Trigonelline attenuated sepsis-induced acute kidney injury by activating NAD+/SIRT1 Pathway
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
40698661
PubMed Central
PMC12462706
DOI
10.33549/physiolres.935486
PII: 935486
Knihovny.cz E-zdroje
- MeSH
- akutní poškození ledvin * metabolismus etiologie farmakoterapie prevence a kontrola patologie MeSH
- alkaloidy * farmakologie terapeutické užití MeSH
- ledviny účinky léků patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- NAD * metabolismus MeSH
- oxidační stres účinky léků MeSH
- sepse * komplikace metabolismus farmakoterapie MeSH
- signální transdukce účinky léků MeSH
- sirtuin 1 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy * MeSH
- NAD * MeSH
- Sirt1 protein, mouse MeSH Prohlížeč
- sirtuin 1 * MeSH
- trigonelline MeSH Prohlížeč
Sepsis-induced acute kidney injury (SAKI) is one of the most frequent complications in patients with sepsis and is strongly associated with poor clinical outcomes. Trigonelline (TRL), a bioactive pyridine alkaloid isolated from fenugreek, has exhibited therapeutic effects on various diseases. This study aimed to investigate the effects of TRL on SAKI and whether TRL exerted its function via NAD+/SIRT1 pathway activation. A single dose (10 mg/kg body weight) of lipopolysaccharide (LPS) was intraperitoneally administered to establish a mouse SAKI model. After 24 h, compared with the control group, the plasma levels of kidney function indicators creatinine and blood urea nitrogen, oxidative stress indicators hydrogen peroxide and malondialdehyde, and inflammatory factors tumor necrosis factor-alpha and interleukin-1beta were significantly increased. Meanwhile, hematoxylin and eosin staining results revealed that LPS treatment caused glomerular structure disruption, renal tubular luminal narrowing, and renal tubular structure deterioration. TRL treatment significantly reduced the plasma kidney function indicators, oxidative stress, and inflammatory factors levels in the SAKI mice, accompanied by improvements in the renal pathological changes. Furthermore, TRL treatment increased the NAD+ levels, upregulated the SIRT1 expression, and downregulated the NOX4 expression in the kidney of the SAKI mice. Subsequently, EX-527, a selective SIRT1 inhibitor, was used for inhibiting SIRT1, and it reversed the protective effect of TRL in SAKI. Our results revealed that TRL improved renal function and alleviated inflammation and oxidative stress in SAKI mice by NAD+/SIRT1 pathway activation. Therefore, TRL may be a potential therapeutic approach for SAKI treatment. Key words Trigonelline " Sepsis-induced acute kidney injury " NAD+ " SIRT1.
Zobrazit více v PubMed
Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392:75–87. doi: 10.1016/S0140-6736(18)30696-2. PubMed DOI
Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96:1083–1099. doi: 10.1016/j.kint.2019.05.026. PubMed DOI PMC
Ow CPC, Trask-Marino A, Betrie AH, Evans RG, May CN, Lankadeva YR. Targeting Oxidative Stress in Septic Acute Kidney Injury: From Theory to Practice. J Clin Med. 2021;10:3798. doi: 10.3390/jcm10173798. PubMed DOI PMC
