscle fatigue, work performance, and discomfort in individuals with a forward head posture. Healthcare (Basel). (2024) 23:2436. 10.3390/healthcare12232436 PubMed DOI PMC

Zetterberg C, Forsman M, Richter HO. Effects of visually demanding near work on trapezius muscle activity. J Electromyogr Kinesiol. (2013) 23:1190–8. 10.1016/j.jelekin.2013.06.003 PubMed DOI

Domkin D, Forsman M, Richter HO. Effect of ciliary-muscle contraction force on trapezius muscle activity during computer mouse work. Eur J Appl Physiol. (2019) 2:389–97. 10.1007/s00421-018-4031-8 PubMed DOI PMC

Nilsen KB, Sand T, Stovner LJ, Leistad RB, Westgaard RH. Autonomic and muscular responses and recovery to one-hour laboratory mental stress in healthy subjects. BMC Musculoskelet Disord. (2007) 8:81. 10.1186/1471-2474-8-81 PubMed DOI PMC

Marker RJ, Campeau S, Maluf KS. Psychosocial stress alters the strength of reticulospinal input to the human upper trapezius. J Neurophysiol. (2017) 1:457–66. 10.1152/jn.00448.2016 PubMed DOI PMC

Wilkes C, Kydd R, Sagar M, Broadbent E. Upright posture improves affect and fatigue in people with depressive symptoms. J Behav Ther Exp Psychiatry. (2017) 54:143–9. 10.1016/j.jbtep.2016.07.015 PubMed DOI

Nair S, Sagar M, Sollers J 3rd, Consedine N, Broadbent E. Do slumped and upright postures affect stress responses? A randomized trial. Health Psychol. (2015) 34:632–41. 10.1037/hea0000146 PubMed DOI

Sabel BA, Wang J, Cárdenas-Morales L, Faiq M, Heim C. Mental stress as consequence and cause of vision loss: the dawn of psychosomatic ophthalmology for preventive and personalized medicine. EPMA J. (2018) 2:133–60. 10.1007/s13167-018-0136-8 PubMed DOI PMC

Mamtani NH, Mamtani HG, Chaturvedi SK. Psychiatric aspects of ophthalmic disorders: a narrative review. Indian J Ophthalmol. (2023) 71:1810–5. 10.4103/ijo.IJO_2101_22 PubMed DOI PMC

Khalid K, Padda J, Pokhriyal S, Hitawala G, Khan MS, Upadhyay P, et al. Pseudomyopia and its association with anxiety. Cureus. (2021) 8:e17411. 10.7759/cureus.17411 PubMed DOI PMC

Harrington D. Wartime ocular neuroses. J Nerv Ment Dis. (1944) 99:622–30. 10.1097/00005053-194405000-00018 DOI

Avetisov ES, Gundorova RA, Shakarian AA, Oganesian AA. Vliianie ostrogo psikhogennogo stressa na sostaianie nekotorykh funktsii zritel'nogo analizatora [Effects of acute psychogenic stress on the state of several functions of the visual analyzer]. Vestn Oftalmol. (1991) 107:17–9. PubMed

Nitzan I, Shmueli O, Safir M. Association of myopia with anxiety and mood disorders in adolescents. Eye (Lond). (2024) 38:3016–8. 10.1038/s41433-024-03170-6 PubMed DOI PMC

Zhang H, Gao H, Zhu Y, Zhu Y, Dang W, Wei R, et al. Relationship between myopia and other risk factors with anxiety and depression among chinese university freshmen during the COVID-19 pandemic. Front Public Health. (2021) 9:774237. 10.3389/fpubh.2021.774237 PubMed DOI PMC

Lissak G. Adverse physiological and psychological effects of screen time on children and adolescents: literature review and case study. Environ Res. (2018) 164:149–57. 10.1016/j.envres.2018.01.015 PubMed DOI

Li X, Vanderloo LM, Keown-Stoneman CDG, Cost KT, Charach A, Maguire JL, et al. Screen use and mental health symptoms in canadian children and youth during the COVID-19 pandemic. JAMA Netw Open. (2021) 4:e2140875. 10.1001/jamanetworkopen.2021.40875 PubMed DOI PMC

