RACK1A positively regulates opening of the apical hook in Arabidopsis thaliana via suppression of its auxin response gradient

. 2025 Jul 29 ; 122 (30) : e2407224122. [epub] 20250721

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40690664

Grantová podpora
R35 GM136338 NIGMS NIH HHS - United States
R35GM136338 Foundation for the National Institutes of Health (FNIH)
CTS: 13: 378 Tryggers Foundation
FATE 2022.0029 Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
ERC-2024-SyG STARMORPH 101166880 EC | European Research Council (ERC)
VR 2016-00768 Vetenskapsrådet (VR)
KAW 2016.0352 Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
IGA_PrF_2023_031 International Grant Agency of Palacky University
VR 2020-03420 Vetenskapsrådet (VR)
JCK-1732 Kempestiftelserna (Kempe Foundations)
KAW 2020.0240 Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)

Apical hook development is an ideal model for studying differential growth in plants and is controlled by complex phytohormonal crosstalk, with auxin being the major player. Here, we identified a bioactive small molecule that decelerates apical hook opening in Arabidopsis thaliana. Our genetic studies suggest that this molecule enhances or maintains the auxin maximum found in the inner hook side and requires certain auxin signaling components to modulate apical hook opening. Using biochemical approaches, we then revealed the WD40 repeat scaffold protein RECEPTOR FOR ACTIVATED C KINASE 1A (RACK1A) as a direct target of this compound. We present data in support of RACK1A playing a positive role in apical hook opening by activating specific auxin signaling mechanisms and negatively regulating the differential auxin response gradient across the hook, thereby adjusting differential cell growth, an essential process for organ structure and function in plants.

Zobrazit více v PubMed

Žádníková P., et al. , A model of differential growth-guided apical hook formation in plants. Plant Cell 28, 2464–2477 (2016). PubMed PMC

Raz V., Ecker J. R., Regulation of differential growth in the apical hook of Arabidopsis. Development 126, 3661–3668 (1999). PubMed

Silk W. K., Erickson R. O., Kinematics of hypocotyl curvature. Am. J. Bot. 65, 310–319 (1978).

Abbas M., Alabadí D., Blázquez M., Differential growth at the apical hook: All roads lead to auxin. Front. Plant Sci. 4, 441 (2013). PubMed PMC

Mazzella M. A., Casal J. J., Muschietti J. P., Fox A. R., Hormonal networks involved in apical hook development in darkness and their response to light. Front. Plant Sci. 5, 52 (2014). PubMed PMC

Wang Y., Guo H., On hormonal regulation of the dynamic apical hook development. New Phytol. 222, 1230–1234 (2019). PubMed

Li H., Johnson P., Stepanova A., Alonso J. M., Ecker J. R., Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev. Cell 7, 193–204 (2004). PubMed

Béziat C., Kleine-Vehn J., The road to auxin-dependent growth repression and promotion in apical hooks. Curr. Biol. 28, R519–R525 (2018). PubMed

Leyser H. M. O., et al. , PubMed

Harper R. M., et al. , The PubMed PMC

Zhao Y., et al. , A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309 (2001). PubMed

Dharmasiri N., et al. , Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9, 109–119 (2005). PubMed

Stepanova A. N., et al. , PubMed

Vandenbussche F., et al. , The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in PubMed

Žádníková P., et al. , Role of PIN-mediated auxin efflux in apical hook development of PubMed

Cao M., et al. , TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240–243 (2019). PubMed

Vain T., et al. , Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Proc. Natl. Acad. Sci. U. S. A. 116, 6463–6472 (2019). PubMed PMC

Santner A., Estelle M., The ubiquitin-proteasome system regulates plant hormone signaling. Plant J. 61, 1029–1040 (2010). PubMed PMC

Kelley D. R., Estelle M., Ubiquitin-mediated control of plant hormone signaling. Plant Physiol. 160, 47–55 (2012). PubMed PMC

Schwechheimer C., NEDD8 - Its role in the regulation of Cullin-RING ligases. Curr. Opin. Plant Biol. 45, 112–119 (2018). PubMed

del Pozo J., Timpte C., Tan S., Callis J., Estelle M., The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280, 1760–1763 (1998). PubMed

del Pozo J. C., et al. , AXR1-ECR1–dependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin response. Plant Cell 14, 421–433 (2002). PubMed PMC

Tiryaki I., Staswick P. E., An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant PubMed PMC

Béziat C., Barbez E., Feraru M. I., Lucyshyn D., Kleine-Vehn J., Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. Nat. Plants 3, 17105 (2017). PubMed PMC

Aryal B., et al. , Interplay between cell wall and auxin mediates the control of differential cell elongation during apical hook development. Curr. Biol. 30, 1733–1739 (2020). PubMed

Pai M. Y., et al. , Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods Mol. Biol. 1263, 287–298 (2015). PubMed PMC

Islas-Flores T., Rahman A., Ullah H., Villanueva M. A., The receptor for activated C kinase in plant signaling: Tale of a promiscuous little molecule. Front. Plant Sci. 6, 1090 (2015). PubMed PMC

Vahlkamp L., Palme K., AtArcA (accession no. U77381), the

Ullah H., et al. , Structure of a signal transduction regulator, RACK1, from PubMed PMC

Chen J.-G., et al. , RACK1 mediates multiple hormone responsiveness and developmental processes in PubMed

Guzmán P., Ecker J. R., Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513–523 (1990). PubMed PMC

Ruegger M., et al. , The TIR1 protein of PubMed PMC

Alonso J. M., et al. , Five components of the ethylene-response pathway identified in a screen for PubMed PMC

Hayashi K.-I., et al. , Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc. Natl. Acad. Sci. U. S. A. 105, 5632–5637 (2008). PubMed PMC

Hayashi K.-I., et al. , Rational design of an auxin antagonist of the SCF PubMed

De Rybel B., et al. , Chemical inhibition of a subset of PubMed PMC

Park S.-Y., et al. , Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYLfamily of START proteins. Science 324, 1068–1071 (2009). PubMed PMC

Tsuchiya Y., et al. , A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol. 6, 741–749 (2010). PubMed

Monte I., et al. , Rational design of a ligand-based antagonist of jasmonate perception. Nat. Chem. Biol. 10, 671–676 (2014). PubMed

Uchida N., et al. , Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair. Nat. Chem. Biol. 14, 299–305 (2018). PubMed PMC

Rigal A., et al. , A network of stress-related genes regulates hypocotyl elongation downstream of selective auxin perception. Plant Physiol. 187, 430–445 (2021). PubMed PMC

Vaidya A. S., et al. , Click-to-lead design of a picomolar ABA receptor antagonist with potent activity PubMed PMC

Guo J., Chen J.-G., PubMed PMC

Fu Y., et al. , RACK1A promotes hypocotyl elongation by scaffolding light signaling components in PubMed

Alshammari S. O., Dakshanamurthy S., Ullah H., Small compounds targeting tyrosine phosphorylation of scaffold protein receptor for activated C kinase1A (RACK1A) regulate auxin mediated lateral root development in Arabidopsis. Plant Signal. Behav. 16, 1899488 (2021). PubMed PMC

Denver J. B., Ullah H., PubMed PMC

Béziat C., Kleine-Vehn J., Feraru E., Histochemical staining of β-glucuronidase and its spatial quantification. Methods Mol. Biol. 1497, 73–80 (2017). PubMed

Lomenick B., Jung G., Wohlschlegel J. A., Huang J., Target identification using drug affinity responsive target stability (DARTS). Curr. Protoc. Chem. Biol. 3, 163–180 (2011). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...