Sun J, Zhang J, Tian J, Virzì GM, Digvijay K, Cueto L, Yin Y, Rosner MH, Ronco C. Mitochondria in Sepsis-Induced AKI. J Am Soc Nephrol. 2019;30:1151–1161. doi: 10.1681/ASN.2018111126. PubMed DOI PMC
Han D, Fang R, Shi R, Jin Y, Wang Q. LncRNA NKILA knockdown promotes cell viability and represses cell apoptosis, autophagy and inflammation in lipopolysaccharide-induced sepsis model by regulating miR-140-5p/CLDN2 axis. Biochem Biophys Res Commun. 2021;559:8–14. doi: 10.1016/j.bbrc.2021.04.074. PubMed DOI
Tovar-Palacio C, Noriega LG, Mercado A. Potential of Polyphenols to Restore SIRT1 and NAD+ Metabolism in Renal Disease. Nutrients. 2022;14:653. doi: 10.3390/nu14030653. PubMed DOI PMC
Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang XJ, Wang H, Du Y, et al. NAD+ improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflammation. 2021;18:207. doi: 10.1186/s12974-021-02250-8. PubMed DOI PMC
Morigi M, Perico L, Benigni A. Sirtuins in Renal Health and Disease. J Am Soc Nephrol. 2018;29:1799–1809. doi: 10.1681/ASN.2017111218. PubMed DOI PMC
Deng Z, Sun M, Wu J, Fang H, Cai S, An S, Huang Q, et al. SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death Dis. 2021;12:217. doi: 10.1038/s41419-021-03508-y. PubMed DOI PMC
Li J, Zeng X, Yang F, Wang L, Luo X, Liu R, Zeng F, et al. Resveratrol: Potential Application in Sepsis. Front Pharmacol. 2022;13:821358. doi: 10.3389/fphar.2022.821358. PubMed DOI PMC
Konstantinidis N, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Trigonelline in Coffee and Coffee By-Products. Molecules. 2023;28:3460. doi: 10.3390/molecules28083460. PubMed DOI PMC
Liang Y, Dai X, Cao Y, Wang X, Lu J, Xie L, Liu K, Li X. The neuroprotective and antidiabetic effects of trigonelline: A review of signaling pathways and molecular mechanisms. Biochimie. 2023;206:93–104. doi: 10.1016/j.biochi.2022.10.009. PubMed DOI
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Pharmacological Activities, Therapeutic Effects, and Mechanistic Actions of Trigonelline. Int J Mol Sci. 2024;25:3385. doi: 10.3390/ijms25063385. PubMed DOI PMC
Gong M, Guo Y, Dong H, Wu W, Wu F, Lu F. Trigonelline inhibits tubular epithelial-mesenchymal transformation in diabetic kidney disease via targeting Smad7. Biomed Pharmacother. 2023;168:115747. doi: 10.1016/j.biopha.2023.115747. PubMed DOI
Lonati C, Berezhnoy G, Lawler N, Masuda R, Kulkarni A, Sala S, Nitschke P, et al. Urinary phenotyping of SARS-CoV-2 infection connects clinical diagnostics with metabolomics and uncovers impaired NAD+ pathway and SIRT1 activation. Clin Chem Lab Med. 2023;62:770–788. doi: 10.1515/cclm-2023-1017. PubMed DOI
Tommerdahl KL, Hu EA, Selvin E, Steffen LM, Coresh J, Grams ME, Bjornstad P, et al. Coffee Consumption May Mitigate the Risk for Acute Kidney Injury: Results From the Atherosclerosis Risk in Communities Study. Kidney Int Rep. 2022;7:1665–1672. doi: 10.1016/j.ekir.2022.04.091. PubMed DOI PMC
Li S, Zhang Y, Lu R, Lv X, Lei Q, Tang D, Dai Q, et al. Peroxiredoxin 1 aggravates acute kidney injury by promoting inflammation through Mincle/Syk/NF-κB signaling. Kidney Int. 2023;104:305–323. doi: 10.1016/j.kint.2023.04.013. PubMed DOI