Caldwell DM, Davies SR, Hetrick SE, Palmer JC, Caro P, López-López JA, et al. School-based interventions to prevent anxiety and depression in children and young people: a systematic review and network meta-analysis. Lancet Psychiatry. (2019) 12:1011–20. 10.1016/S2215-0366(19)30403-1 PubMed DOI PMC

Harrington DO. Psychosomatic interrelationships in ophthalmology. Am J Ophthalmol. (1948) 31:1241–51. 10.1016/0002-9394(48)91014-9 PubMed DOI

Ishiko S, Kagokawa H, Nishikawa N, Song Y, Sugawara K, Nakagawa H, et al. Impact of the pressure-free Yutori Education Program on myopia in Japan. J Clin Med. (2021) 18:4229. 10.3390/jcm10184229 PubMed DOI PMC

Fu A, Watt KM, Junghans B, Delaveris A, Stapleton F. Prevalence of myopia among disadvantaged Australian schoolchildren: A 5-year cross-sectional study. PLoS ONE. (2020) 8:e0238122. 10.1371/journal.pone.0238122 PubMed DOI PMC

Junghans BM, Crewther SG. Little evidence for an epidemic of myopia in Australian primary school children over the last 30 years. BMC Ophthalmol. (2005) 5:1. 10.1186/1471-2415-5-1 PubMed DOI PMC

Hagen LA, Gjelle JVB, Arnegard S, Pedersen HR, Gilson SJ, Baraas RC. Prevalence and possible factors of myopia in Norwegian adolescents. Sci Rep. (2018) 1:13479. 10.1038/s41598-018-31790-y PubMed DOI PMC

Moser T, Martinsen MT. The outdoor environment in Norwegian kindergartens as pedagogical space for toddlers' play, learning and development. EECERJ. (2010) 4:457–71. 10.1080/1350293X.2010.525931 DOI

Lenes R, Gonzales CR, Størksen I, McClelland MM. Children's self-regulation in Norway and the United States: the role of mother's education and child gender across cultural contexts. Front Psychol. (2020) 11:566208. 10.3389/fpsyg.2020.566208 PubMed DOI PMC

Morgan RW, Speakman JS, Grimshaw SE. Inuit myopia: an environmentally induced “epidemic”? Can Med Assoc J. (1975) 5:575–7. PubMed PMC

Rozema JJ, Boulet C, Cohen Y, Stell WK, Iribarren L, van Rens GHMB, et al. Reappraisal of the historical myopia epidemic in native Arctic communities. Ophthalmic Physiol Opt. (2021) 6:1332–45. 10.1111/opo.12879 PubMed DOI

Bertani DE, De Novellis AMP, Farina R, Latella E, Meloni M, Scala C, et al. “Shedding light on light”: a review on the effects on mental health of exposure to optical radiation. Int J Environ Res Public Health. (2021) 4:1670. 10.3390/ijerph18041670 PubMed DOI PMC

Chakraborty R, Ostrin LA, Nickla DL, Iuvone PM, Pardue MT, Stone RA. Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol Opt. (2018) 3:217–45. 10.1111/opo.12453 PubMed DOI PMC

Cawley EI, Park S, aan het Rot M, Sancton K, Benkelfat C, Young SN, et al. Dopamine and light: dissecting effects on mood and motivational states in women with subsyndromal seasonal affective disorder. J Psychiatry Neurosci. (2013) 6:388–97. 10.1503/jpn.120181 PubMed DOI PMC

Richter HO. Neck pain brought into focus. Work. (2014) 47:413–8. 10.3233/WOR-131776 PubMed DOI

Dong Y, Jan C, Chen L, Ma T, Liu J, Zhang Y, et al. The cumulative effect of multilevel factors on myopia prevalence, incidence, and progression among children and adolescents in china during the COVID-19 pandemic. Transl Vis Sci Technol. (2022) 12:9. 10.1167/tvst.11.12.9 PubMed DOI PMC

Hobday R. Outdoor Learning and Children's Eyesight. In:Jucker R, von Au J, editor. High-Quality Outdoor Learning. Cham: Springer. (2022).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...