Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30992489
PubMed Central
PMC6468119
DOI
10.1038/s41598-019-42531-0
PII: 10.1038/s41598-019-42531-0
Knihovny.cz E-zdroje
- MeSH
- biologický transport účinky léků MeSH
- diabetes mellitus 2. typu farmakoterapie metabolismus MeSH
- glukosa metabolismus MeSH
- glukózový toleranční test MeSH
- hypoglykemika farmakologie terapeutické užití MeSH
- krevní glukóza metabolismus MeSH
- lidé MeSH
- metformin farmakologie terapeutické užití MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- proteinkinasy aktivované AMP metabolismus MeSH
- střevní sliznice účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukosa MeSH
- hypoglykemika MeSH
- krevní glukóza MeSH
- metformin MeSH
- proteinkinasy aktivované AMP MeSH
Metformin is currently the most prescribed drug for treatment of type 2 diabetes mellitus in humans. It has been well established that long-term treatment with metformin improves glucose tolerance in mice by inhibiting hepatic gluconeogenesis. Interestingly, a single dose of orally administered metformin acutely lowers blood glucose levels, however, little is known about the mechanism involved in this effect. Glucose tolerance, as assessed by the glucose tolerance test, was improved in response to prior oral metformin administration when compared to vehicle-treated mice, irrespective of whether the animals were fed either the standard or high-fat diet. Blood glucose-lowering effects of acutely administered metformin were also observed in mice lacking functional AMP-activated protein kinase, and were independent of glucagon-like-peptide-1 or N-methyl-D-aspartate receptors signaling. [18F]-FDG/PET revealed a slower intestinal transit of labeled glucose after metformin as compared to vehicle administration. Finally, metformin in a dose-dependent but indirect manner decreased glucose transport from the intestinal lumen into the blood, which was observed ex vivo as well as in vivo. Our results support the view that the inhibition of transepithelial glucose transport in the intestine is responsible for lowering blood glucose levels during an early response to oral administration of metformin.
Zobrazit více v PubMed
Sterne J. Blood sugar-lowering effect of 1,1-dimethylbiguanide. Therapie. 1958;13:650–659. PubMed
Inzucchi SE, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetologia. 2012;55:1577–1596. doi: 10.1007/s00125-012-2534-0. PubMed DOI
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet352, 854–865 (1998). PubMed
Knowler WC, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine. 2002;346:393–403. doi: 10.1056/NEJMoa012512. PubMed DOI PMC
Morales DR, Morris AD. Metformin in cancer treatment and prevention. Annual Review of Medicine. 2015;66:17–29. doi: 10.1146/annurev-med-062613-093128. PubMed DOI
Faubert B, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metabolism. 2013;17:113–124. doi: 10.1016/j.cmet.2012.12.001. PubMed DOI PMC
Shaw RJ, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310:1642–1646. doi: 10.1126/science.1120781. PubMed DOI PMC
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. The Biochemical Journal. 2000;348(Pt 3):607–614. doi: 10.1042/bj3480607. PubMed DOI PMC
Madiraju AK, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–546. doi: 10.1038/nature13270. PubMed DOI PMC
Kristensen JM, Treebak JT, Schjerling P, Goodyear L, Wojtaszewski JF. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle. American Journal of Physiology. Endocrinology and Metabolism. 2014;306:E1099–1109. doi: 10.1152/ajpendo.00417.2013. PubMed DOI PMC
Sajan MP, et al. AICAR and metformin, but not exercise, increase muscle glucose transport through AMPK-, ERK-, and PDK1-dependent activation of atypical PKC. American Journal of Physiology. Endocrinology and Metabolism. 2010;298:E179–192. doi: 10.1152/ajpendo.00392.2009. PubMed DOI PMC
Bailey CJ, Wilcock C, Day C. Effect of metformin on glucose metabolism in the splanchnic bed. British Journal of Pharmacology. 1992;105:1009–1013. doi: 10.1111/j.1476-5381.1992.tb09093.x. PubMed DOI PMC