Li T, Sun H, Li Y, Su L, Jiang J, Liu Y, Jiang N, et al. Downregulation of macrophage migration inhibitory factor attenuates NLRP3 inflammasome mediated pyroptosis in sepsis-induced AKI. Cell Death Discov. 2022;8:61. doi: 10.1038/s41420-022-00859-z. PubMed DOI PMC
Yu YY, Li XQ, Hu WP, Cu SC, Dai JJ, Gao YN, Zhang YT, et al. Self-developed NF-κB inhibitor 270 protects against LPS-induced acute kidney injury and lung injury through improving inflammation. Biomed Pharmacother. 2022;147:112615. doi: 10.1016/j.biopha.2022.112615. PubMed DOI
Sun M, Li J, Mao L, Wu J, Deng Z, He M, An S, et al. p53 Deacetylation Alleviates Sepsis-Induced Acute Kidney Injury by Promoting Autophagy. Front Immunol. 2021;12:685523. doi: 10.3389/fimmu.2021.685523. PubMed DOI PMC
Brazda FG, Coulson RA. Toxicity of nicotinic acid and some of its derivatives. Proc Soc Exp Biol Med. 1946;62:19. doi: 10.3181/00379727-62-15356. PubMed DOI
Folwarczna J, Janas A, Pytlik M, Cegieła U, Śliwiński L, Krivošíková Z, Štefíková K, Gajdoš M. Effects of Trigonelline, an Alkaloid Present in Coffee, on Diabetes-Induced Disorders in the Rat Skeletal System. Nutrients. 2016;8:133. doi: 10.3390/nu8030133. PubMed DOI PMC
Li Y, Li Q, Wang C, Lou Z, Li Q. Trigonelline reduced diabetic nephropathy and insulin resistance in type 2 diabetic rats through peroxisome proliferator-activated receptor-γ. Exp Ther Med. 2019;18:1331–1337. doi: 10.3892/etm.2019.7698. PubMed DOI PMC
Peerapen P, Boonmark W, Thongboonkerd V. Trigonelline prevents kidney stone formation processes by inhibiting calcium oxalate crystallization, growth and crystal-cell adhesion, and downregulating crystal receptors. Biomed Pharmacother. 2022;149:112876. doi: 10.1016/j.biopha.2022.112876. PubMed DOI
Manrique-Caballero CL, Del Rio-Pertuz G, Gomez H. Sepsis-Associated Acute Kidney Injury. Crit Care Clin. 2021;37:279–301. doi: 10.1016/j.ccc.2020.11.010. PubMed DOI PMC
Zhang B, Zeng M, Wang Y, Li M, Wu Y, Xu R, Zhang Q, et al. Oleic acid alleviates LPS-induced acute kidney injury by restraining inflammation and oxidative stress via the Ras/MAPKs/PPAR-γ signaling pathway. Phytomedicine. 2022;94:153818. doi: 10.1016/j.phymed.2021.153818. PubMed DOI
Lorigooini Z, Sadeghi Dehsahraei K, Bijad E, Habibian Dehkordi S, Amini-Khoei H. Trigonelline through the Attenuation of Oxidative Stress Exerts Antidepressant- and Anxiolytic-Like Effects in a Mouse Model of Maternal Separation Stress. Pharmacology. 2020;105:289–299. doi: 10.1159/000503728. PubMed DOI
Zeyada MS, Eraky SM, El-Shishtawy MM. Trigonelline mitigates bleomycin-induced pulmonary inflammation and fibrosis: Insight into NLRP3 inflammasome and SPHK1/S1P/Hippo signaling modulation. Life Sci. 2024;336:122272. doi: 10.1016/j.lfs.2023.122272. PubMed DOI
Khalili M, Alavi M, Esmaeil-Jamaat E, Baluchnejadmojarad T, Roghani M. Trigonelline mitigates lipopolysaccharide-induced learning and memory impairment in the rat due to its anti-oxidative and anti-inflammatory effect. Int Immunopharmacol. 2018;61:355–362. doi: 10.1016/j.intimp.2018.06.019. PubMed DOI
Jiang J, Huang K, Xu S, Garcia JGN, Wang C, Cai H. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction. Redox Biol. 2020;36:101638. doi: 10.1016/j.redox.2020.101638. PubMed DOI PMC
