Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport

. 2019 Apr 16 ; 9 (1) : 6156. [epub] 20190416

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30992489
Odkazy

PubMed 30992489
PubMed Central PMC6468119
DOI 10.1038/s41598-019-42531-0
PII: 10.1038/s41598-019-42531-0
Knihovny.cz E-zdroje

Metformin is currently the most prescribed drug for treatment of type 2 diabetes mellitus in humans. It has been well established that long-term treatment with metformin improves glucose tolerance in mice by inhibiting hepatic gluconeogenesis. Interestingly, a single dose of orally administered metformin acutely lowers blood glucose levels, however, little is known about the mechanism involved in this effect. Glucose tolerance, as assessed by the glucose tolerance test, was improved in response to prior oral metformin administration when compared to vehicle-treated mice, irrespective of whether the animals were fed either the standard or high-fat diet. Blood glucose-lowering effects of acutely administered metformin were also observed in mice lacking functional AMP-activated protein kinase, and were independent of glucagon-like-peptide-1 or N-methyl-D-aspartate receptors signaling. [18F]-FDG/PET revealed a slower intestinal transit of labeled glucose after metformin as compared to vehicle administration. Finally, metformin in a dose-dependent but indirect manner decreased glucose transport from the intestinal lumen into the blood, which was observed ex vivo as well as in vivo. Our results support the view that the inhibition of transepithelial glucose transport in the intestine is responsible for lowering blood glucose levels during an early response to oral administration of metformin.

Zobrazit více v PubMed

Sterne J. Blood sugar-lowering effect of 1,1-dimethylbiguanide. Therapie. 1958;13:650–659. PubMed

Inzucchi SE, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetologia. 2012;55:1577–1596. doi: 10.1007/s00125-012-2534-0. PubMed DOI

Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet352, 854–865 (1998). PubMed

Knowler WC, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine. 2002;346:393–403. doi: 10.1056/NEJMoa012512. PubMed DOI PMC

Morales DR, Morris AD. Metformin in cancer treatment and prevention. Annual Review of Medicine. 2015;66:17–29. doi: 10.1146/annurev-med-062613-093128. PubMed DOI

Faubert B, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metabolism. 2013;17:113–124. doi: 10.1016/j.cmet.2012.12.001. PubMed DOI PMC

Shaw RJ, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310:1642–1646. doi: 10.1126/science.1120781. PubMed DOI PMC

Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. The Biochemical Journal. 2000;348(Pt 3):607–614. doi: 10.1042/bj3480607. PubMed DOI PMC

Madiraju AK, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–546. doi: 10.1038/nature13270. PubMed DOI PMC

Kristensen JM, Treebak JT, Schjerling P, Goodyear L, Wojtaszewski JF. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle. American Journal of Physiology. Endocrinology and Metabolism. 2014;306:E1099–1109. doi: 10.1152/ajpendo.00417.2013. PubMed DOI PMC

Sajan MP, et al. AICAR and metformin, but not exercise, increase muscle glucose transport through AMPK-, ERK-, and PDK1-dependent activation of atypical PKC. American Journal of Physiology. Endocrinology and Metabolism. 2010;298:E179–192. doi: 10.1152/ajpendo.00392.2009. PubMed DOI PMC

Bailey CJ, Wilcock C, Day C. Effect of metformin on glucose metabolism in the splanchnic bed. British Journal of Pharmacology. 1992;105:1009–1013. doi: 10.1111/j.1476-5381.1992.tb09093.x. PubMed DOI PMC

Preiss D, et al. Sustained influence of metformin therapy on circulating glucagon-like peptide-1 levels in individuals with and without type 2 diabetes. Diabetes, Obesity &. Metabolism. 2017;19:356–363. doi: 10.1111/dom.12826. PubMed DOI PMC

Wu H, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine. 2017;23:850–858. doi: 10.1038/nm.4345. PubMed DOI

Schommers P, et al. Metformin causes a futile intestinal-hepatic cycle which increases energy expenditure and slows down development of a type 2 diabetes-like state. Molecular Metabolism. 2017;6:737–747. doi: 10.1016/j.molmet.2017.05.002. PubMed DOI PMC

Foretz M, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. The Journal of Clinical Investigation. 2010;120:2355–2369. doi: 10.1172/JCI40671. PubMed DOI PMC

