RACK1A positively regulates opening of the apical hook in Arabidopsis thaliana via suppression of its auxin response gradient
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
R35 GM136338
NIGMS NIH HHS - United States
R35GM136338
Foundation for the National Institutes of Health (FNIH)
CTS: 13: 378
Tryggers Foundation
FATE 2022.0029
Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
ERC-2024-SyG STARMORPH 101166880
EC | European Research Council (ERC)
VR 2016-00768
Vetenskapsrådet (VR)
KAW 2016.0352
Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
IGA_PrF_2023_031
International Grant Agency of Palacky University
VR 2020-03420
Vetenskapsrådet (VR)
JCK-1732
Kempestiftelserna (Kempe Foundations)
KAW 2020.0240
Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
PubMed
40690664
PubMed Central
PMC12318229
DOI
10.1073/pnas.2407224122
Knihovny.cz E-resources
- Keywords
- Arabidopsis, apical hook, auxin, differential cell growth,
- MeSH
- Arabidopsis * metabolism growth & development genetics MeSH
- Indoleacetic Acids * metabolism MeSH
- Arabidopsis Proteins * metabolism genetics MeSH
- Receptors for Activated C Kinase * metabolism genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Growth Regulators metabolism MeSH
- Signal Transduction MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Indoleacetic Acids * MeSH
- Arabidopsis Proteins * MeSH
- RACK1 protein, Arabidopsis MeSH Browser
- Receptors for Activated C Kinase * MeSH
- Plant Growth Regulators MeSH
Apical hook development is an ideal model for studying differential growth in plants and is controlled by complex phytohormonal crosstalk, with auxin being the major player. Here, we identified a bioactive small molecule that decelerates apical hook opening in Arabidopsis thaliana. Our genetic studies suggest that this molecule enhances or maintains the auxin maximum found in the inner hook side and requires certain auxin signaling components to modulate apical hook opening. Using biochemical approaches, we then revealed the WD40 repeat scaffold protein RECEPTOR FOR ACTIVATED C KINASE 1A (RACK1A) as a direct target of this compound. We present data in support of RACK1A playing a positive role in apical hook opening by activating specific auxin signaling mechanisms and negatively regulating the differential auxin response gradient across the hook, thereby adjusting differential cell growth, an essential process for organ structure and function in plants.
Computational Life Science Cluster Department of Chemistry Umeå University Umeå SE 901 87 Sweden
Department of Biology Duke University Durham NC 27008
Department of Chemistry Umeå University Umeå SE 901 87 Sweden
See more in PubMed
Žádníková P., et al. , A model of differential growth-guided apical hook formation in plants. Plant Cell 28, 2464–2477 (2016). PubMed PMC
Raz V., Ecker J. R., Regulation of differential growth in the apical hook of Arabidopsis. Development 126, 3661–3668 (1999). PubMed
Silk W. K., Erickson R. O., Kinematics of hypocotyl curvature. Am. J. Bot. 65, 310–319 (1978).
Abbas M., Alabadí D., Blázquez M., Differential growth at the apical hook: All roads lead to auxin. Front. Plant Sci. 4, 441 (2013). PubMed PMC
Mazzella M. A., Casal J. J., Muschietti J. P., Fox A. R., Hormonal networks involved in apical hook development in darkness and their response to light. Front. Plant Sci. 5, 52 (2014). PubMed PMC
Wang Y., Guo H., On hormonal regulation of the dynamic apical hook development. New Phytol. 222, 1230–1234 (2019). PubMed
Li H., Johnson P., Stepanova A., Alonso J. M., Ecker J. R., Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev. Cell 7, 193–204 (2004). PubMed
Béziat C., Kleine-Vehn J., The road to auxin-dependent growth repression and promotion in apical hooks. Curr. Biol. 28, R519–R525 (2018). PubMed
Leyser H. M. O., et al. , PubMed
Harper R. M., et al. , The PubMed PMC
Zhao Y., et al. , A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309 (2001). PubMed
Dharmasiri N., et al. , Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9, 109–119 (2005). PubMed
Stepanova A. N., et al. , PubMed
Vandenbussche F., et al. , The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in PubMed
Žádníková P., et al. , Role of PIN-mediated auxin efflux in apical hook development of PubMed
Cao M., et al. , TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240–243 (2019). PubMed
Vain T., et al. , Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Proc. Natl. Acad. Sci. U. S. A. 116, 6463–6472 (2019). PubMed PMC
Santner A., Estelle M., The ubiquitin-proteasome system regulates plant hormone signaling. Plant J. 61, 1029–1040 (2010). PubMed PMC
Kelley D. R., Estelle M., Ubiquitin-mediated control of plant hormone signaling. Plant Physiol. 160, 47–55 (2012). PubMed PMC
Schwechheimer C., NEDD8 - Its role in the regulation of Cullin-RING ligases. Curr. Opin. Plant Biol. 45, 112–119 (2018). PubMed
del Pozo J., Timpte C., Tan S., Callis J., Estelle M., The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280, 1760–1763 (1998). PubMed
del Pozo J. C., et al. , AXR1-ECR1–dependent conjugation of RUB1 to the Arabidopsis cullin AtCUL1 is required for auxin response. Plant Cell 14, 421–433 (2002). PubMed PMC
Tiryaki I., Staswick P. E., An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant PubMed PMC
Béziat C., Barbez E., Feraru M. I., Lucyshyn D., Kleine-Vehn J., Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. Nat. Plants 3, 17105 (2017). PubMed PMC
Aryal B., et al. , Interplay between cell wall and auxin mediates the control of differential cell elongation during apical hook development. Curr. Biol. 30, 1733–1739 (2020). PubMed
Pai M. Y., et al. , Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods Mol. Biol. 1263, 287–298 (2015). PubMed PMC
Islas-Flores T., Rahman A., Ullah H., Villanueva M. A., The receptor for activated C kinase in plant signaling: Tale of a promiscuous little molecule. Front. Plant Sci. 6, 1090 (2015). PubMed PMC
Vahlkamp L., Palme K., AtArcA (accession no. U77381), the
Ullah H., et al. , Structure of a signal transduction regulator, RACK1, from PubMed PMC
Chen J.-G., et al. , RACK1 mediates multiple hormone responsiveness and developmental processes in PubMed
Guzmán P., Ecker J. R., Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513–523 (1990). PubMed PMC
Ruegger M., et al. , The TIR1 protein of PubMed PMC
Alonso J. M., et al. , Five components of the ethylene-response pathway identified in a screen for PubMed PMC
Hayashi K.-I., et al. , Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc. Natl. Acad. Sci. U. S. A. 105, 5632–5637 (2008). PubMed PMC
Hayashi K.-I., et al. , Rational design of an auxin antagonist of the SCF PubMed
De Rybel B., et al. , Chemical inhibition of a subset of PubMed PMC
Park S.-Y., et al. , Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYLfamily of START proteins. Science 324, 1068–1071 (2009). PubMed PMC
Tsuchiya Y., et al. , A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat. Chem. Biol. 6, 741–749 (2010). PubMed
Monte I., et al. , Rational design of a ligand-based antagonist of jasmonate perception. Nat. Chem. Biol. 10, 671–676 (2014). PubMed
Uchida N., et al. , Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair. Nat. Chem. Biol. 14, 299–305 (2018). PubMed PMC
Rigal A., et al. , A network of stress-related genes regulates hypocotyl elongation downstream of selective auxin perception. Plant Physiol. 187, 430–445 (2021). PubMed PMC
Vaidya A. S., et al. , Click-to-lead design of a picomolar ABA receptor antagonist with potent activity PubMed PMC
Guo J., Chen J.-G., PubMed PMC
Fu Y., et al. , RACK1A promotes hypocotyl elongation by scaffolding light signaling components in PubMed
Alshammari S. O., Dakshanamurthy S., Ullah H., Small compounds targeting tyrosine phosphorylation of scaffold protein receptor for activated C kinase1A (RACK1A) regulate auxin mediated lateral root development in Arabidopsis. Plant Signal. Behav. 16, 1899488 (2021). PubMed PMC
Denver J. B., Ullah H., PubMed PMC
Béziat C., Kleine-Vehn J., Feraru E., Histochemical staining of β-glucuronidase and its spatial quantification. Methods Mol. Biol. 1497, 73–80 (2017). PubMed
Lomenick B., Jung G., Wohlschlegel J. A., Huang J., Target identification using drug affinity responsive target stability (DARTS). Curr. Protoc. Chem. Biol. 3, 163–180 (2011). PubMed PMC