Yoo JY, Cha DR, Kim B, An EJ, Lee SR, Cha JJ, Kang YS, et al. LPS-Induced Acute Kidney Injury Is Mediated by Nox4-SH3YL1. Cell Rep. 2020;33:108245. doi: 10.1016/j.celrep.2020.108245. PubMed DOI
Li J, Wang L, Wang B, Zhang Z, Jiang L, Qin Z, Zhao Y, Su B. NOX4 is a potential therapeutic target in septic acute kidney injury by inhibiting mitochondrial dysfunction and inflammation. Theranostics. 2023;13:2863–2878. doi: 10.7150/thno.81240. PubMed DOI PMC
Yoshinari O, Takenake A, Igarashi K. Trigonelline ameliorates oxidative stress in type 2 diabetic Goto-Kakizaki rats. J Med Food. 2013;16:34–41. doi: 10.1089/jmf.2012.2311. PubMed DOI
Li HR, Liu Q, Zhu CL, Sun XY, Sun CY, Yu CM, Li P, et al. β-Nicotinamide mononucleotide activates NAD+/SIRT1 pathway and attenuates inflammatory and oxidative responses in the hippocampus regions of septic mice. Redox Biol. 2023;63:102745. doi: 10.1016/j.redox.2023.102745. PubMed DOI PMC
Smith LM, Yoza BK, Hoth JJ, McCall CE, Vachharajani V. SIRT1 Mediates Septic Cardiomyopathy in a Murine Model of Polymicrobial Sepsis. Shock. 2020;54:96–101. doi: 10.1097/SHK.0000000000001429. PubMed DOI PMC
Xie W, Deng L, Lin M, Huang X, Qian R, Xiong D, Liu W, Tang S. Sirtuin1 Mediates the Protective Effects of Echinacoside against Sepsis-Induced Acute Lung Injury via Regulating the NOX4-Nrf2 Axis. Antioxidants (Basel) 2023;12:1925. doi: 10.3390/antiox12111925. PubMed DOI PMC
Dasgupta A, Shukla SK, Vernucci E, King RJ, Abrego J, Mulder SE, Mullen NJ, et al. SIRT1-NOX4 signaling axis regulates cancer cachexia. J Exp Med. 2020;217:e20190745. doi: 10.1084/jem.20190745. PubMed DOI PMC
Yang K, Velagapudi S, Akhmedov A, Kraler S, Lapikova-Bryhinska T, Schmiady MO, Wu X, et al. Chronic SIRT1 supplementation in diabetic mice improves endothelial function by suppressing oxidative stress. Cardiovasc Res. 2023;119:2190–2201. doi: 10.1093/cvr/cvad102. PubMed DOI PMC
Membrez M, Migliavacca E, Christen S, Yaku K, Trieu J, Lee AK, Morandini F, et al. Trigonelline is an NAD+ precursor that improves muscle function during ageing and is reduced in human sarcopenia. Nat Metab. 2024;6:433–447. doi: 10.1038/s42255-024-00997-x. PubMed DOI PMC
Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, Steegborn C. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc Natl Acad Sci U S A. 2013;110:E2772–E2781. doi: 10.1073/pnas.1303628110. PubMed DOI PMC
Li HR, Liu Q, Zhu CL, Sun XY, Sun CY, Yu CM, Li P, et al. β-Nicotinamide mononucleotide activates NAD+/SIRT1 pathway and attenuates inflammatory and oxidative responses in the hippocampus regions of septic mice. Redox Biol. 2023;63:102745. doi: 10.1016/j.redox.2023.102745. PubMed DOI PMC
He S, Jiang X, Yang J, Wu Y, Shi J, Wu X, Du S, et al. Nicotinamide mononucleotide alleviates endotoxin-induced acute lung injury by modulating macrophage polarization via the SIRT1/NF-κB pathway. Pharm Biol. 2024;62:22–32. doi: 10.1080/13880209.2023.2292256. PubMed DOI PMC
Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu ZY, Bian JS. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol. 2021;38:101813. doi: 10.1016/j.redox.2020.101813. PubMed DOI PMC