Maida A., Lamont B. J., Cao X., Drucker D. J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia. 2010;54(2):339–349. doi: 10.1007/s00125-010-1937-z. PubMed DOI

Duca FA, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nature Medicine. 2015;21:506–511. doi: 10.1038/nm.3787. PubMed DOI PMC

Salcedo I, Tweedie D, Li Y, Greig NH. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. British Journal of Pharmacology. 2012;166:1586–1599. doi: 10.1111/j.1476-5381.2012.01971.x. PubMed DOI PMC

Bauer PV, Duca FA. Targeting the gastrointestinal tract to treat type 2 diabetes. The Journal of Endocrinology. 2016;230:R95–R113. doi: 10.1530/JOE-16-0056. PubMed DOI

Tahara A, Matsuyama-Yokono A, Nakano R, Someya Y, Shibasaki M. Hypoglycaemic effects of antidiabetic drugs in streptozotocin-nicotinamide-induced mildly diabetic and streptozotocin-induced severely diabetic rats. Basic & Clinical Pharmacology &. Toxicology. 2008;103:560–568. doi: 10.1111/j.1742-7843.2008.00321.x. PubMed DOI

Galuska D, Zierath J, Thorne A, Sonnenfeld T, Wallberg-Henriksson H. Metformin increases insulin-stimulated glucose transport in insulin-resistant human skeletal muscle. Diabete & Metabolisme. 1991;17:159–163. PubMed

DeFronzo RA, Barzilai N, Simonson DC. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. The Journal of Clinical Endocrinology and Metabolism. 1991;73:1294–1301. doi: 10.1210/jcem-73-6-1294. PubMed DOI

Yilmaz S, et al. Metformin-Induced Intense Bowel Uptake Observed on Restaging FDG PET/CT Study in a Patient with Gastric Lymphoma. Molecular Imaging and Radionuclide Therapy. 2011;20:114–116. doi: 10.4274/MIRT.020573. PubMed DOI PMC

Ozulker T, Ozulker F, Mert M, Ozpacaci T. Clearance of the high intestinal (18)F-FDG uptake associated with metformin after stopping the drug. European Journal of Nuclear Medicine and Molecular Imaging. 2010;37:1011–1017. doi: 10.1007/s00259-009-1330-7. PubMed DOI

Koffert JP, et al. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: Results from a randomized clinical trial. Diabetes Research And Clinical Practice. 2017;131:208–216. doi: 10.1016/j.diabres.2017.07.015. PubMed DOI

DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism: Clinical And Experimental. 2016;65:20–29. doi: 10.1016/j.metabol.2015.10.014. PubMed DOI

Stepensky D, Friedman M, Raz I, Hoffman A. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metabolism And Disposition: The Biological Fate Of Chemicals. 2002;30:861–868. doi: 10.1124/dmd.30.8.861. PubMed DOI

Graham GG, et al. Clinical pharmacokinetics of metformin. Clinical Pharmacokinetics. 2011;50:81–98. doi: 10.2165/11534750-000000000-00000. PubMed DOI

Stumpel F, Burcelin R, Jungermann K, Thorens B. Normal kinetics of intestinal glucose absorption in the absence of GLUT2: evidence for a transport pathway requiring glucose phosphorylation and transfer into the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:11330–11335. doi: 10.1073/pnas.211357698. PubMed DOI PMC

Martin MG, Turk E, Lostao MP, Kerner C, Wright EM. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nature Genetics. 1996;12:216–220. doi: 10.1038/ng0296-216. PubMed DOI

Wright EM, Martin MG, Turk E. Intestinal absorption in health and disease–sugars. Best Practice &Research. Clinical Gastroenterology. 2003;17:943–956. doi: 10.1016/S1521-6918(03)00107-0. PubMed DOI

Ait-Omar A, et al. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes. 2011;60:2598–2607. doi: 10.2337/db10-1740. PubMed DOI PMC

Lenzen S, Lortz S, Tiedge M. Effect of metformin on SGLT1, GLUT2, and GLUT5 hexose transporter gene expression in small intestine from rats. Biochemical Pharmacology. 1996;51:893–896. doi: 10.1016/0006-2952(95)02243-0. PubMed DOI

Sakar Y, et al. Metformin-induced regulation of the intestinal D-glucose transporters. Journal Of Physiology And Pharmacology: an official journal of the Polish Physiological Society. 2010;61:301–307. PubMed