Preiss D, et al. Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes. Diabetes, Obesity &. Metabolism. 2017;19:356–363. doi: 10.1111/dom.12826. PubMed DOI PMC
Wu H, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine. 2017;23:850–858. doi: 10.1038/nm.4345. PubMed DOI
Schommers P, et al. Metformin causes a futile intestinal-hepatic cycle which increases energy expenditure and slows down development of a type 2 diabetes-like state. Molecular Metabolism. 2017;6:737–747. doi: 10.1016/j.molmet.2017.05.002. PubMed DOI PMC
Foretz M, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. The Journal of Clinical Investigation. 2010;120:2355–2369. doi: 10.1172/JCI40671. PubMed DOI PMC
Maida A., Lamont B. J., Cao X., Drucker D. J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia. 2010;54(2):339–349. doi: 10.1007/s00125-010-1937-z. PubMed DOI
Duca FA, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nature Medicine. 2015;21:506–511. doi: 10.1038/nm.3787. PubMed DOI PMC
Salcedo I, Tweedie D, Li Y, Greig NH. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. British Journal of Pharmacology. 2012;166:1586–1599. doi: 10.1111/j.1476-5381.2012.01971.x. PubMed DOI PMC
Bauer PV, Duca FA. Targeting the gastrointestinal tract to treat type 2 diabetes. The Journal of Endocrinology. 2016;230:R95–R113. doi: 10.1530/JOE-16-0056. PubMed DOI
Tahara A, Matsuyama-Yokono A, Nakano R, Someya Y, Shibasaki M. Hypoglycaemic effects of antidiabetic drugs in streptozotocin-nicotinamide-induced mildly diabetic and streptozotocin-induced severely diabetic rats. Basic & Clinical Pharmacology &. Toxicology. 2008;103:560–568. doi: 10.1111/j.1742-7843.2008.00321.x. PubMed DOI
Galuska D, Zierath J, Thorne A, Sonnenfeld T, Wallberg-Henriksson H. Metformin increases insulin-stimulated glucose transport in insulin-resistant human skeletal muscle. Diabete & Metabolisme. 1991;17:159–163. PubMed
DeFronzo RA, Barzilai N, Simonson DC. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. The Journal of Clinical Endocrinology and Metabolism. 1991;73:1294–1301. doi: 10.1210/jcem-73-6-1294. PubMed DOI
Yilmaz S, et al. Metformin-Induced Intense Bowel Uptake Observed on Restaging FDG PET/CT Study in a Patient with Gastric Lymphoma. Molecular Imaging and Radionuclide Therapy. 2011;20:114–116. doi: 10.4274/MIRT.020573. PubMed DOI PMC
Ozulker T, Ozulker F, Mert M, Ozpacaci T. Clearance of the high intestinal (18)F-FDG uptake associated with metformin after stopping the drug. European Journal of Nuclear Medicine and Molecular Imaging. 2010;37:1011–1017. doi: 10.1007/s00259-009-1330-7. PubMed DOI
Koffert JP, et al. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: Results from a randomized clinical trial. Diabetes Research And Clinical Practice. 2017;131:208–216. doi: 10.1016/j.diabres.2017.07.015. PubMed DOI
DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism: Clinical And Experimental. 2016;65:20–29. doi: 10.1016/j.metabol.2015.10.014. PubMed DOI
Stepensky D, Friedman M, Raz I, Hoffman A. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metabolism And Disposition: The Biological Fate Of Chemicals. 2002;30:861–868. doi: 10.1124/dmd.30.8.861. PubMed DOI
Graham GG, et al. Clinical pharmacokinetics of metformin. Clinical Pharmacokinetics. 2011;50:81–98. doi: 10.2165/11534750-000000000-00000. PubMed DOI
Stumpel F, Burcelin R, Jungermann K, Thorens B. Normal kinetics of intestinal glucose absorption in the absence of GLUT2: evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:11330–11335. doi: 10.1073/pnas.211357698. PubMed DOI PMC
Martin MG, Turk E, Lostao MP, Kerner C, Wright EM. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nature Genetics. 1996;12:216–220. doi: 10.1038/ng0296-216. PubMed DOI
Wright EM, Martin MG, Turk E. Intestinal absorption in health and disease–sugars. Best Practice &Research. Clinical Gastroenterology. 2003;17:943–956. doi: 10.1016/S1521-6918(03)00107-0. PubMed DOI
Ait-Omar A, et al. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes. 2011;60:2598–2607. doi: 10.2337/db10-1740. PubMed DOI PMC
Lenzen S, Lortz S, Tiedge M. Effect of metformin on SGLT1, GLUT2, and GLUT5 hexose transporter gene expression in small intestine from rats. Biochemical Pharmacology. 1996;51:893–896. doi: 10.1016/0006-2952(95)02243-0. PubMed DOI
Sakar Y, et al. Metformin-induced regulation of the intestinal D-glucose transporters. Journal Of Physiology And Pharmacology: an official journal of the Polish Physiological Society. 2010;61:301–307. PubMed
Harmel E, et al. AMPK in the small intestine in normal and pathophysiological conditions. Endocrinology. 2014;155:873–888. doi: 10.1210/en.2013-1750. PubMed DOI
Sun X, Yang Q, Rogers CJ, Du M, Zhu MJ. AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death And Differentiation. 2017;24:819–831. doi: 10.1038/cdd.2017.14. PubMed DOI PMC
Sakar Y, et al. Positive regulatory control loop between gut leptin and intestinal GLUT2/GLUT5 transporters links to hepatic metabolic functions in rodents. PloS One. 2009;4:e7935. doi: 10.1371/journal.pone.0007935. PubMed DOI PMC
Holst JJ, Gribble F, Horowitz M, Rayner CK. Roles of the Gut in Glucose Homeostasis. Diabetes Care. 2016;39:884–892. doi: 10.2337/dc16-0351. PubMed DOI
Rouquet T, et al. Acute oral metformin enhances satiation and activates brainstem nesfatinergic neurons. Obesity. 2014;22:2552–2562. doi: 10.1002/oby.20902. PubMed DOI
Sato Daisuke, Morino Katsutaro, Nakagawa Fumiyuki, Murata Koichiro, Sekine Osamu, Beppu Fumiaki, Gotoh Naohiro, Ugi Satoshi, Maegawa Hiroshi. Acute Effect of Metformin on Postprandial Hypertriglyceridemia through Delayed Gastric Emptying. International Journal of Molecular Sciences. 2017;18(6):1282. doi: 10.3390/ijms18061282. PubMed DOI PMC
Chaikomin R, et al. Concurrent duodenal manometric and impedance recording to evaluate the effects of hyoscine on motility and flow events, glucose absorption, and incretin release. American journal of physiology. Gastrointestinal And Liver Physiology. 2007;292:G1099–1104. doi: 10.1152/ajpgi.00519.2006. PubMed DOI
Sababi M, Bengtsson UH. Enhanced intestinal motility influences absorption in anaesthetized rat. Acta Physiologica Scandinavica. 2001;172:115–122. doi: 10.1046/j.1365-201X.2001.00849.x. PubMed DOI
Tanahashi Y, et al. Multiple muscarinic pathways mediate the suppression of voltage-gated Ca2+ channels in mouse intestinal smooth muscle cells. British Journal Of Pharmacology. 2009;158:1874–1883. doi: 10.1111/j.1476-5381.2009.00475.x. PubMed DOI PMC
Mulherin AJ, et al. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology. 2011;152:4610–4619. doi: 10.1210/en.2011-1485. PubMed DOI
Chaikomin R, Rayner CK, Jones KL, Horowitz M. Upper gastrointestinal function and glycemic control in diabetes mellitus. World Journal Of Gastroenterology. 2006;12:5611–5621. doi: 10.3748/wjg.v12.i35.5611. PubMed DOI PMC
Kim HJ, et al. The effect of metformin on neuronal activity in the appetite-regulating brain regions of mice fed a high-fat diet during an anorectic period. Physiology & Behavior. 2016;154:184–190. doi: 10.1016/j.physbeh.2015.11.028. PubMed DOI
Koekkoek LL, Mul JD, la Fleur SE. Glucose-Sensing in the Reward System. Frontiers In Neuroscience. 2017;11:716. doi: 10.3389/fnins.2017.00716. PubMed DOI PMC
Roh E, Song DK, Kim MS. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Experimental & Molecular Medicine. 2016;48:e216. doi: 10.1038/emm.2016.4. PubMed DOI PMC
Jelenik T, et al. AMP-activated protein kinase alpha2 subunit is required for the preservation of hepatic insulin sensitivity by n-3 polyunsaturated fatty acids. Diabetes. 2010;59:2737–2746. doi: 10.2337/db09-1716. PubMed DOI PMC
Ruzickova J, et al. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids. 2004;39:1177–1185. doi: 10.1007/s11745-004-1345-9. PubMed DOI
Even PC, Nadkarni NA. Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. American Journal Of Physiology. Regulatory, Integrative And Comparative Physiology. 2012;303:R459–476. doi: 10.1152/ajpregu.00137.2012. PubMed DOI
Hamilton KL, Butt AG. Glucose transport into everted sacs of the small intestine of mice. Advances In Physiology Education. 2013;37:415–426. doi: 10.1152/advan.00017.2013. PubMed DOI