Harmel E, et al. AMPK in the small intestine in normal and pathophysiological conditions. Endocrinology. 2014;155:873–888. doi: 10.1210/en.2013-1750. PubMed DOI

Sun X, Yang Q, Rogers CJ, Du M, Zhu MJ. AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death And Differentiation. 2017;24:819–831. doi: 10.1038/cdd.2017.14. PubMed DOI PMC

Sakar Y, et al. Positive regulatory control loop between gut leptin and intestinal GLUT2/GLUT5 transporters links to hepatic metabolic functions in rodents. PloS One. 2009;4:e7935. doi: 10.1371/journal.pone.0007935. PubMed DOI PMC

Holst JJ, Gribble F, Horowitz M, Rayner CK. Roles of the Gut in Glucose Homeostasis. Diabetes Care. 2016;39:884–892. doi: 10.2337/dc16-0351. PubMed DOI

Rouquet T, et al. Acute oral metformin enhances satiation and activates brainstem nesfatinergic neurons. Obesity. 2014;22:2552–2562. doi: 10.1002/oby.20902. PubMed DOI

Sato Daisuke, Morino Katsutaro, Nakagawa Fumiyuki, Murata Koichiro, Sekine Osamu, Beppu Fumiaki, Gotoh Naohiro, Ugi Satoshi, Maegawa Hiroshi. Acute Effect of Metformin on Postprandial Hypertriglyceridemia through Delayed Gastric Emptying. International Journal of Molecular Sciences. 2017;18(6):1282. doi: 10.3390/ijms18061282. PubMed DOI PMC

Chaikomin R, et al. Concurrent duodenal manometric and impedance recording to evaluate the effects of hyoscine on motility and flow events, glucose absorption, and incretin release. American journal of physiology. Gastrointestinal And Liver Physiology. 2007;292:G1099–1104. doi: 10.1152/ajpgi.00519.2006. PubMed DOI

Sababi M, Bengtsson UH. Enhanced intestinal motility influences absorption in anaesthetized rat. Acta Physiologica Scandinavica. 2001;172:115–122. doi: 10.1046/j.1365-201X.2001.00849.x. PubMed DOI

Tanahashi Y, et al. Multiple muscarinic pathways mediate the suppression of voltage-gated Ca2+ channels in mouse intestinal smooth muscle cells. British Journal Of Pharmacology. 2009;158:1874–1883. doi: 10.1111/j.1476-5381.2009.00475.x. PubMed DOI PMC

Mulherin AJ, et al. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology. 2011;152:4610–4619. doi: 10.1210/en.2011-1485. PubMed DOI

Chaikomin R, Rayner CK, Jones KL, Horowitz M. Upper gastrointestinal function and glycemic control in diabetes mellitus. World Journal Of Gastroenterology. 2006;12:5611–5621. doi: 10.3748/wjg.v12.i35.5611. PubMed DOI PMC

Kim HJ, et al. The effect of metformin on neuronal activity in the appetite-regulating brain regions of mice fed a high-fat diet during an anorectic period. Physiology & Behavior. 2016;154:184–190. doi: 10.1016/j.physbeh.2015.11.028. PubMed DOI

Koekkoek LL, Mul JD, la Fleur SE. Glucose-Sensing in the Reward System. Frontiers In Neuroscience. 2017;11:716. doi: 10.3389/fnins.2017.00716. PubMed DOI PMC

Roh E, Song DK, Kim MS. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Experimental & Molecular Medicine. 2016;48:e216. doi: 10.1038/emm.2016.4. PubMed DOI PMC

Jelenik T, et al. AMP-activated protein kinase alpha2 subunit is required for the preservation of hepatic insulin sensitivity by n-3 polyunsaturated fatty acids. Diabetes. 2010;59:2737–2746. doi: 10.2337/db09-1716. PubMed DOI PMC

Ruzickova J, et al. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids. 2004;39:1177–1185. doi: 10.1007/s11745-004-1345-9. PubMed DOI

Even PC, Nadkarni NA. Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. American Journal Of Physiology. Regulatory, Integrative And Comparative Physiology. 2012;303:R459–476. doi: 10.1152/ajpregu.00137.2012. PubMed DOI

Hamilton KL, Butt AG. Glucose transport into everted sacs of the small intestine of mice. Advances In Physiology Education. 2013;37:415–426. doi: 10.1152/advan.00017.2013. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace